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Conductance Through Two Quantum Dots in a Ring: Magnetic Flux Dependence
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The conductance of a double-dot system in a ring threaded by a magnetic flux is studied. The ring is connected
to two leads in such a way that each dot is embedded in one arm of the structure. The currents going through
each arm of the ring are determined by the Aharonov-Bohm effect and the dot charging effects. The conductance
for different values of the magnetic flux is obtained as a function of the gate potentials applied to the dots, for
two situations: when the dot level energies are eqial= 0, and when they are different but witkE smaller
than the Coulomb interactiod. The conductance shows quite distinct behavior according to having a finite
or zero magnetic flux threading the ring. The system presgrisl/2 andS= 1 Kondo phenomena for no
magnetic flux and is in th8= 1/2 Kondo regime in the case of half a quantum of magnetic flux.
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I. INTRODUCTION the Kondo regime. The ring is connected to leads and threaded
by a magnetic flux, the intra-dot Coulomb interaction is taken
fo be finite and the inter-dot interaction negligible. By vary-

connected to leads have been experimentally and theoretical 9 the.magnetlc flux .and the charge at the c.jOtS’ controlled
investigated in the last years[1] due to their possible techno>Y applied gate p(_)tent|als, different I_(ondo regimes can be ac-
logical applications, in particular in quantum computing[2]. cessed. Depending on the magnetic flux Interesting physms
When the configuration of the two dots is such that each dofPpPear when both dots are charged and in the Kondo regime.

is inserted into one arm of a ring connected to leads, as shown
in Fig. 1, there are two paths for the electrons to go through
the ring producing interferences that depend upon the phase
in each arm. Theoretical[3] and experimental[4] works have , o ) , oo
studied the transmission phase shifts of single- and double- AN Anderson two-impurity first-neighbor  tight-binding
quantum-dot systems in the independent electron approximaiamiltonian represents the system,

The transport properties of double-quantum-dot system

IIl. METHOD

tion and in Coulomb blockade regime. More recently the U
effect of Kondo correlation on the transmission phase of aH = {(Vr + ang) Nrg+
single quantum dot has been measured[5] and theoretically r=a,p

discussed[6, 7]. For the double-dot system in the Kondo _
regime the effect of the interferences on the spectral densities + t’ {e'
has been studied[8], taking the intra and inter-dot Coulomb

repulsion to be infinite. This limit restricts the study of the  + t ¥ cicjo (1)
Kondo phenomenon and the phase shift interference effects 1]

to a situation in which the number of electrons in the system . .
cannot be greater than one. whereVy andVp are the gate potentials applied to the dots

andU is the intra-dot Coulomb repulsion, considered to be

In our work we study the transport properties of a double-gq, 5 for the two dots. The parameter t' is the hopping matrix

dot system in an Aharonov-Bohm ring when both dots are iy e ment hetween the dots and their neighbors in the ring and t
the first neighbor hopping within the leads.
The low temperature properties of the system< Tg

NI

D
e (cj;(,clc+c{0030+cgccio+cfocw+c.c.)] }

\/[3 whereTk is the Kondo temperature, can be obtained by calcu-
/@f ‘ ‘ F lating the one-particle Green functiofsof the system. The
_t S~ ot many-body problem is treated by exactly diagonalizing a clus-
1 .-~ S~ 1 ter containing the two dots and some lead sites, using a Lanc-
L ./ CD \. R zos algorithm[9]. The Green functiors, obtained by em-
Sl e bedding the cluster into the rest of the system, are imposed to
>~ g i satisfy a Dyson equatio® = §+ gT G whereg is the Green
S~ -7 function matrix of the cluster antl is the matrix Hamiltonian
- ‘\‘/% that couples the cluster to the rest of the system. Consistency
a is obtained by imposing the same charge for the dressed and

undressed clusters[10]. This approximation has shown to be

FIG. 1: A-B interferometer with two quantum dots embedded. very accurate when the cluster is of the size of the Kondo
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cloudhv; /Ty, wherev; is the Fermi velocity, although it gives
qualitatively reliable results even for shorter clusters[11].
The conductance of the system is definedGas dl /dV
where | is the current that flows from the left lead, at a chem-
ical potentialy , to the right lead, at a chemical potentjigl.
Denoting byl (R) the site at the left (right) lead nearest neigh-
bor to sitel (1), shown in Fig 1, the current along the system

can be written as, e e y
2e 2w |
=T tr d0[Gg (W)~ Gry'(w)] @
wheretig =t is the hopping between nearest neighboring sites s °

in the leads and th&~" are nonequilibrium Green functions.
Within the Keldysh formalism[12] these functions can be re- v
lated to the dressed retarded and advanced equilibrium Green s o 05 00 03 s
functions,G" andG?, as

—+ _ —+
G = (1+Grzr)g (1+ZaGa) @) FIG. 2: Conductance (white- maximum,black- minimum) as a func-

L. . - tion of the gate potentials at the ddtg,/U andVg/U. @ =0 (upper-
whereg™ " is the density of states of the equilibrium system ¢ panel), ® — /8 (lower-left panel),® — o /4 (upper-right

multiplied by the Fermi distribution functiorfg, andf,, and panel) andd — d,/2 (lower-right panel). AE = 0 (continuous di-
3'@ =t. Using Eg. 3 to obtainG;5 (w) andGg; (w) and  agonal) AE/U = 0.6 (dashed line).

substituting into Eq.2 we obtain, after some manipulations,

the following expression for the current:

et Z w parameter space th_at correspond to a large difference between
| = o dw|Gy?pr(w)pL (W) [fy — fie]  (4)  the dot level energies the results are weakly dependent upon
—o the magnetic flux. This is reasonable since in these cases the
that, atT = 0 reduces to, current flows essentially along one arm of the ring since, when
7 one dot is in resonance with the Fermi level the other has ei-
| E uRdm|G* ‘2 (©)pL(®) ®) ther no electrons or two, so that there is only one dot active at
T h 11l PRIW)PL a time. In this case the conductance possesses the characteris-

o o . ) ] ) tics of the one-dot conductance with a width, as a function of
In the limit of an infinitesimal bias the linear differential con- the gate potential, of the orderdfdue to the Kondo effect of

ductance can be expressed as, the charging dot.
262 Let us focus on the more interesting regioth < Vg,V < 0
G= Tt4 G112 p?(eF) (6)  of Fig. 2, where the dot energy levels are closer and below the

Fermilevel. The electrons flow through the two ring arms, and
wherep(er), the density of states at the first site of a semi-both dots are at resonance since they are in the Kondo regime.
infinite chain, and the Green function is calculated at theg=or ® = 0 the two arm transmissions are in phase and inter-
Fermi level. fere constructively. The conductance as a function of the gate

potentials has one broad peak as can be concluded from Fig.

2a. As the magnetic flux is turned on, the currents along the
Ill. RESULTS AND DISCUSSIONS two arms are no longer in phase and the transport properties
change qualitatively. Fab = ®y/2, the arm transmissions are

The transport properties for different magnetic flux valuesout of phase and the conductance Adt = 0 cancels out for
are obtained as a function of the gate potentials applied to th@ll values of the gate potentials (see continuous line in Fig.2d).

dots. In units of the Coulomb interactiod,, we takell = In Fig. 3 we show the conductance of the system for various
0.05; wherel" = t'2/W andWis the leads bandwidth. The magnetic flux values, as a function\tf for AE =0 (Vo =Vp)
Fermi level is agg = 0. andAE = 0.6 (Vo = Vg — 0.6), corresponding, respectively, to

The conductance for four values of the magnetic flox: the diagonal continuous lines and dashed lines in Fig. 2.
0,dy/8,dy/4 anddy/2, are represented in Fig. 2 (white cor-  We first analyze the cases whek& = 0, when the two
responds to maximum conductance and black, to minimumglot levels have the same energy so that the two ring arms are
as a function of the gate potentials applied to the dgtand identical. If there is no magnetic field crossing the ring the
Vp. Itis interesting to notice the qualitative differences be-arm transmissions always interfere constructively and the con-
tween the cas® = 0 and the case® # 0. They are more ductance as a function of the gate poterialshows a large
striking when the dot level energies are cloge, ~ 0, that  peak since both dots are in the Kondo regime, as depicted in
corresponds to the region in the vicinity of the diagonal (con+ig. 3a. On the other hand, the conductance dor= ®q/2
tinuous line) in Fig. 2. On the other hand, in the regions of thecancels for all values of the gate potentials, as expected since
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ferent states of charge of the dots. This is in agreement with
AE=0.0 AE=0.6 the Onsager relation according to which the conductance of
our system, that possesses a closed geometry, is an even func-
tion of the applied magnetic flux. This implies that the phase
difference between the two arm transmissionsdor 0 can
only have the valueA@ = 0, 1, depending on the gate poten-
tials applied to the dots.

By a qualitative analysis based on perturbation theory we
can argue that the cases fbr= 0 and® = ®y/2 are diverse,
as far as the correlation between the dots is concerned. The
effective interaction between the dots can be obtained by tak-
ing the non-diagonal matrix elements that connect the dots to
the rest of the circuit, as a perturbation. Due to the system
topology it is clear that to get the dominant contribution to
the effective inter-dot interaction it is necessary to go to forth
order in perturbation theory. In this case, while for= 0
the contributions that go from one dot to the other and return
along the same path sum-up with the circulating contributions,

Conductance

0.0
1.0

Conductance

[l
o

FIG. 3: Conductance (in units @&?/h) as a function o/, for AE = for ® = ®o/2 these two contributions, having opposite signs,
0 (left) and (a)® = 0,dg/2, (b) ® = dy/8,dy/4; andAE = 0.6  tend to cancel each other, giving rise to a weak inter-dot cor-
(right) (c) ® = 0,®¢/2, (d) ® = ©y/20,D¢/8, /4. relation. Therefore, in the central region of the conductance,

when the dots have two electrons, the two dot spins would be
uncorrelated forp = ®y/2 and strongly correlated fab = 0.
in this case the difference of phase between the transmissiddased on this argument the central peak of conductance for
in the two arms iA@= 1. For0 < @ < ®y/2 the conduc- & = 0can be interpreted as due to @& 1 Kondo state.
tance is finite except at the values of the gate potentials such
that the system is in the electron-hole symmetry condition
(Va = Vg = —0.5) where it is zero independent of the mag-
netic flux, as shown in Figgb, for ® = ®q /4, dy/8. This sur- IV. CONCLUSIONS
prising result has also been obtained analytically[13] for the
conductance of the same system in the independent electronin summary we have studied the conductance of a double-
approximation, that is, neglecting the Coulomb interaction dot system in a ring threaded by a magnetic flux and con-
It is shown that, folAE = 0 and the system in the electron- nected to leads in such a way that each dot is embedded into
hole symmetry condition, the conductance goes discontinuene arm of the resultant structure. The currents going through
ously from its maximum valu@e? /h, at® = 0, to zero, for  each arm of the ring are determined by the Aharonov-Bohm
any other value of the magnetic flux. Moreover, the calculateaffect combined with the dot many-body charging effects. For
phase difference between the two arm rings is found to go alstwo different situations, one where the dot level energy split-
discontinuously from zero, foib = 0, to Ap=Tt, for ® # 0,  ting AE = 0 and the other witlAE = 0 but smaller than the
in agreement with the conductance results. Coulomb interactiotJ, we obtain the conductance for vari-

The cases witlAE = 0.6 are represented in Fig3c, for  ous values of the magnetic flux, from =0 to ®y/2, as a
® =0anddy/2, and in Fig.3d, for ® = ®y/20,dy/8,Pp/4.  function of the gate potentials applied to the dots. The case
In these cases the phase difference between the two arm rinffg no magnetic flux presents quite different behavior with re-
is not only due to the Aharonov-Bohm effect but it dependsspect to the other cases where a finite magnetic flux crosses the
also on the state of charge of the dots that are different. Asng. When both dots are charged with one electron¢fer O
Vy decreases from the val@5 charge begins to enter into their spins are ferromagnetically correlated and the conduc-
dota and its spin gets correlated to the conduction electroriance presents peaks duese 1/2 andS= 1 Kondo regime,
spins. Dota is in the Kondo regime and the conductance in-while in the cas& = ®y/2 the dot spins are uncorrelated and
creases up to the maximum value2e? /h. AsVj is further  the conductance is due to the more famifg# 1/2 Kondo
decreased dq® begins also to get charged and develops alsphenomenon.
a Kondo peak. The conductance is symmetric with respect
to the gate potential, = —0.8, when the two dots are in the
electron-hole symmetry condition having just two electrons.

The Kondo phenomenon is responsible for the finite conduc-
tance in almost the whole range of gate potential.

The dependence of the conductanc&/gis qualitative dif- We acknowledge the Brazilian Agencies FAPERJ, CNPq
ferent ford® = 0 as compared to the other values of the mag-and CAPES, the grant Antorchas/Vitae/Andes No. A-
netic flux. It presents three peaks and cancels out for two valt3562/1-3, The Argentinian Agency CONICET and Funda-
ues ofVy due to destructive interferences as a result of the difcion Antorchas for financial support.
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