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What Do Monte Carlo Simulations Tell Us About Compressible Ising Models?
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Monte Carlo simulations have begun to illuminate the nature of phase transitions and universality classes for

compressible Ising models. A comprehensive analysis of a Landau-Ginsburg Wilson hamiltonian for systems

with elastic degrees of freedom predicts that there should be four cases with different behavior, depending upon

symmetries and thermodynamic constraints. We shall describe the results of careful Monte Carlo simulations

for a simple compressible Ising model that can be easily modified to correspond to each of the four cases.
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I. INTRODUCTION

The study of critical phenomena in magnetic systems is a

mature endeavor with quite substantial results from both the-

ory and experiment. In addition, high resolution Monte Carlo

studies of Ising models have provided quite precise values for

critical temperatures and exponents for several different three

dimensional Ising models. In many cases, however, the ex-

perimental data deviate from theoretical predictions close to

Tc. One possible explanation is that real materials have elas-

tic, not rigid, lattices. High resolution measurements of the

specific heat of DAG (dysprosium aluminum garnet) [1] show

that quite close to the critical point the apparently diverging

peak becomes rounded, see Fig. 1, in spite of the fact that the

single crystals that were used were of exceedingly high qual-

ity. Is the elastic nature of the lattice the culprit? The question

of what happens when the “lattice” is allowed to be compress-

ible has long been the subject of theoretical scrutiny (the the-

oretical background is reviewed elsewhere [2–4]). Of course,

the equivalence between the Ising model and the binary alloy

model adds to the general interest in the problem.

One simple example is the Si/Ge alloy for which the cova-

lent interactions give rise to strongly directional nearest neigh-

bor bonds that dominate the behavior. (Ising spins σi = ±1

are then equivalent to Si or Ge atoms, respectively; and hence,

the concentration of Ge atoms plays the role of the magne-

tization in the corresponding magnetic system. In the same

vein, the chemical potential is equivalent to the magnetic field

in the magnetic interpretation.) The appropriate model con-

tains both two-body and three-body interactions so that both

the bond lengths and bond angles are somewhat constrained.

The particular values of the constants were determined by fit-

ting to the properties of Si/Ge alloys, but the goal here is actu-

ally to determine the behavior of a generic compressible Ising

model. Of course, it remains to be seen if this type of model

fully encompasses the range of physical behavior characteris-

tic of “compressible Ising models” or if the problem is more

subtle.

A comprehensive analysis of a Landau-Ginsburg Wilson

hamiltonian for systems with elastic degrees of freedom de-

termined [3, 4] that there were four distinct cases that would

exhibit quite different behavior. These depend upon symme-

tries (e.g. the coupling between the elastic and magnetic de-

grees of freedom) as well as the thermodynamic constraints

FIG. 1: Specific heat of DAG at various degrees of temperature res-

olution. (From Ref. 1.)

and are listed in Table I.

With the initiation of extensive Monte Carlo simulations

of distortable Ising nets with elastic couplings the “modern”,

comprehensive approach to the study of problems in physics

becomes achievable (see Fig. 2). Thus, the purpose of this

manuscript is to present an overview of the state of our under-

standing of compressible Ising models resulting from more

than a decade of simulations performed in the Center for Sim-
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FIG. 2: Schematic view of modern approaches to the study of physics

and their interrelationship.

TABLE I: Predicted nature of critical behavior for compressible Ising

model with different symmetries/constraints [3, 4]

Type Ferromagnet Antiferromagnet

constant P mean-field (MF)-like 1st order

constant V two trans. lines, MF [5] Fisher renorm.

ulational Physics.

II. MODEL AND METHOD

In these studies the Ising model-binary alloy equivalence is

used, and for the Ising ferromagnet Si/Ge alloys correspond

to a physical example. “Spins” are placed on a distortable di-

amond net with 8 sites per unit cell. The simulation cell con-

tains L× L× L unit cells and the boundary conditions were

periodic. Multiple hamiltonians were considered but all con-

tained distance dependent two-body and three-body terms.

The initial choice was the Keating [7] interatomic potential,

whose “stiffness” parameters E and A were determined by

the macroscopic elastic constants of the crystal and which has

been used to describe the structural properties of mixed sys-

tems [2].

H = Hext. +Hchem. +Hel.,bonds +Hel.,angl (1)

with

Hext. = −µA ∑
i

δSi,+1 −µB ∑
i

δSi,−1 (2)

(Kronecker’s δ), where µA and µB are chemical potentials

Hchem. = ∑
i− j

ε(Si,S j), (3)

where the ε(Si,S j) are chemical binding energies

Hel.,bonds = ∑
i− j

E(Si,S j)
(
�r2

i j −R2
0(Si,S j)

)2
(4)

where E(Si,S j) are bond ”stiffnesses”, R0(Si,S j) ideal lattice

neighbor distances, and

Hel.,angl = ∑
i− j−k

Ai, j,k(�ri j ·�rk j +R0(Si,S j)R0(Sk,S j)/3)2 (5)

where Ai, j,k(Si,S j,Sk) are “angular stiffnesses”. In these equa-

tions, i– j denotes a bond between nearest neighbors i and j,
while i– j–k denotes the angle of the nearest–neighbor bonds

i– j and j–k with vertex at site j. The vector�ri j =�ri−�r j, where

�ri is the position of site i. Additional degrees of freedom are

the linear sizes of the simulation cell Λx, Λy and Λz which

fluctuate if the pressure is held fixed, e.g. P = 0. These simu-

lations were repeated and extended [8] using the Stillinger-

Weber potential [9]. Also containing two-body and three-

body interactions, this potential has the decided advantage that

a simple Stillinger-Weber alloy expands upon heating whereas

a Keating model shows unphysical shrinkage with increasing

temperature.

The Monte Carlo sampling [10] was implemented as fol-

lows: For a single particle of type Si at position�ri, a new type

S′i is randomly chosen as is a slightly displaced new position

�r′i, while keeping the other particles and the simulation box

dimensions fixed. This random trial move is accepted or re-

jected according to the usual Metropolis criterion. After all

particles have been considered, new box dimensions Λ′
x, Λ′

y

and Λ′
z are randomly chosen. The Metropolis acceptance cri-

terion uses

∆He f f = ∆H −NkBT ln
Λ′

xΛ′
yΛ′

z

ΛxΛyΛz
, (6)

where ∆H is the energy change associated with this global

distortion of the system and the latter term describes the

change in translational entropy due to a volume change.

(Since the total number of particles was constant, although

the number of Si and Ge were not individually fixed, the sim-

ulations were performed in the semi-grand canonical ensem-

ble.) Constant volume simulations were performed by simply

turning off volume changing moves. In such cases the fixed

volume was set at about 3/4 of the way between the volumes

for pure Si and pure Ge at T = 0. For some simulations paral-

lel tempering [11, 12] was implemented to overcome thermal

slugishness. Intially runs of only 104 MCS were used to de-

termine parameter ranges of interest, but runs of length 105 -

107 MCS or more were used for more serious data taking.

Because of the Ising model - binary alloy model equiva-

lence, either the magnetic field H or the chemical potential

difference ∆µ can be used for presenting results. Similarly, ei-

ther the magnetization M or the Ge concentration cGe provide

a measure of the order parameter. However, it should be noted

that the elastic degrees of freedom result in a non-equivalence

of the constant-M and constant-H ensembles. This has to do

with the fact that the usual grand-canonical particle bath has

the properties of a fluid, while it would have to have the prop-

erties of a solid (i.e., in particular, apply coherency stresses)

in order to ensure equivalence. This difference was first noted

by Vandeworp and Newman [13].

Monte Carlo data were obtained by sweeping the chemical

potential at low temperature or by sweeping the temperature
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FIG. 3: Concentration dependence on chemical potential as deter-

mined from Monte Carlo simulations at T = 0.026 eV. for the ferro-

magnetic compressible Ising model at constant pressure with a Keat-

ing potential. (From Ref. 2)

at fixed chemical potential for higher temperatures. Because

of pronounced hysteresis at low temperatures, thermodynamic

integration was used to find the intersection of the free ener-

gies and hence the location of the transition. At higher tem-

peratures histogram reweighting [14] was used to locate the

transition at, or near, the critical point. Of course, in a finite

system transitions are rounded and shifted [15], so finite size

scaling was then used to extrapolate to the thermodynamic

limit.

III. RESULTS

For the compressible ferromagnet at constant pressure, the

transition at low temperatures was strongly first order and free

energy integrations were needed to locate the transition. At

higher temperatures the hysteresis was much smaller and a

“law of equal areas” could be used to estimate the location

of the transition. An example is given in Fig. 3, where the

data are shown using binary alloy variables. At intermedi-

ate temperatures the hysteresis shown in the inset can only be

seen using a fine scale observation. Since the spin-up / spin-

down symmetry of the rigid Ising model is no longer valid,

the search for the critical point necessitated scanning the two-

dimensional chemical potential-temperature space. With the

aid of histogram reweighting, the critical point was located

and excellent finite size scaling was obtained using mean-field

exponents. Clear, systematic deviations were found for other

choices of exponents so they could be excluded. The 4th or-

der cumulants of the order parameter were also found to cross

at a different value than the rigid Ising one (U4
∗ ∼ 0.47), but

the crossing point matched the mean field value quite well.

See Fig. 4. The conclusion that the critical behavior was

mean field-like was later found in the analysis of the Landau-

Ginsburg-Wilson Hamiltonian mentioned earlier.

Qualitatively similar results were obtained for the com-

pressible Ising ferromagnet when the Stillinger-Weber poten-

tial is substituted for the Keating potential [8]. Although the
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FIG. 4: Crossing of 4th order cumulants of the concentration for the

compressible Ising ferromagnet at constant pressure (From Ref. 2)
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FIG. 5: Finite size scaling of the 4th order cumulants of the con-

centration for the compressible Ising ferromagnet with a Stillinger-

Weber potential at constant pressure. (From Ref. 8)

scales of interest for the temperature and chemical potential

change, the asymptotic behavior of the normalized thermody-

namic quantities as the critical point is approached does not.

Finite scaling of the reduced fourth order cumulant, shown in

Fig. 5, demonstrates how well mean-field exponents work in

this situation as well.

For the constant volume case, the analysis of the Landau-

Ginsburg-Wilson Hamiltonian [3] suggests that two transi-

tions should occur at low temperatures: one from a Si-rich

state to one that is about equal in Si and Ge concentration, fol-

lowed by a second transition to a state that was almost pure

Ge. In contrast, however, the Monte Carlo data obtained by

sweeping chemical potential at low temperatures revealed a

relatively smooth increase of the Ge-concentration with vary-

ing chemical potential and no apparent transition. However,

a more careful, high resolution study showed that the low

temperature data indeed indicated very slight, smeared out

hysteresis loops for the range of chemical potential between

∼ 0.45− 0.49. Qualitatively similar hysteresis could be seen

for both “high” and “low” values of chemical potential. It was

reproducible, was rather insensitive to the length of the runs,
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FIG. 6: Phase diagrams: (left) chemical potential-temperature space;

(right) concentration-temperature space (shaded areas show regions

where hysteresis is visible). (From Ref.16)
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FIG. 7: Formation of slabs of the minority species. (Top) ∆µ = 0.472

eV; (bottom) ∆µ = 0.410 eV. T = 0.0029 eV. for both cases. Only Si
atoms are shown, and they are greyscale coded vs depth. (After Ref.

16)

and was matched by relatively similar hysteresis in the internal

energy as well. The hysteresis slowly diminished as the tem-

perature increased, and at substantially higher temperature it

disappeared completely for the concentration within the range

of sizes that could be studied. Even so, an examination of the

distribution of nearest neighbors of each species showed that

a double peaked distribution remained below some chemical

potential dependent temperature. It thus appeared as though

there was a phase transition separating the low temperature,

medium concentration and the disordered states over a wide

range of chemical potential (see Fig. 6) but the nature of the

transition was perplexing.

Ising model critical exponents, for the compressible Ising an-

tiferromagnet at constant volume [19].

These results could only be understood by augmenting the

numerical data with “snapshots” of the system. The visual-

ization program AViz, developed at the Technion [17, 18],

was used to produce many views of the system for different

conditions. Typical snapshots of the system (see e.g. Fig. 7)

showed, unexpectedly, that Si rich regions formed slabs of ap-

proximately fixed thickness. Instead of the thickness growing

with enhanced concentration, additional slabs would simply

FIG. 8: Finite size scaling of the order parameter for the compress-

ible Ising antiferromagnet at constant volume. (From Ref. 19)
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FIG. 9: Cumulant crossing for the compressible antiferromagnet at

constant pressure. (From Ref. 4)

form. This behavior became increasingly distinct for larger

systems. Particularly long time scales were associated with

the formation or dissolution of these slabs as the tempera-

ture or chemical potential were swept, and this property gave

rise to the rather strange “smeared” hysteresis loops. Form-

ing the planes took longer and thus produced the asymme-

try in the hysteresis. At higher temperatures the formation

of the slabs seemed to indicate the transition to an “ordered”

state. Moreover, the presence of the slabs introduces a special

length scale into the problem that had not been included in the

LGW Hamiltonian study. The resultant phase diagram, de-

picted in Fig. 6, shows that instead of the two predicted phase

lines a single, closed phase boundary is present. The range

of coexistence along the 1st order phase boundary, as deter-

mined from the hysteresis, is quite narrow, and for the lattice

sizes that were accessible it seemed to disappear completely at

high temperature. The phase boundary appears to be first or-

der everywhere except at the single point where the derivative

dT/dH = 0. Although it is now clear what went wrong in the
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analysis of this case in Ref. 3 (incorrect assumption of a finite

interfacial tension), the physical mechanism which produces

the observed slab formation still needs a clearer explanation.

For Monte Carlo simulations of compressible Ising antifer-

romagnets, essentially the same model (distortable diamond

net with a Stillinger-Weber potential) was used. This was

done so that as few differences as possible were introduced

relative to the ferromagnetic model; however, it was necessary

to change the sign and magnitude of the interaction between

unlike species to produce an antiferromagnetic ground state.

(Of course, in this case the resultant alloy is no longer related

in any way to Si/Ge and must be regarded merely as a model

of purely theoretical interest.) The phase boundaries were first

estimated for modest size lattices, and then more careful runs

were made for specific values of chemical potential or tem-

perature. At both constant volume and constant pressure the

resultant phase boundaries separating the ordered (antiferro-

magnetic) and disordered phases were 2nd order. Careful fi-

nite size analyses of the critical behavior revealed rigid Ising

exponents. For example, Fig. 8 shows a finite size scaling plot,

made with rigid

Quite similar behavior was found for the compressible Ising

antiferromagnet at constant pressure [4]. Furthermore, as

shown in Fig. 9, cumulant crossings for both cases occurred

at the value found previously for a rigid Ising model. Since

no indication of crossover to any other kind of behavior was

seen, substantially larger systems would probably be required

to see some other possible kind of asymptotic behavior, if it

exists! In such a case the computational resources needed

for extending studies of the present model would be orders

of magnitude beyond the capability of current computer re-

sources. Thus, this remains a challenge for future generations

of students.

IV. CONCLUSIONS

Monte Carlo studies of Ising models on a distortable dia-

mond net have provided a test of the “global” nature of the-

oretical predictions. For the ferromagnet at constant pressure

the critical behavior is mean-field-like. For the constant vol-

ume forromagnet a closed first order line was found instead

of the two predicted first order lines, terminating in critical

points. In the “ordered” phase, the less favorable species

forms slabs of approximately fixed thickness, the number of

which increases with increasing concentration. For both con-

stant pressure and constant volume the compressible Ising an-

tiferromagnet showed a closed, Ising like 2nd order phase

boundary separating the ordered and disordered states. Of

course, these studies were restricted to a single type of com-

pressible Ising model, and the general classifications of such

models may be more complex. Much remains to be done.
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