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DC Electric Field Effects on the Electron Dynamics in Double Rectangular Quantum Dots
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The effect of a dc electric field on the temporal evolution of an electron in a double rectangular quantum
dot is explored in this work. In the framework of the effective mass approximation, first-order scattering rates
for interaction between confined electron-“free” electron and electron-longitudinal acoustic phonon at room
temperature are calculated in the high tunneling regime, and used to evaluate the dynamics of the population
and coherence in the first three confined levels under a short ac electric field pulse. Small values of these rates
dependent upon the bias field make feasible the emission of coherent radiation at terahertz range.
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I. INTRODUCTION

Quantum dots have generated high expectations about their
applicability in optoelectronic devices and quantum computa-
tion hardware [1]. Their fully discretized energy levels pro-
vide a good system to check the properties of few-levels sys-
tems. Tunability and tunneling of multi-dots systems offer
convenient conditions to control charge distribution and deco-
herence times [2-5]. The main limitation for quantum dot-
based devices is the decoherence process driven by the in-
teraction with the lattice and the carriers of the host mater-
ial. Enhancement in decoherence times by interactions with
a bosonic bath for dots permanently stimulated by ac external
field [6], and by acoustic phonons assisted by carrier-carrier
effects for harmonic confined dots [7], have recently been cal-
culated in double-dot systems.

On other hand, tunalibility in the system is a highly de-
sirable feature for applications. Tunability in double quan-
tum dots by electrical bias is, in that sense, better than that
by the distance between dots since the first one allows post-
fabrication control.

In this work we present numerical calculations of the dy-
namics of one electron confined in a double rectangular quan-
tum dot whose coupling is controlled by a dc electric field.
First we find the eigenenergies and the envelope wave func-
tions. After that, using the Fermi golden rule (FGR), decay
rates for transitions between the first three levels by electron-
longitudinal acoustic phonon and confined electron-free elec-
tron interactions are calculated. Finally the evolution of the
electron after an exciting short pulse, inclusive of the relax-
ation times previously calculated, is evaluated.

II. ENERGY LEVELS AND WAVE FUNCTIONS

The system studied is a pair of GaAs islands embedded in
an AlxGa1−xAs matrix. The constant confinement potential
is the offset between the band gaps of the two materials and
depends on the concentration of aluminum (Al) in the ma-
trix material. In this work the calculations are done for an
Al concentration of 0.4 and the corresponding material pa-
rameters used are shown in table 1. With a numerical finite

elements software, the energy eigenvalues and the wave func-
tions in the one-band effective mass approximation were cal-
culated by solving the modified stationary three-dimensional
Schrödinger equation

[
−~2

2 ∇•
(

1
m∗(x,y,z)∇

)
+V (x,y,z)− eFx

]

•Ψ(x,y,z) = EΨ(x,y,z)
(1)

where m∗ is the electron effective mass, V the offset in
the conduction band of the two materials, eis the elemental
charge, F is the bias electric field applied in the x direction,
Ψis the one-electron envelope function and E the proper en-
ergy. For low bias fields, the electronic states of the double-
dot system mostly retain features from each individual dot.
Fig. 1(a) shows a set of wave functions along the x direction.
It is clear that the first and the third states are strongly asso-
ciated with the right dot, while the second one is with the left
dot. This happens in the low tunneling regime. When levels
of each separate dot are close, for example the case shown in
figure 1(b) where the second level of the right dot and the first
level of the left dot seen as independent systems are similar,
resonant tunneling is achieved and the levels of the compound
system can be described as the hybridization of those closed
individual-dot levels which represents the high delocalization
of the electron. The fixed dimensions used for all the calcu-
lations were: both dots length in y= 4 nm, both dots length
in z = 6 nm, left dot length in x = 8 nm and coupling barrier
d= 4 nm. The variable parameters were the right dot length
in x (lrdx) and the external dc electric field (F). Changing the
x length of the right dot tunes the levels and the anticrossing
point can be found.

Figure 1(c) shows the change in the first three energy levels
with lrdx for external field F=0. The anticrossing behaviour in
the changing energy spectrum identifies the points of high tun-
neling regime [8]. Two anticrossing points are found, the first
one is obviously the condition of identical dots where each in-
dividual dot level is split in two. The other anticrossing point
corresponds to the conditions where the left dot first level is in
resonance with the right dot second level. Fig. 1(d) shows the
change of the first three energy levels with the external bias
in the coupling direction for lrdx=15 nm, such that for F=0 no
anticrossing is found. The anticrossing region located around
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FIG. 1: (a) Wave functions of the three first energy levels in low
tunneling regime. (b) As in (a) but in high tunneling regime. (c) First
three energy levels varying with the right dot x (lrdx). (d) As in (c)
but varying with the electric field (F).

zero external field when lrdx = 19 nm is now displaced toward
the external field region 1.5 meV/nm. That shows how the
electric field allows tuning the high tunneling region.

At the anticrossing region, the energy spacing is such that
under some conditions for scattering rates, emission in tera-
hertz by three-level quantum beat oscillations is feasible be-
cause the two excited levels are closer to each other than to

the ground one [9]. Without bias, the energy spacing at the
anticrossing (∼5 meV) is almost twice than that reached with
external electric field (∼3 meV).
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Table 1. Experimental parameters [10,11].
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III. RELAXATION TIMES

By interactions between the confined electron with the un-
bound ones and with the lattice ions, decay of the electrons
from excited levels occur and eventually coherent emission
is destroyed. Pure dephasing and relaxation times define the
lifetime of the coherent states, nevertheless in the high tunnel-
ing regime the relaxation times are the predominant ones [12].
Only interaction with longitudinal acoustic phonons (LAP)
is considered since the piezoelectric response in GaAs-based
systems is smaller than the deformation potential contribution
[11], while longitudinal optical phonon (LOP) first-order con-
tribution is restricted by energy conservation in the FGR. Our
calculations of decay rates by LOP give lifetimes around three
orders of magnitude longer than those by LAP.

All the data were obtained at room temperature.
In the framework of the FGR approximation, the inverse of

the relaxation time between an initial state i and a final state f
is calculated by solving numerically

ΓI
i f =

2π
~

∣∣HI
i f

∣∣2 δ(E) (2)

where δ(E) imposes the energy conservation in the transi-
tion and

∣∣∣HI
i f

∣∣∣ is the matrix element of the interaction I;
in our case electron-electron (E-E) and electron-longitudinal
acoustic phonon (E-AP), whose Hamiltonians respectively are

He−p = ∑
~q

Bqρ(~q)(a~q +a+
−~q), He−e = ∑

klmn
VklmnC+

k C+
mClCn,

Bq = D
(

~
2McS|~q|

) 1
2
|~q| ,

Vklmn =
e2

4πε0ε

Z
Ψk(~r1)Ψ∗

l (~r1)
1

|~r1−~r2|Ψ
∗
m(~r2)Ψn(~r2)d~r1d~r2.

(3)
Here, a+(a) and C+(C) are the bosonic and fermionic cre-

ation (annihilation) operators,~q is the transferred momentum,
ρ(~q) is the electronic density operator, D is the deformation
potential, M is the mass of the whole sample, cS is the sound
speed in the material, e is the electron charge, ε is the static
dielectric constant and ΨS(~rn) is the wave function of the nth

electron in the state S.
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Introducing the Hamiltonians (3) in Equation (2) and as-
suming that the emitted phonon wave vector lies in the cou-
pling direction, and the electrons in the matrix material as a
Fermi gas, the final expressions for the decay rate by E-AP
and by E-E interaction are

Γe−lap
i f =

I2
i f ,q0

D2q0(nT,q0 +1)

2~c2
SρAT

,

Ii f ,q0 =
Z

eiq0xΨ∗
f (~r)Ψi(~r)d~r, (4)

Γe−e
i f =

m∗2L4

(2π)3~5

Z ∞

V0

(Vf i∆N EN )2η(T,EN)dEN ,

L =

√
L2

xL2
yL2

z

L2
xL2

y +L2
xL2

z +L2
z L2

y
, (5)

where q0 = (Ei−E f )/ηcS is the transferred momentum, ρ is
the material density, nT,q0 is the phonon occupation number
depending on the temperature and the transferred momentum,
AT is the sample area, transversal to the coupling direction,
η(T,EN) is the Fermi-Dirac factor and ∆N = EN +(Ei−E f ).

FIG. 2: (a) Decay rate for transition 3-2 by electron-phonon interac-
tion, varying with the bias field for lrdx=19.05. Inset: Energy spacing
(dashed red) and structure factor (solid blue) for the same case as in
(a). (b) Decay rates by electron-electron interaction with lrdx=19.05.
Transitions: 3-2 (solid blue), 3-1 (dashed red) and 2-1 (dotted green).

For E-AP the decay channels 3-1 and 2-1 are not efficient
since the energy transition is around 40 meV, which is bigger
than most energetic acoustic phonons, so only transition 3-2 is
considered. Fig. 2(a) shows the decay rate for that transition as
a function of the bias field for lrdx=19 nm. With such geomet-
rical parameters, the system is close to the anticrossing (mean

peak) which is reached just with a bias F=-0.025 mV/nm. Far
away from the anticrossing, the decay rates are negligible. It
is due to the energy spacing increasing from the anticrossing,
then for large energy transitions, the channel becomes more
and more ineffective. The inset in Fig. 2(a) shows the energy
spacing and the structure factor (Ii f ,q0). Although the energy
space changes symmetrically from the central point, the de-
cay rate is not symmetrical. It is clear that the asymmetry in
the decays rates comes from the structure factor, which ba-
sically is the Fourier transform of the wave functions in the
field direction [13]. The potential bias produces electronic lo-
calization according with the sign of the electric field. As the
double dot system is asymmetric, the effects of concentration
of charge by the applied dc electric field are also expected to
be it. For higher values of the electric field, the concentration
of the wave functions by the bias gains relevance and the de-
cay rate curve becomes more asymmetric due to the structure
factor. Around the smallest energy spacing, the plot exhibits
several local maxima, which agrees with the oscillatory be-
haviour of the scattering rates for electron-phonon interaction
reported for different multi-dot systems [4-7].

For the E-E interaction, Fig. 2(b) shows the decay rates
for the transitions 3-2, 3-1 and 2-1 calculated from equa-
tion (5). Since the integral in that final expression depends
on seven variables and its numerical evaluation time is long,
those decay rates were calculated using the approximation
Ψ∗

α(x,y,z)Ψβ(x,y,z) ≈ Ψ∗
α(x,0,0)Ψβ(x,0,0)δ(y)δ(z) taking

advantage of the negligible change in the dependence with y
and z of the wave functions for the first three confined lev-
els. The plot shows how, at the anticrossing point (F =-
0.025), the decay rate for transitions 2-1 and 3-1 change their
prominence. This happens because before the very anticross-
ing point (F <−0.025 mV/nm), the bigger component of the
symmetric hybridized state is related to the same dot where
the first state is mostly confined (right dot), so the decay chan-
nel 2-1 is more efficient than 3-1.

After the anticrossing point, is the antisymmetric hy-
bridized state which has its wave function localized mostly
at the right dot, being now the decay channel 3-1 more effec-
tive than 2-1. The decay rate for the transition 3-2 changes
from the anticrossing point more symmetrically than the other
two. It has the maximum where the electron is completely
delocalized between the two dots; before and after that point
the hybridized states are meanly compossed by states related
to different individual dots and the Coulomb interaction is re-
duced. Significant oscillations to the left of the anticrossing
are observed in the curve due to the change of the charge dis-
tribution related to the asymmetry of the system.

The average value of the E-E decay rates is around half
of the E-AP values, which agrees with measurements for low
carriers densities and high temperatures [14], as in our case.
The order of magnitude is lightly smaller than those for single
quantum dots (between 0.5-50 ps) [1].
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IV. DYNAMIC EVOLUTION

The occupation probability of energy levels and the coher-
ence between states for the reduced three-levels system can be
obtained from the density matrix, whose evolution is given by
the reduced Liouville equation

iη
d ρi j

dt
= [Hi j(t),ρi j(t)]

ρi j =




P1 C12 C13
C∗12 P2 C23
C∗13 C∗23 P3


 (6)

The diagonal terms indicate the population of the respective
level and the off-diagonal terms are the coherent mix between
states. Considering the E-AP and the E-E interactions as per-
turbations, the dynamics of the system under a fast electric
field pulse is estimated by solving equation (6) for a Hamil-
tonian written in the energy basis from equation (1)

HU
i j ≡




E1 −eG(t)d12 −eG(t)d13
−eG(t)d12 E2 −eG(t)d23
−eG(t)d13 −eG(t)d23 E3


 (7)

where G(t) is the time dependent stimulating electric field
pulse and di j is the dipole moment < i/x/ j >. Using the
Hamiltonian (7) and the constant dissipation operator approx-
imation in the Lindblad form for the equation (6), the master
evolution equation to solve is [15]:

i~
dρi j

dt
= [HU

i j (t),ρi j(t)]− i~ΓT
i j (8)

where the decay rates (ΓT
i j) are taken from the calculations re-

ported in the former section. The exciting pulse used is given
by

G(t) = G0 exp
( t

τ

)2
Cos(ω0t),

τ≤ ~
2(E3−E2)

, ω0 =
(E3−E2)

2~
(9)

The evolution of the total dipole moment DT (t) =
∑di jρi j(t)i, j = 2,3, between the two excited levels after the

application of the pulse for three different values of the bias
field is shown in Fig. 3. Such oscillatory behaviour of the total
dipole moment becomes a source of coherent emission since
electric field is produced, whose intensity is proportional to
the second temporal derivative of DT [16].

FIG.3: Total dipole moment after pulse application with bias field: F
= -0.1 meV/nm (green ultrabold), F= -0.025 meV/nm (red bold) and
F = 0.05 meV/nm (black solid).

V. CONCLUSIONS

Eigenenergies and envelope functions were found for dou-
ble quantum dots with finite rectangular electronic confine-
ment. Decoherence times associated with relaxation by E-AP
and E-E interactions at room temperature were evaluated at
high tunneling points. Multiple local maxima behavior was
found for the total decay rates of the system with character-
istic lifetimes longer than those in related systems like dou-
ble quantum wells (few ps) [17]. Temporal response to an
external ac electric field was calculated, obtaining conditions
that make possible the observation of coherent emission in
the range of tenths of terahertz, which is useful for the spec-
troscopy of close levels as has already been used with single
quantum dots [18]. This kind of coherent emission has been
measured in double quantum wells [17], and now our results
predict such a tunable coherent emission in double quantum-
dot systems [17].
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