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The Ogg-McCombe effective Hamiltonian for the electron in the conduction band together with the non-
parabolic and effective-mass approximations were used in a theoretical study of the cyclotron effective mass
and electron effective Landé g‖-factor in semiconductor GaAs-Ga1−xAlxAs quantum wells under an applied
magnetic field parallel to the growth direction of the quantum well. Calculations are performed as a function
of the applied magnetic field, and for different widths of the GaAs-Ga1−xAlxAs quantum wells. Results for the
electron cyclotron effective mass and g‖-factor are found in quite good agreement with experimental data.
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The understanding of the physics of semiconductor sin-
gle and multiple quantum wells (QWs), quantum-well wires
(QWWs), quantum dots (QDs), and superlattices (SLs) has
been of great interest, and several studies have been per-
formed to elucidate the physical properties of these systems
[1–6]. The possible use of electron spins in the architecture
of a solid-state based quantum computer has raised special
attention in the study of the behavior of the electron spin
coupled with an external magnetic field. In the single qubit
operation it is of fundamental importance to have pure spin
states in order to guarantee that no losses occur when the
spins transport information [1]. This goal may be achieved
by manipulating the electron g-factor in semiconductor het-
erostrucures and designing appropriate external gate control
devices. The cyclotron effective mass and electronic g-factor
are of importance in possible applications and in the inter-
pretation of experimental data in specific research fields such
as magneto-optical and magneto-transport studies, optically
detected nuclear-resonance experiments, spin electronics and
quantum beats measurements, and in the fractional and integer
quantum Hall effects [2–6].

The appropriate calculation of the electron g-factor and cy-
clotron effective mass depends on the detailed understand-
ing of the interaction between the externally applied magnetic
field and electronic states of the semiconductor heterostruc-
ture. Techniques such as electron spin resonance, Hanle ef-
fect, spin quantum beats, spin flip Raman scattering experi-
ments, and capacitance and energy spectroscopies [4–10] have
been used to measure the electron g-factor in semiconductor
systems. Lattice effects on the orbital contribution, quantum-
confinement, and application of hydrostatic-pressure and ex-
ternal electric/magnetic fields may considerably modify the
conduction-electron g-factor, in both magnitude and sign, in
different semiconductor heterostructures. On the other hand,
experimental measurements of both the Landé g-factor and
cyclotron effective mass provide an excellent tool for test-
ing theoretical predictions of band-structure electronic calcu-
lations in low-dimensional semiconductor heterostructures. In

that respect, in this study we present a theoretical model which
is used to give a proper physical and quantitative explanation
of a series of experiments involving quantum beats and op-
tically detected cyclotron resonance (ODCR) techniques ap-
plied in the measurements of g-factors and cyclotron effec-
tive masses of semiconductor GaAs-Ga1−xAlxAs QWs under
growth-direction applied magnetic fields [2–5].

The Ogg-McCombe Hamiltonian, acting in the two-fold
Γ6c spin-degenerate conduction band of the bulk materials
of the GaAs-Ga1−xAlxAs QW under an applied magnetic
field parallel to the growth z-direction, is obtained within the
effective-mass approximation and in fourth-order of k.p per-
turbation theory as [11–18]
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where Î is the 2 x 2 unit matrix, K̂ = k̂ + eÂ/~c, k̂ = −i∇,
and the Landau gauge is used for the vector potential A =
−yBx̂. The ai, i = 1−6, are appropriate constants taken from
Golubev et al [14] and with equal values for the well and bar-
rier materials. V (z) is the square-well confining barrier po-
tential, taken as 60% of the Ga1−xAlxAs and GaAs band-gap
offset [19], and m∗ and g are the z growth-direction position-
dependent conduction-electron effective mass and Landé g-
factor, respectively [20]. The constant Γ is associated with
the cubic Dresselhaus [21] spin-orbit term (due to the fact

that GaAs has no inversion symmetry), lB =
√
~c
eB is the Lan-

dau length, µB is the Bohr magneton, σ̂ = (σ̂x, σ̂y, σ̂z), where
the σ̂i are the Pauli matrices, and τ̂ is a vector operator with
components given as τ̂x = K̂yK̂xK̂y− K̂zK̂xK̂z and correspond-
ing cyclic permutations. The above Hamiltonian is a 2 x 2
conduction-band effective Hamiltonian [13–15], and includes
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effects of non-parabolicity by taking into account the coupling
between the lowest Γ6c conduction band, Γ7v and Γ8v valence
bands, and the Γ7c and Γ8c p-antibonding conduction bands.
This Hamiltonian is expected to give a realistic description of
the conduction-band Landau levels in zincblende-type semi-
conductors, semiconductor QWs, heterostructures, and so on.
The second term in the RHS of (1) is the Zeeman contribu-
tion, the second-order in K spin-dependent terms (with the
factors a4, a5, and a6) together with the third one (the spin-
orbit Dresselhaus interaction), of third order in K, contribute
to changes in the heterostructure effective g-factor. The terms
in a1 and a3 govern the energy dependence of the cyclotron
effective mass, whereas the term with the factor a2 gives the
diamagnetic shift of the Landau electronic levels.

Note that kx is a good quantum number (as Ĥ does not
explicitly depend on x) and the eigenfunctions of Ĥ may
be chosen as ψ(r) = ϕ(y,z)eikxx/

√
Lx, where Lx is the QW

length along the x direction and ψ(r) and ϕ(y,z) are two-
component wavefunctions. We now write the Hamiltonian as
Ĥ = Ĥ0 +Ŵ , where Ŵ may be neglected, as it may be shown
to contribute only small corrections to the energy levels [22]
(details of the calculation will be published elsewhere [23]).
The eigenfunctions of Ĥ (or Ĥ0) may then be written as
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where the ± symbols correspond to ↑ spin up or ↓ spin down
states, respectively, with the eigenfunctions Φn(y) of the one-
dimensional (1D) harmonic oscillator [24] given by

Φn(y) =
1√

n!2n lB
√

π
e
− (y−y0)2

2l2B Hn(
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lB
) , (4)

where the Hn are the Hermite polynomials, y0 = kxl2
B is the

orbit-center position, and En = ~ωc(n+ 1
2 ), with n = 0,1,2,...,

and wc = eB
m∗c , are the corresponding 1D energies. Notice

that the subindex m = 1,2,3,..., in both f±n,m(z) and the as-
sociated electronic levels E±n,m, indicates the m-th QW con-
fined energy state, and n = 0,1,2,..., for a given m, repre-
sents the corresponding Landau subband energy levels [25].
The functions f±n,m(z) and E±n,m Landau energy levels may be
obtained in a straightforward way [23] for a semiconductor
GaAs-Ga1−xAlxAs QW. Of course, in the absence of the ap-
plied magnetic field, there are no Landau levels, the subband
electronic states are only labelled by m, the problem reduces
to that of confined electrons in a QW, and E±n,m = E±m , with
m being the subband index of the energy levels in a GaAs-
Ga1−xAlxAs QW.

In order to compare our theoretical results with avail-
able experimental measurements, we present calculations per-
formed for GaAs-Ga0.65Al0.35As QWs. Figure 1 displays the
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FIG. 1: (a) Electronic Landau levels, (b) m↑,↓c cyclotron effective
mass, (c) m↑,↓2D 2D cyclotron effective mass, and (d) g||-factor, in an
L = 50 Å GaAs-Ga0.65Al0.35As QW as functions of the growth-
direction applied magnetic field. Full (dotted) lines correspond to
spin up ↑ (down ↓) electron Landau levels.
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FIG. 2: Cyclotron effective mass for GaAs-Ga0.65Al0.35As QWs as a
function of the well widths. Present theoretical results are given as a
full curve, and experimental data are represented as an open triangle
and open circles, from experimental measurements by Singleton et
al [2] and Michels et al [3], respectively. The arrow at the left (right)
vertical axis indicates the value of the mc cyclotron effective mass
corresponding to bulk Ga0.65Al0.35As (bulk GaAs).

magnetic-field dependence of the E±n,m electronic Landau lev-
els, the cyclotron effective mass

m↑,↓
c = (~eB/c)/[E↑,↓n+1(B)−E↑,↓n (B)] , (5)

the two-dimensional (2D) cyclotron effective mass

m↑,↓
2D = (~eB/c)(n+1/2)/[E↑,↓n (B)−E↑,↓n (B = 0)] , (6)

and parallel g factor,

g|| = [E↑n (B)−E↓n (B)]/(µBB) , (7)

for an L = 50 Å GaAs-Ga0.65Al0.35As QW. The definition
of the m↑,↓

c cyclotron effective mass is convenient for com-
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FIG. 3: g‖-factor for GaAs-Ga0.65Al0.35As QWs as a function of the
well widths. Present theoretical results are given as a full curve, and
experimental data are represented as open triangles and circles, from
experimental measurements by Le Jeune et al [4] and Malinowski et
al [5], respectively. The arrow at the left (right) vertical axis indicates
the value of the g||-factor corresponding to bulk Ga0.65Al0.35As (bulk
GaAs).

parison with experimental measurements involving transitions
between consecutive Landau levels, whereas the m↑,↓

2D 2D cy-
clotron effective mass is appropriate for experiments associ-
ated with, for instance, resonant magnetotunneling in double
barrier heterostructures [26]. Results shown in Figure 1 corre-
spond to calculations associated to the electronic levels of the
first m = 1 subband of Landau states. The nonlinear behavior
of the E±n,m=1 Landau electronic levels in Fig. 1(a) is due to
the presence of non-parabolic terms in the Hamiltonian, and
it is apparent that the effects of nonlinearity are stronger for
the highest Landau levels and large values of the applied mag-
netic field, as compared with the effects on the lowest Landau
states. The above mentioned properties of the Landau energy
levels lead to the behavior of the cyclotron masses as shown
in Figs. 1(b) and 1(c), which evolve from an essentially lin-
ear function of the applied magnetic field, for the lowest levels
and small values of B, to a strong nonlinear behavior as a func-
tion of B, for the highest Landau levels and large values of the
applied field. The field-dependence of the g||-factor [cf. Fig.
1(d)] is due both to the magnetic-field effect on the electronic
Landau levels as well as to the confinement/barrier penetration
of the electron envelope wave function due to the presence
of the Ga0.65Al0.35As barriers. Although not shown here, for
large values of the QW width, e.g., L & 200 Å, the influence of
the barriers on the Landau levels is negligible as compared to
that of the magnetic field, the electronic envelope wave func-
tions essentially do not penetrate in the Ga0.65Al0.35As barri-
ers, and the g|| field dependence, for n = 0, on the QW width
is small. Calculated results for the mc cyclotron effective mass
as a function of the width of the GaAs-Ga0.65Al0.35As QW are

depicted in Fig. 2 and compared with experimental results by
Singleton et al [2] and Michels et al [3]. Theoretical results
are for small values of the applied magnetic field (B≈ 0), and
for the m = 1, n = 0 Landau level. As one may see from Fig. 2,
the agreement with experimental data by Michels et al [3] is
excellent, and we find a fair only agreement with the open tri-
angle value by Singleton et al [2]. Figure 3 shows the present
theoretical results for the g||-factor, in the case of the m = 1,
n = 0 Landau level, as a function of the GaAs-Ga0.65Al0.35As
QW width. Again, calculated results are for small values of
the growth-direction applied magnetic field (B≈ 0 - 4 T), and
are compared with the experimental data by Le Jeune et al [4]
(for B in the range from 1 T to 4 T), and Malinowski et al [5]
(for B = 4 T). Notice that, for large QW widths, the value of
the g||-factor approaches the g = - 0.44 value of bulk GaAs, as
expected. Also, it is apparent in Fig. 3 that the present theo-
retical calculations are in excellent agreement with the exper-
imental measurements.

Summing up, we have used the effective-mass approxima-
tion and taken into account the non-parabolic-band effects
via the Ogg-McCombe effective Hamiltonian, to theoreti-
cally evaluate the electronic Landau levels, cyclotron effec-
tive masses and g‖-factors of GaAs-Ga1−xAlxAs semiconduc-
tor QWs. The characteristic problem of the Ogg-McCombe
Hamiltonian is solved by expressing the corresponding spin
↑ and ↓ envelope wave functions as products of harmonic-
oscillator and QW wave functions. We have obtained the m↑,↓

c

cyclotron effective mass, the m↑,↓
2D and the g‖-factor as func-

tions of the QW widths and growth-direction applied mag-
netic fields, with the calculated results exhibiting a noticeable
dependence on the strength of the applied magnetic field. Fi-
nally, present theoretical calculations for the Landé cyclotron
effective mass and g‖-factor in isolated GaAs-(Ga,Al)As QWs
were found in quite good agreement with the experimental
measurements reported by Singleton et al [2], Michels et al
[3], Le Jeune et al [4] and Malinowski et al [5].
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