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Conductance Through Two Quantum Dots in a Ring: Magnetic Flux Dependence
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The conductance of a double-dot system in a ring threaded by a magnetic flux is studied. The ring is connected
to two leads in such a way that each dot is embedded in one arm of the structure. The currents going through
each arm of the ring are determined by the Aharonov-Bohm effect and the dot charging effects. The conductance
for different values of the magnetic flux is obtained as a function of the gate potentials applied to the dots, for
two situations: when the dot level energies are equal,∆E = 0, and when they are different but with∆E smaller
than the Coulomb interactionU . The conductance shows quite distinct behavior according to having a finite
or zero magnetic flux threading the ring. The system presentsS= 1/2 andS= 1 Kondo phenomena for no
magnetic flux and is in theS= 1/2 Kondo regime in the case of half a quantum of magnetic flux.
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I. INTRODUCTION

The transport properties of double-quantum-dot systems
connected to leads have been experimentally and theoretically
investigated in the last years[1] due to their possible techno-
logical applications, in particular in quantum computing[2].
When the configuration of the two dots is such that each dot
is inserted into one arm of a ring connected to leads, as shown
in Fig. 1, there are two paths for the electrons to go through
the ring producing interferences that depend upon the phase
in each arm. Theoretical[3] and experimental[4] works have
studied the transmission phase shifts of single- and double-
quantum-dot systems in the independent electron approxima-
tion and in Coulomb blockade regime. More recently the
effect of Kondo correlation on the transmission phase of a
single quantum dot has been measured[5] and theoretically
discussed[6, 7]. For the double-dot system in the Kondo
regime the effect of the interferences on the spectral densities
has been studied[8], taking the intra and inter-dot Coulomb
repulsion to be infinite. This limit restricts the study of the
Kondo phenomenon and the phase shift interference effects
to a situation in which the number of electrons in the system
cannot be greater than one.

In our work we study the transport properties of a double-
dot system in an Aharonov-Bohm ring when both dots are in
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FIG. 1: A-B interferometer with two quantum dots embedded.

the Kondo regime. The ring is connected to leads and threaded
by a magnetic flux, the intra-dot Coulomb interaction is taken
to be finite and the inter-dot interaction negligible. By vary-
ing the magnetic flux and the charge at the dots, controlled
by applied gate potentials, different Kondo regimes can be ac-
cessed. Depending on the magnetic flux interesting physics
appear when both dots are charged and in the Kondo regime.

II. METHOD

An Anderson two-impurity first-neighbor tight-binding
Hamiltonian represents the system,
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whereVα andVβ are the gate potentials applied to the dots
andU is the intra-dot Coulomb repulsion, considered to be
equal for the two dots. The parameter t’ is the hopping matrix
element between the dots and their neighbors in the ring and t
the first neighbor hopping within the leads.

The low temperature properties of the system,T < TK
whereTK is the Kondo temperature, can be obtained by calcu-
lating the one-particle Green functionsG of the system. The
many-body problem is treated by exactly diagonalizing a clus-
ter containing the two dots and some lead sites, using a Lanc-
zos algorithm[9]. The Green functionsG, obtained by em-
bedding the cluster into the rest of the system, are imposed to
satisfy a Dyson equation̂G = ĝ+ ĝT̂Ĝ whereĝ is the Green
function matrix of the cluster and̂T is the matrix Hamiltonian
that couples the cluster to the rest of the system. Consistency
is obtained by imposing the same charge for the dressed and
undressed clusters[10]. This approximation has shown to be
very accurate when the cluster is of the size of the Kondo



V. M. Apel et al. 409

cloudhvf /Tk, wherevf is the Fermi velocity, although it gives
qualitatively reliable results even for shorter clusters[11].

The conductance of the system is defined asG = dI/dV
where I is the current that flows from the left lead, at a chem-
ical potentialµL, to the right lead, at a chemical potentialµR.
Denoting byL (R) the site at the left (right) lead nearest neigh-
bor to site1̄ (1), shown in Fig 1, the current along the system
can be written as,

I =
2e
h

t1R

Z ∞

−∞
dω

[
G−+

1R (ω)−G−+
R1 (ω)

]
(2)

wheret1R = t is the hopping between nearest neighboring sites
in the leads and theG−+ are nonequilibrium Green functions.
Within the Keldysh formalism[12] these functions can be re-
lated to the dressed retarded and advanced equilibrium Green
functions,Gr andGa, as

G−+ = (1+GrΣr)g−+(1+ΣaGa) (3)

whereg−+ is the density of states of the equilibrium system
multiplied by the Fermi distribution functionsfµL and fµR, and
Σr(a) = t. Using Eq. 3 to obtainG−+

1R (ω) andG−+
R1 (ω) and

substituting into Eq.2 we obtain, after some manipulations,
the following expression for the current:

I =
2et4

h

Z ∞

−∞
dω |G1̄1|2 ρR(ω)ρL(ω)[ fµL − fµR] (4)

that, atT = 0 reduces to,
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In the limit of an infinitesimal bias the linear differential con-
ductance can be expressed as,

G =
2e2

h
t4 |G1̄1|2 ρ2(εF) (6)

whereρ(εF), the density of states at the first site of a semi-
infinite chain, and the Green function is calculated at the
Fermi level.

III. RESULTS AND DISCUSSIONS

The transport properties for different magnetic flux values
are obtained as a function of the gate potentials applied to the
dots. In units of the Coulomb interaction,U , we takeΓ =
0.05; whereΓ = t ′2/W andWis the leads bandwidth. The
Fermi level is atεF = 0.

The conductance for four values of the magnetic flux,Φ =
0,Φ0/8,Φ0/4 andΦ0/2, are represented in Fig. 2 (white cor-
responds to maximum conductance and black, to minimum)
as a function of the gate potentials applied to the dots,Vα and
Vβ. It is interesting to notice the qualitative differences be-
tween the caseΦ = 0 and the casesΦ 6= 0. They are more
striking when the dot level energies are closer,∆E ∼ 0, that
corresponds to the region in the vicinity of the diagonal (con-
tinuous line) in Fig. 2. On the other hand, in the regions of the

FIG. 2: Conductance (white- maximum,black- minimum) as a func-
tion of the gate potentials at the dots,Vα/U andVβ/U . Φ = 0 (upper-
left panel), Φ = Φ0/8 (lower-left panel),Φ = Φ0/4 (upper-right
panel) andΦ = Φ0/2 (lower-right panel).∆E = 0 (continuous di-
agonal),∆E/U = 0.6 (dashed line).

parameter space that correspond to a large difference between
the dot level energies the results are weakly dependent upon
the magnetic flux. This is reasonable since in these cases the
current flows essentially along one arm of the ring since, when
one dot is in resonance with the Fermi level the other has ei-
ther no electrons or two, so that there is only one dot active at
a time. In this case the conductance possesses the characteris-
tics of the one-dot conductance with a width, as a function of
the gate potential, of the order ofU due to the Kondo effect of
the charging dot.

Let us focus on the more interesting region−1<Vα,Vβ < 0
of Fig. 2, where the dot energy levels are closer and below the
Fermi level. The electrons flow through the two ring arms, and
both dots are at resonance since they are in the Kondo regime.
For Φ = 0 the two arm transmissions are in phase and inter-
fere constructively. The conductance as a function of the gate
potentials has one broad peak as can be concluded from Fig.
2a. As the magnetic flux is turned on, the currents along the
two arms are no longer in phase and the transport properties
change qualitatively. ForΦ = Φ0/2, the arm transmissions are
out of phase and the conductance for∆E = 0 cancels out for
all values of the gate potentials (see continuous line in Fig.2d).

In Fig. 3 we show the conductance of the system for various
magnetic flux values, as a function ofVα for ∆E = 0 (Vα =Vβ)
and∆E = 0.6 (Vα = Vβ−0.6), corresponding, respectively, to
the diagonal continuous lines and dashed lines in Fig. 2.

We first analyze the cases where∆E = 0, when the two
dot levels have the same energy so that the two ring arms are
identical. If there is no magnetic field crossing the ring the
arm transmissions always interfere constructively and the con-
ductance as a function of the gate potentialVα shows a large
peak since both dots are in the Kondo regime, as depicted in
Fig. 3a. On the other hand, the conductance forΦ = Φ0/2
cancels for all values of the gate potentials, as expected since
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FIG. 3: Conductance (in units of2e2/h) as a function ofVα for ∆E =
0 (left) and (a)Φ = 0,Φ0/2, (b) Φ = Φ0/8,Φ0/4; and ∆E = 0.6
(right) (c) Φ = 0,Φ0/2, (d) Φ = Φ0/20,Φ0/8,Φ0/4.

in this case the difference of phase between the transmission
in the two arms is∆φ = π. For 0 < Φ < Φ0/2 the conduc-
tance is finite except at the values of the gate potentials such
that the system is in the electron-hole symmetry condition
(Vα = Vβ = −0.5) where it is zero independent of the mag-
netic flux, as shown in Fig.3b, for Φ = Φ0/4,Φ0/8. This sur-
prising result has also been obtained analytically[13] for the
conductance of the same system in the independent electron
approximation, that is, neglecting the Coulomb interactionU .
It is shown that, for∆E = 0 and the system in the electron-
hole symmetry condition, the conductance goes discontinu-
ously from its maximum value2e2/h, at Φ = 0, to zero, for
any other value of the magnetic flux. Moreover, the calculated
phase difference between the two arm rings is found to go also
discontinuously from zero, forΦ = 0, to ∆φ = π, for Φ 6= 0,
in agreement with the conductance results.

The cases with∆E = 0.6 are represented in Fig.3c, for
Φ = 0 andΦ0/2, and in Fig.3d, for Φ = Φ0/20,Φ0/8,Φ0/4.
In these cases the phase difference between the two arm rings
is not only due to the Aharonov-Bohm effect but it depends
also on the state of charge of the dots that are different. As
Vα decreases from the value0.5 charge begins to enter into
dot α and its spin gets correlated to the conduction electron
spins. Dotα is in the Kondo regime and the conductance in-
creases up to the maximum value of2e2/h. As Vα is further
decreased dotβ begins also to get charged and develops also
a Kondo peak. The conductance is symmetric with respect
to the gate potentialVα = −0.8, when the two dots are in the
electron-hole symmetry condition having just two electrons.
The Kondo phenomenon is responsible for the finite conduc-
tance in almost the whole range of gate potential.

The dependence of the conductance onVα is qualitative dif-
ferent forΦ = 0 as compared to the other values of the mag-
netic flux. It presents three peaks and cancels out for two val-
ues ofVα due to destructive interferences as a result of the dif-

ferent states of charge of the dots. This is in agreement with
the Onsager relation according to which the conductance of
our system, that possesses a closed geometry, is an even func-
tion of the applied magnetic flux. This implies that the phase
difference between the two arm transmissions forΦ = 0 can
only have the values∆φ = 0,π, depending on the gate poten-
tials applied to the dots.

By a qualitative analysis based on perturbation theory we
can argue that the cases forΦ = 0 andΦ = Φ0/2 are diverse,
as far as the correlation between the dots is concerned. The
effective interaction between the dots can be obtained by tak-
ing the non-diagonal matrix elements that connect the dots to
the rest of the circuit,t ′, as a perturbation. Due to the system
topology it is clear that to get the dominant contribution to
the effective inter-dot interaction it is necessary to go to forth
order in perturbation theory. In this case, while forΦ = 0
the contributions that go from one dot to the other and return
along the same path sum-up with the circulating contributions,
for Φ = Φ0/2 these two contributions, having opposite signs,
tend to cancel each other, giving rise to a weak inter-dot cor-
relation. Therefore, in the central region of the conductance,
when the dots have two electrons, the two dot spins would be
uncorrelated forΦ = Φ0/2 and strongly correlated forΦ = 0.
Based on this argument the central peak of conductance for
Φ = 0 can be interpreted as due to anS= 1 Kondo state.

IV. CONCLUSIONS

In summary we have studied the conductance of a double-
dot system in a ring threaded by a magnetic flux and con-
nected to leads in such a way that each dot is embedded into
one arm of the resultant structure. The currents going through
each arm of the ring are determined by the Aharonov-Bohm
effect combined with the dot many-body charging effects. For
two different situations, one where the dot level energy split-
ting ∆E = 0 and the other with∆E 6= 0 but smaller than the
Coulomb interactionU , we obtain the conductance for vari-
ous values of the magnetic flux, fromΦ = 0 to Φ0/2, as a
function of the gate potentials applied to the dots. The case
for no magnetic flux presents quite different behavior with re-
spect to the other cases where a finite magnetic flux crosses the
ring. When both dots are charged with one electron, forΦ = 0
their spins are ferromagnetically correlated and the conduc-
tance presents peaks due toS= 1/2 andS= 1 Kondo regime,
while in the caseΦ = Φ0/2 the dot spins are uncorrelated and
the conductance is due to the more familiarS= 1/2 Kondo
phenomenon.
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