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1117 Budapest, Hungary

2Departamento de Fı́sica, ICEx,
Universidade Federal de Minas Gerais,

30123-970 Belo Horizonte - Minas Gerais, Brasil

Received on 21 August, 2006

We apply a functional-integral formalism for Markovian birth and death processes to determine asymptotic
corrections to mean-field theory in the Malthus-Verhulst process (MVP). Expanding about the stationary mean-
field solution, we identify an expansion parameter that is small in the limit of large mean population, and derive
a diagrammatic expansion in powers of this parameter. The series is evaluated to fifth order using computational
enumeration of diagrams. Although the MVP has no stationary state, we obtain good agreement with the
associated quasi-stationary values for the moments of the population size, provided the mean population size is
not small. We compare our results with those of van Kampen’s Ω-expansion, and apply our method to the MVP
with input, for which a stationary state does exist. We also devise a modified Fokker-Planck approach for this
case.
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I. INTRODUCTION

The need to analyze Markov processes described by a mas-
ter equation arises frequently in physics and related fields
[1, 2]. Since such equations do not in general admit an exact
solution, approximation methods are of interest. A widely ap-
plied approximation scheme is van Kampen’s ‘Ω-expansion’,
which furnishes corrections to the (deterministic) mean-field
or macroscopic description in the limit of large effective sys-
tem size [1]. Another approximation method, based on a path-
integral representation for birth-and-death type processes, was
proposed by Doi [3] and then by Grassberger and Scheunert
[4]. Later Peliti [6] and Goldenfeld [5] revived it. Renewed
interest in this type of representation has been stimulated by
Cardy and coworkers [7, 8]. This approach was recently re-
viewed and extended [9], and applied to derive a series expan-
sion for the activity in a stochastic sandpile [10], and to study
metastability in the contact process [11].

It should be noted that while effectively exact results can
be obtained via numerical analysis of the master equation, the
calculations become extremely cumbersome for large popula-
tions or multivariate processes. A further limitation of numer-
ical analyses is that they do not furnish algebraic expressions
that may be required in theoretical developments. For these
reasons it is highly desirable to study approximation methods
for stochastic processes.

In the present work we apply the path-integral based pertur-
bation approach to a simpler problem, namely, the Malthus-
Verhulst process (MVP), a birth-and-death process in which
unlimited population growth is prevented by a saturation ef-
fect. (The death rate per individual grows linearly with pop-
ulation size.) This is an important, though highly simplified
model in population dynamics. Although the master equa-
tion for this process is readily solved numerically, the model
serves as a useful testing ground for approximation methods.

A lattice of coupled MVPs exhibits (in the infinite-size limit)
a phase transition belonging to the directed percolation uni-
versality class.

In the perturbation approach developed here [6, 9], mo-
ments of the population size n are expressed as functional in-
tegrals over a pair of functions, ψ(t) and ψ̃(t), involving an
effective action. The latter, obtained from an exact mapping
of the original Markov process, generally includes a part that
is bilinear in the functions ψ(t) and ψ̃(t), whose moments can
be determined exactly, and ‘interaction’ terms of higher or-
der, that are treated in an approximate manner. In the present
approach, the interaction terms are analyzed in a perturbative
fashion, leading to a diagrammatic series. With increasing
order, the number of diagrams grows explosively, so that it
becomes convenient to devise a computational algorithm for
their enumeration and evaluation. Elaboration of such an algo-
rithm does not, however, require any very sophisticated tech-
niques, and could in fact be applied to a variety of problems.
This is the approach that was applied to the stochastic sand-
pile in Ref. [10]. In the latter case, the evaluation of diagrams
involves calculating multidimensional wave-vector integrals.
The present example is free of this complication, allowing us
to derive a slightly longer series than for the sandpile.

In this work we focus on stationary moments of the MVP.
The series expressions are apparently divergent, but neverthe-
less provide nearly perfect predictions away from the small-
population regime, as compared with direct numerical evalu-
ation of quasi-stationary properties. One might suppose that
the divergent nature of the perturbation series is due to the
MVP not possessing a true stationary state. (The process must
eventually become trapped in the absorbing state, although the
lifetime grows exponentially with the mean population [12].)
Applying our method to the MVP with a steady input, which
does possess a stationary state, we find however that the per-
turbation series continues to be divergent, although again pro-
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viding excellent predictions over most of parameter space.
In the following section we define the Malthus-Verhlst

process, explain the perturbation method and report the se-
ries coefficients for the first four moments, up to fifth order
in the expansion parameter. In Sec. III we briefly compare
these results to those of the Ω-expansion. Then in Sec. IV
we present numerical comparisons of our method (and of the
Ω-expansion) against quasi-stationary properties. We apply
our method to the MVP with input in Sec. V, and also discuss
an approximation based on the Fokker-Planck equation. We
summarize our findings in Sec. VI.

II. PERTURBATION THEORY FOR THE
MALTHUS-VERHULST PROCESS

Consider the Malthus-Verhulst process (MVP) n(t), in
which each individual has a rate λ to reproduce, and a rate
of µ + ν(n− 1) to die, if the total population is n. By an ap-
propriate choice of time scale we can eliminate one of these
parameters; we choose to set µ = 1. Then in what follows
we use a dimensionless time variable t ′ = µt and dimension-
less rates λ′ = λ/µ and ν′ = ν/µ. From here on we drop the
primes.

The mean-field or rate equation description of the process
is

ẋ = (λ−1)x−νx2 (1)

where x ≡ 〈n(t)〉, with the nontrivial stationary solution x =
(λ−1)/ν for λ > 1. We are interested in deriving systematic
corrections to this result, and in calculating higher moments
of the process.

Our starting point is the expression for the r-th factorial mo-
ment of a general process taking non-negative integer values,

〈nr(t)〉 f = 〈n(n−1) · · ·(n− r +1)〉 = e−pU (r)
t (ζ= p) , (2)

where, for simplicity, we have assumed an initial Poisson
distribution with parameter p (see Eq. (108) of Ref. [9]),
so that the probability generating function at time zero is
Φ0(z) = ep(z−1). Here, the kernel U (r)

t is given by the func-
tional integral,

U (r)
t (ζ) ≡

(
∂rUt(z,ζ)

∂zr

)
z=1

=
∫

Dψ
∫

Dψ̂ψ(t)rF [ψ, ψ̂]z=1 exp[−SI ] , (3)

(equivalent to Eq. (106) of [9]), with

F [ψ, ψ̂]z=1 = exp
[
−

∫ t

0
dt ′ψ̂[∂t ′+(1−λ)]ψ+ζ

]
(4)

containing the bilinear part of the action. In the case of the
MVP, the “interaction” part is,

SI =
∫ t

0
dt ′[−λψ̂2ψ+νψ̂(1+ψ̂)ψ2] ≡

∫ t

0
dt ′LI(t ′), (5)

(see Eq. (54) of [9]).
Our goal is to expand each factorial moment about its mean-

field value. To this end, consider the shift of variable,

ψ(t) = n+φ(t) (6)

where n is a real constant. On performing this shift and letting
n = (λ− 1)/ν, which eliminates the term ∝ ψ̂φ0, the argu-
ment of the exponential (i.e., of the factors F [ψ, ψ̂]z=1 and
exp[−SI ]) in Eq. (3) becomes,

ζ +
∫ t

0
dt ′{−ψ̂[∂t ′+w]φ+nψ̂2

+ (2−λ)ψ̂2φ−νψ̂φ2 −νψ̂2φ2}, (7)

where we have introduced w ≡ λ−1 (equal to −w as defined
in [9]). We recognize the exponential of ζ plus the first term in
the integrand as F [ψ̂,φ]z=1; the remaining terms then repre-
sent −S′I , the new effective interaction, which will be treated
perturbatively. The four terms of −S′I are represented graphi-
cally, following the conventions of Ref. [9], in Fig. 1.

FIG. 1: Vertices in the perturbation series for the MVP.

We refer to these vertices as source, bifurcation, conjunction
and 4-vertex, respectively.

A. Perturbation expansion

The analysis of the MVP now follows the lines of [9]. Let

[A ] ≡
∫

Dφ
∫

Dψ̂A(φ, ψ̂)F [φ, ψ̂], (8)

denote the free expectation of any function A of φ and ψ̂.
From the discussion of Sec. 4 Ref. [9] we have,

[φ(t)r] = (p−n)re−rwt , (9)

(here we used φ(0) = p− n, and have already canceled the
factor eζ in U0

t with the corresponding factor in the inital gen-
erating function, Φ0(ζ)),

[ψ̂(t)] = 0, (10)

and the propagator,

[φ(t1)ψ̂(t2)] = Θ(t1 − t2)e−w(t1−t2). (11)

Consider now the series for the mean population size 〈n(t)〉.
The zeroth-order term is simply

〈n(t)〉0 = n+[φ(t)] = n+(p−n)e−wt (12)
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FIG. 2: One- and two-vertex diagrams in the series for 〈n(t)〉.

which converges to the mean-field result as t → ∞. Similarly,
the leading term in 〈nr(t)〉 f is nr, so that the stationary prob-
ability distribution, in mean-field approximation, is Poisson
with parameter n.

Corrections involving S′I are conveniently represented as di-
agrams with all lines leaving vertices contracted with ingoing
lines, either at vertices to the left, or at the “sink” lying to the
left of all vertices. (In the calculation of 〈nr(t)〉 f the sink is
a point with r incoming lines.) The lowest-order diagram in
〈n(t)〉 is the left-most diagram shown in Fig. 2.
This diagram makes the following contribution to 〈n(t)〉:

−ν
∫ t

0
dt1e−w(t−t1)(p−n)2e−2wt1 =− ν

w
(p−n)2e−wt(1−e−wt).

(13)

The four diagrams (in the series for 〈n(t)〉) having two vertices
are also shown in Fig. 2. Only the first of these four makes a
nonzero contribution to 〈n∞〉 ≡ limt→∞〈n(t)〉, namely,

−2νn
∫ t

0
dt1

∫ t1

0
dt2e−w(t−t1)e−2w(t1−t2) = − 1

w
(1− e−wt)2.

(14)
(The combinatorial factor 2 represents the number of ways the
lines may be contracted between source and bifurcation.)

If we are only interested in stationary properties, it is con-
venient to use the Laplace transform. Let fD be the n-fold
integral over time variables in a given n-vertex diagram D.
Noting that time-dependent factors are associated with each
propagator and each uncontracted incoming line, we see that
fD is of the form:

fD(t) =
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tn−1

0
dtn e−α1(t−t1)−α2(t1−t2)...−αn(tn−1−tn)−β1t1−···−βntn (15)

where βi is w times the number of uncontracted lines incident on vertex i. (In the first graph of Fig. 2, β1 = 2w.) The factors αi
are given by w times the number of lines (propagators) running between vertices i and i−1 (with i = 0 representing the sink),
regardless of where these lines originate or terminate. Now consider

f̃D(s) =
∫ ∞

0
dt e−st fD(t). (16)

Using Eq. (15) we may write

f̃D(s) =
∫ ∞

t1
dt

∫ ∞

t2
dt1 . . .

∫ ∞

0
dtn exp[−(α1 + s)(t−t1)− (α2 +β1 + s)(t1−t2)

−(α3+β1+β2+s)(t2−t3)−·· ·−(αn+β1+· · ·+βn−1+s)(tn−1−tn)
−(β1 + · · ·+βn + s)tn]

= [(α1+s)(α2+β1+s) · · ·(αn+β1+· · ·+βn−1+s)(β1+· · ·+βn+s)]−1 . (17)

The contribution of diagram D to 〈n∞〉 is proportional to

f D ≡ lim
t→∞

fD(t) = lim
s→0

s f̃D(s), (18)

by the Final Value Theorem of Laplace transforms. Since all
of the αi are nonzero, f D is zero unless βi = 0, ∀i = 1, ...,n.
In the latter case,

f D = [α1α2 · · ·αn]
−1 . (19)

Thus the only diagrams contributing to 〈n∞〉 (and by exten-
sion, to 〈nr

∞〉) are those free of uncontracted lines. This is in

fact evident on physical grounds: each such line carries a fac-
tor p−n, whereas stationary properties cannot depend on the
initial mean population p. In diagrams contributing to 〈n∞〉,
the first vertex (i.e., immediately to the right of the sink) must
be a conjunction, while the n-the vertex must be a source.

B. Diagrammatic analysis for the stationary mean population

The contribution of a diagram D to 〈n∞〉 is the product
of three factors: f D discussed above; a combinatorial factor
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counting the number of contractions consistent with the dia-
gram topology; the product of vertex-associated factors shown
in Fig. 1.

Certain infinite classes of diagrams may be summed up ex-
actly. Consider the sequence shown in Fig. 3: between the
source and conjunction we insert any number of 4-vertices or
bifurcation-conjunction pairs.

FIG. 3: A summable set of diagrams in the series for 〈n(t)〉.

A short calculation shows that the contribution of this series
is given by:

− nν
w2

∞

∑
n=0

[(
− ν

w

)(
1+

2−λ
w

)]n

= − 1
w+ν/w

. (20)

In this way, by multiplying the n = 2 contribution, − 1
w , by

κ ≡ (1+ν/w2)−1, we have included all diagrams of the form
of Fig. 3, i.e., diagrams in which all lines exiting vertex i
are contracted on vertex i−1, ∀i = 1, ...,n. With this simple
replacement such reducible diagrams are no longer to be in-
cluded explicitly.

A similar observation allows us to add arbitrary sequences
of 4-vertices or bifurcation-conjunction pairs to any diagram
of four or more vertices. (Diagrams outside the series depicted
in Fig. 3 have n ≥ 4 vertices.) The diagram consists of a
‘body’ containing vertices 2, ...,n−1 linked to a conjunction
(vertex 1) and a source (vertex n). Call the factor associated
with the body A, so that the diagram makes a contribution of
−νAn to 〈n∞〉. A family of diagrams may be constructed by
adding sequences, as above, between vertex n and the body;
the sum of these contributions is

−νAn
∞

∑
n=0

(
− ν

w2

)n
= −νAn

1
1+ν/w2 . (21)

By the same reasoning we may insert arbitrary sequences be-
tween the first vertex and the body, yielding the same set of
contributions. As a result, we may multiply the contribution
of any diagram (not included in the sequence of Fig. 3) by κ2,
and thereby automatically include all diagrams with the same
body but arbitrary linear sequences between the first vertex
and the body, and between vertex n and the body. Such dia-
grams are no longer included explicitly. This procedure will
be called “dressing” the conjunction (vertex 1) and the source
(vertex n).

At this stage we have essentially exhausted the simplifica-
tions (via “dressing” or summing sets of trivial variations to
a diagram) that can be realized in the Laplace transform rep-
resentation. Summarizing, the contributions to 〈n∞〉 are as
follows.
1. The mean-field contribution n.
2. The set of diagrams shown in Fig. 3, giving −κ/w.

3. Diagrams of four or more vertices, with no dangling lines,
and subject to the restrictions mentioned above. Each such
contribution is to be multiplied by κ2.
Including diagrams of up to four vertices we find:

〈n∞〉 = n
[

1− κν
w2 +

2κ2ν2(2−λ)
w4 + · · ·

]
= n

[
1− (1−κ)+2(2−λ)(1−κ)2 + · · ·] (22)

where the higher order terms come from diagrams of five or
more vertices. This result suggests that we adopt

ε ≡ 1−κ =
ν

w2 +ν
(23)

as the expansion parameter. Up to diagrams of four vertices
we have

〈n∞〉 = n
[
1− ε+2(2−λ)ε2 + · · ·] . (24)

The first correction −nε ∝ 1/λ, as λ → ∞.
Note that ν ∝ ε to lowest order. Thus, qualitatively, the

expansion parameter ε may also be thought of as describing
overcrowding/competition.The lowest order in ε at which a
given diagram contributes to 〈n∞〉, when expressed in the form
of Eq. (24), may be found as follows. First observe that the
diagram carries a factor νc+ f−s+1 where c, f and s represent
the number of conjunctions, four-vertices and sources, respec-
tively, and the contribution of 1 in the exponent is due to the
prefactor n. Certain constraints exist between the numbers of
vertices. Equating the total number of lines emanating from
vertices with the total number entering, we find

2(s+ f +b)+ c = 2( f + c)+b+1 (25)

where b is the number of bifurcations and the 1 on the r.h.s.
represents the sink. Thus c = 2s + b− 1. On the other hand
the total number of vertices is n = s+b+ f +c, and using this
we find the power of −ν to be c+ f − s+1 = n− c ≡ m.

A simple analysis yields the algebraic factor associated
with a given diagram having n ≥ 4 vertices:

Falg = (−1)c+ f κ2(2−λ)bws−n−1νn−c. (26)

This is readily expressed in terms of the parameter ε as:

Falg = (−1)c+ f (2−λ)bw f εm

(1− ε)m−2 . (27)

Since we intend to organize the expansion in powers of ε, it
is of interest to know which values of n correspond to a given
m. We begin by noting that in diagrams of four or more ver-
tices, the second vertex (from the left) must be a conjunction,
just as the first is. (If it were a bifurcation or a four-vertex
the result would be a diagram already included by dressing
the first vertex.) Thus c ≥ 2, and there are in fact diagrams
with just two conjunctions, for any n ≥ 4. We therefore have
m ≤ n− 2 or n ≥ m + 2. To find an upper bound on n, we
find an upper bound on c. Recall that c = 2s + b − 1. To
maximize c we let b = f = 0 (a diagram consisting of only
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sources and conjunctions), in which case c + s = n, yielding
m = n−c = s = (n+1)/3, or n ≤ 3m−1. Thus for m = 2 we
have contributions from diagrams of 4 and 5 vertices, while
for m = 5 the number of vertices ranges from 7 to 14.

In order to evaluate the contributions from diagrams of five
or more vertices we have developed an enumeration code. Re-
ducible diagrams are eliminated by imposing the following
rules:

1) The second vertex, like the first, is a conjunction.
2) Vertex n−1 cannot be a 4-vertex.
3) If vertex n− 1 is a conjunction, vertex n− 2 must be a

source.
Using the enumeration code we are able to evaluate con-

tributions up to O(ε5). At this order there are approximately
8× 108 diagrams. (There are 9, 1317 and 594339 diagrams
at orders 2, 3 and 4, respectively.) This explosive growth in
the number of terms prevents our going to higher order. The
fifth-order calculation requires about two days on a fast PC.
The series in ε begins

〈n∞〉 = n[1− ε+(2u−5)ε2 +O(ε3)], (28)

where u ≡ 2− λ. Higher order terms may be found in the
Appendix.

A particularly simple case is λ = 2, for which we have

〈n〉 =
1
ν
[1− ε−5ε2 −41ε3 −485ε4 −7443ε5 − ...] (29)

The ratios of successive coefficients in the series are: 1, 5, 8.2,
11.829 and 15.346, suggesting unlimited growth and therefore
a divergent series. Numerical results (see below) neverthe-
less reveal excellent agreement with quasi-stationary proper-
ties for λ sufficiently large. (The quasi-stationary probability
distribution qn is the limiting t → ∞ probability of state n,
given that the system has not visited the absorbing state up to
time t [12].)

C. Higher moments

We turn now to the expansion of higher stationary factorial
moments. From Eqs. (3) and (6) we have

〈nr〉 f = [(n+φ)re−SI ]. (30)

Expanding the product, we have first the mean-field contribu-
tion nr, and then a series of terms involving diagrams. The
term ∝ [φqe−SI ] involves (for q < r) diagrams that already ap-
peared in the series for the q-th factorial moment. Thus for
r = 2 we have

〈n2〉 f = n2 +2n[φe−SI ]+ [φ2e−SI ]. (31)

Note that [φe−SI ] is simply D1, the sum of all diagrams with
a single line entering the sink, that is, the diagrammatic series
for 〈n〉. Consider now the final term in Eq. (31), the series D2
of diagrams with two lines entering the sink. Recalling that, in
all diagrams in D1, the first (leftmost) vertex is a conjunction,

we see that there is a one-to-one correspondence between D1
and D2. For a given diagram, making a contribution of A to
D1, there is a corresponding diagram (with the conjunction
and one-line sink replaced by a two-line sink) that contributes
−wA/ν = −nA to D2, that is, D2 = −nD1. Thus we have

〈n2〉 f = n2 +nD1

= n〈n〉, (32)

where in the second line we used 〈n〉 = n + D1. Using Eqs.
(65) and (32), we find that

var(n)−〈n〉 = n2ε[1− (2u−4)ε+ · · · ]. (33)

For a Poisson distribution the difference is zero; here it ap-
proaches 1/ν as λ → ∞.

For r ≥ 3 we do not have a simple relation between Dr and
D1, so the diagrammatic series must be evaluated to the de-
sired order. In general we have

〈nr〉 f =
r

∑
j=0

(
r
j

)
nr− jD j, (34)

where D j = [φ je−SI ], with D0 = 1. (Note that for r = 3 the
j = 1 and j = 2 terms cancel.) As in the case of 〈n〉, we
include an overall factor of nr, and write

〈nr〉 f = nr

[
1+

r

∑
j=1

(
r
j

)( ν
w

) j
D j

]
. (35)

Note that for r ≥ 3 we can dress the leftmost source, as be-
fore, but that it is no longer possible to dress the sink. Thus
the algebraic factor associated with an arbitrary diagram in
(ν/w)rDr is

Falg = (−1)c+ f κubws−n−rνc+ f−s+r. (36)

An analysis along the lines presented in the r = 1 case leads
to m = n−c (as before) for the order in ν, and to s−n−r = f ,
so that

Falg = (−1)c+ f ubw f εm

(1− ε)m−1 . (37)

The limits on n, for fixed order m, are m ≤ n ≤ 3m− r. (Note
that n = m is possible for r ≥ 3 because there are diagrams
with no conjunctions.)

As in the case r = 1, we have constructed an enumeration
code to evaluate the corrections due to diagrams. The expan-
sion may be found in the Appendix. Numerical comparisons
of these series against quasi-stationary properties of the MVP
will be discussed in Sec. 4.

III. COMPARISON WITH THE Ω-EXPANSION

A well known method for obtaining approximate solutions
to the master equation is van Kampen’s Ω-expansion [1]. The
method depends on the system size (or the expected value of
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the stochastic variable of interest) being large, so that fluctu-
ations are small compared to the value n(t) predicted by the
macroscopic equation. The stochastic variable n is then writ-
ten in the form

n = Ωζ(t)+Ω1/2ξ(t) (38)

where the first, deterministic, term represents the solution to
the macroscopic equation, with Ω denoting the size of the sys-
tem. The stochastic contribution, represented by the second
term, is expected on general grounds to scale as Ω1/2. As
shown in Ref. [1], ζ(t) satisfies the macroscopic equation,
while the probability density Π(ξ, t) satisfies, to lowest order
in Ω−1/2, a linear Fokker-Planck equation. In the present case
the macroscopic equation is

dζ
dt

= (λ−1)ζ−νζ2, (39)

i.e., the Malthus-Verhulst equation, with nontrivial stationary
solution ζ = (λ−1)/ν = n. The equation governing the evo-
lution of Π is, in the present instance,

∂Π
∂t

= (1+2νζ−λ)
∂
∂ξ

(ξΠ)+
1
2

ζ(1+νζ+λ)
∂2Π
∂ξ2 . (40)

This implies that in the stationary state, ξ is Gaussian with
mean zero and variance λ/ν, so that, setting the formal ex-
pansion parameter Ω to unity in Eq. (38), n is Gaussian with
mean n and variance λ/ν. In the perturbation expansion de-
veloped in the preceding section, n is, to zeroth order, a Pois-
sonian random variable with mean n. Conceptually, a Poisson
distribution seems preferable to a Gaussian as the reference
distribution (since n is discrete and cannot assume negative
values), but in practical terms we expect the difference to be
very small.

To first order in ε, we find 〈n〉= n(1−ε) and var(n) = n(1+
nε). Noting that

n(1+nε) =
λ−1

ν
+

(
λ−1

ν

)2 ν
(λ−1)2 +ν

=
λ
ν
− 1

(λ−1)2 ,

(41)

we see that the difference from the Ω-expansion result, to first
order in Ω−1/2, is small for λ 	 1. In the Ω-expansion, cor-
rections to the moments 〈ξr〉 can be obtained via the procedure
detailed in Ref. [1]. In the present case one finds

〈ξ〉 = − 1
λ−1

Ω−1/2, (42)

so that

〈n〉 = n
[

1− ν
(λ−1)2

]
. (43)

The series prediction is

〈n〉 = n(1− ε) = n
[

1− ν
(λ−1)2 +O(ε2)

]
, (44)

so that the two methods agree to first order in ε. Extending the
Ω-expansion to include terms of order Ω−1 in ξ, one finds

〈n〉 = n
[

1− ν
(λ−1)2 − ν2

(λ−1)4 (λ2 −3λ+4)
]
. (45)

These results are compared against the ε series in the follow-
ing section.

IV. NUMERICAL COMPARISONS

In this section we compare the ε-series predictions with ex-
act (numerical) results for quasi-stationary (QS) properties of
the MVP. The latter are obtained via recursion relations lead-
ing to the QS distribution as detailed in [12]. QS properties are
those obtaining at arbitrarily long times, conditioned on sur-
vival (i.e., the process has never visited the absorbing state).
Although a condition on survival is not involved in the pertur-
bative analysis of Sec. 2, it seems reasonable to compare its
predictions with QS properties, since the true stationary prop-
erties are the trivial ones of the absorbing state (population
zero, no fluctuations). We note that, as suggested above, the
series in ε appears to be divergent for any set of parameter
values, as reflected in the ratios between coefficients of suc-
cessive terms, whose ratios appear to grow without limit. For
suitably large values of λ the ratios are very small, although
increasing with order m, so that the series, truncated at fifth
order, appears to have “converged”. The numerical evidence
(limited to m ≤ 5, of course) points nevertheless to a divergent
series.

In Fig. 4 we compare the QS mean population size with
〈n∞〉 as predicted by the series, as a function of λ, with ν fixed
at 0.01. For λ less than about 1.2, the series is useless (it yields
a negative population size!), and is inferior to mean-field the-
ory. For λ ≥ 1.4 on the other hand, we find good agreement
with the QS result. For a more detailed comparison we plot,
in the inset of Fig. 4, the difference ∆n between 〈n〉 (as given
by the QS distribution and the ε series) and the mean-field
prediction n; there is perfect agreement for λ ≥ 1.5. (The cor-
rection to the mean population size decays ∝ 1/λ for large λ.
This is readily seen from Eq. (22) if we note that nε ∼ 1/λ for
λ 	 1.) Similar behavior is found for ν = 0.1 and 0.001. The
smaller ν, the smaller the value of λ required for agreement
between series and QS values. (For ν = 0.1 agreement sets in
for ε ≤ 0.024, approximately; in the other cases ε ≤ 0.06 is
sufficient.) At the point where the series and QS results be-
gin to agree, the mean population is not particularly large; for
ν = 0.01, λ = 1.4 corresponds to 〈n〉 � 35.

In order to gauge the importance of successive terms, we
plot (Fig. 5) ∆n (for ν = 0.01) as predicted by the series to or-
der εm, for m = 1,..., 5. For λ ≥ 1.5 very good agreement with
the QS mean population is obtained using the result to O(ε3).
For this value of λ the absolute difference between the three-
and five-term series is about 0.04 The relative difference is
about one part in a thousand; the difference rapidly decreases
for larger λ.
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FIG. 4: Stationary mean population size versus birth rate λ in the
MVP with ν = 0.01. Solid line: exact QS value; dotted line: mean-
field prediction n; dashed line: series to order O(ε5). Inset: differ-
ence ∆n between the stationary mean population and the mean-field
value in the MVP with ν = 0.01. Solid line: exact QS value; dashed
line: fifth-order series.

FIG. 5: Stationary mean population size versus birth rate λ in the
MVP with ν = 0.01. The curve exhibiting a minimum near λ =
1.3 represents the exact QS value. The other curves represent (in
decreasing magnitude) the series truncated at first, second,..., fifth
order.

In light of the poor performance of the ε series in the vicin-
ity of λ = 1, it is natural to apply a resummation technique
such as Padé approximants. We therefore constructed the
[2,3], [3,2] and [4,1] approximants to the series 1 + g1ε +
· · ·+ g5ε5 and to the series for the logarithm of this expres-
sion. None of the Padé approximants yielded any improve-
ment over the original series; the approximants are ill-behaved
(large and negative) near λ = 1 (they typically exhibit a pole
in this region) and reproduce the excellent agreement with the
QS results whenever the original series does.

Before turning to the behavior of the higher moments, we
compare the mean population as predicted by the perturba-
tion series with that predicted by the pseudo-stationary distri-

FIG. 6: Stationary mean population size versus birth rate λ in the
MVP with ν = 0.01. Solid line: exact QS result; dotted line: 5th-
order series; dashed line: pseudo-stationary prediction.

bution. In [12] the pseudo-stationary distribution (PSD) for
the contact process on a complete graph was constructed and
found to agree well the exact QS distribution, away from the
region of the transition. Formally, the PSD, to be denoted
as pps,n, is obtained by setting pps,0 = 0, adjusting the ratios
pps,n+1/pps,n so that the r.h.s. of the master equation is identi-
cally zero (for n ≥ 1), and finally normalizing on the pertinent
set of states (n ≥ 1 in the present case). Physically, the result-
ing distribution represents the stationary solution for the case
of a reflecting boundary at the origin, rather than an absorbing
one. Thus the PSD should agree well with the quasi-stationary
distribution when the latter is very small in the vicinity of
n = 0. Otherwise the PSD tends to overestimate the proba-
bility near n = 0, due to the reflecting boundary [12].

It is easily seen that the pseudo-stationary distribution for
the MVP is:

pps,n = C
(λ/ν)n

n(n+1/ν−1)!
(n ≥ 1), (46)

where C is a normalization constant. Expanding pps,n about its
maximum, which falls at n∗ � 1+(λ−1)/ν for (λ−1)/ν 	
1, we see that the PSD corresponds, in this limit, to a Gaussian
with mean and variance both equal to n∗. In Fig. 6 we com-
pare the prediction for ∆n derived from the PSD with that of
the series and of the quasi-stationary distribution. Evidently
the pseudo-stationary prediction converges to the QS value al-
most as rapidly as the series prediction.

The trends observed for the mean population continue when
we compare series and QS predictions for higher moments. In
Fig. 7 we plot the difference, ∆var(n), between the variance
furnished by these predictions and that given by mean-field
theory. (Since the latter yields a Poisson distribution, the vari-
ance is simply equal to n in mean-field approximation.) For
λ � 1 the series prediction is useless; close agreement with
the QS result sets in (for ν = 0.01), around λ = 1.5. Note
that ∆var(n) approaches 1/ν as λ → ∞, as predicted by Eq.
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FIG. 7: Difference ∆var(n) between the stationary variance and its
mean-field value in the MVP with ν = 0.01. Solid line: exact QS
value; dashed line: fifth-order series.

(33); the absolute value of the difference does not approach
zero for large λ, as it does for the mean. (The relative dif-
ference ∆var(n)/var(n) does of course approach zero in the
limit λ → ∞.) Similar comparisons for the third and fourth
moments reveal that the series prediction agrees well with the
QS result (again, for the case ν = 0.01), for λ ≥ 2.5.

On the basis of these comparisons we conclude that the
perturbation theory developed in the previous section is in-
capable of describing the vicinity of the transition (λ ≈ 1),
but agrees extremely well with quasi-stationary properties (in-
cluding higher moments) above a certain, not very large value
of λ. In this regime, the perturbation approach yields accurate
analytic expressions for QS properties.

FIG. 8: Correction ∆n to the mean population size versus birth rate λ
in the MVP with ν = 0.01. Bold curve: QS distribution; dotted line:
lowest order correction in Ω-expansion; solid line: ε series truncated
at first order. Inset: correction ∆var(n) to the mean-field prediction
for the variance.

In Fig. 8 we compare the lowest order Ω-expansion pre-
diction for ∆n and the corresponding result of the ε series

(truncated at order ε) with the QS result, for ν = 0.01. The
Ω-expansion result is seen to be slightly better, although it di-
verges as λ → 1. The inset of Fig. 8 shows the correction
∆var(n) to the mean-field prediction for the variance for the
same parameter values. The Ω-expansion is again slightly su-
perior. The fifth-order ε series is in fact superior to the second
order Ω-expansion result, yielding a nearly exact prediction
(for the parameter values of Fig. 8) for λ ≥ 1.4.

V. MVP WITH INPUT

In this section we examine the effect of a steady input of
individuals at rate γ. For γ > 0 the n = 0 state is no longer
absorbing, and the system approaches a true stationary state as
t → ∞. The forward transition rate is now wn,n+1 = γ+λn; the
reverse rate wn−1,n = n + νn(n− 1) as before. The evolution
operator is that of the MV process with the addition of a term
γ(π− 1), in the notation of [9]. This corresponds to a new
term in the action (i.e., the argument of the exponential in Eq.
(4)),

γ
∫ t

0
(iψ′ −1)dt ′ = γ

∫ t

0
ψ̂dt ′ (47)

We now proceed as in Sec. II, introducing the shift of vari-
able ψ = n + φ(t). Equating the coefficient of ψ̂φ0 in the ac-
tion to zero yields the stationary solution of the macroscopic
equation, that is,

n =
1

2ν
(λ−1+w) (48)

where w =
√

(λ−1)2 +4γν. After the shift, the action has
the same form as for the MV process without a source, but
the factors associated with the source and the bifurcation are
changed. The factor for the source is now:

1
2

n(λ+1−w) ≡ ωn (49)

while that for the bifurcation is 1−w. The factors associated
with the conjunction and the 4-vertex are −ν, as before.

Consider the contribution to 〈n∞〉/n due to the lowest order
diagram (i.e., the second diagram of Fig. 2); this is readily
seen to be −ων/w2. As before, we may dress the diagram
(see Fig. 3), which again has the effect of multiplying the
above result by the factor κ = [1 + ν/w2]−1. Letting ε = 1−
κ, the lowest order contribution, when dressed, is −ωε. For
diagrams with n ≥ 4 both rightmost source and the leftmost
conjunction can be dressed, leading to the algebraic factor

Falg = (−1)c+ f ub ωs

wn

(
λ−1+w

2

)s−1 νm

(1+ν/w2)2 . (50)

where m = n− c and u = 1−w as before. In terms of the
parameter ε we have

Falg = (−1)c+ f hubvsw2m−n εm

(1− ε)m−2 (51)
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where

h =
2

λ+w−1
(52)

and

v =
λ2 −u2

4
. (53)

With these results the enumerations derived for the original
process may be used to develop an ε series for the MVP with
input. The input rate γ enters via the expression for w. Up to
third order we find,

〈n∞〉 = n
[
1−ωε+ vh

(
2uw−5

v
w

)
ε2

+ vh
(
−4uw−10u2 +19v+55u

v
w
−60

( v
w

)2
)

ε3
]

(54)

FIG. 9: Stationary mean population size versus birth rate λ in the
MVP with ν = 0.01 and input at rate γ = 0.01. The inset is a detailed
view of the behavior for small λ. Symbols as in Fig. 4.

Series is compared with the exact value of 〈n∞〉 (from the
stationary solution of the master equation, obtained numer-
ically), and with the mean-field prediction n in Fig. 9, for
parameters γ = ν = 0.01. Excellent agreement between series
and the exact result is found for λ ≥ 1.55 and again (see inset)
for λ ≤ 0.75. In the regions of agreement ε is small (ε ≤ 0.14
for λ ≤ 0.75; ε ≤ 0.032 for λ ≥ 1.55), but it becomes large in
the intermediate region, attaining a maximum of about 0.96
for λ = 1. In this region the series prediction deviates strongly
from the true value, and can become negative. Similar results
are found for other values of γ and ν.

A. Fokker-Planck approximation

The failure of the perturbative approach when ε is not small,
in the case with input, cannot be blamed on the absence of a

true stationary state. It appears that in this case mean-field the-
ory does not provide a good first approximation on which to
base a perturbative expansion. The true probability distribu-
tion, moreover, is far from Poisson-like. The only reliable ap-
proximation scheme we have found for this case is one based
on the Fokker-Planck equation.

To develop this approach we let the population size assume
continuous (non-negative) values x, and denote the probability
density by p(x, t). Following the usual procedure [1], the mas-
ter equation for the process may be transformed to a Fokker-
Planck equation,

∂p(x, t)
∂t

= − ∂
∂x

[A(x)p(x, t)]+
1
2

∂2

∂x2 [B(x)p(x, t)] , (55)

with

A(x) = γ+(λ−1)x−νx(x−1) (56)

and

B(x) = γ+(λ+1)x+νx(x−1) (57)

The stationary solution to Eq. (55) is [1],

p(x) =
C

B(x)
exp

[
2

∫ x

0

A(y)
B(y)

dy
]

(58)

where C is a normalization constant. In the present case the
integral can be evaluated in closed form, leading to

p(x) = Ce−2x(γ+ηx+νx2)α
[
(η/2)−χ+νx
(η/2)+χ+νx

]β
≡Cp̃(x)

(59)
where

η = λ+1−ν (60)

χ =
√

(η/2)2 − γν (61)

α =
2λ
ν

−1 (62)

and

β =
2γν−λη

νχ
(63)

Returning to the discrete case, we normalize the distribution
using ∑n≥0 p(n) = 1. The resulting prediction for 〈n〉 follows
the qualitative behavior of the exact solution (to the master
equation), but is quantitatively accurate only for larger values
of λ (e.g., for λ ≥ 1.5 in case γ = ν = 0.01).

Truly quantitative agreement is obtained if we impose the
condition p(0) = p(1)/γ, as implied by the master equation,
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FIG. 10: Mean population size for the MVP with input in the mod-
ified Fokker-Planck analysis (upper curve) compared with the exact
result (lower curve), for γ = ν = 0.01.

FIG. 11: Stationary probability distribution in the MVP with input
in the modified Fokker-Planck analysis (curve) compared with the
exact result (points), for λ = 1 and γ = ν = 0.01.

and use the Fokker-Planck solution for for n ≥ 1. In this case
the normalization factor is given by

C−1 =
p̃(1)

γ
+ ∑

n≥1
p̃(n) (64)

Figure 10 shows that the resulting prediction agrees very
well with the exact result. The probability distribution (Fig.
11) is reasonably smooth for n≥ 1, but it is clear that the jump
from n = 0 to n = 1 cannot be reproduced using a continuum
approximation. The Fokker-Planck equation with the added
condition p(0) = p(1)/γ yields an excellent prediction for the
stationary probability distribution.

VI. CONCLUSIONS

We apply the path-integral based perturbation theory for
Markovian birth-and-death processes [6, 9] to the Malthus-
Verhulst process and a variant of this process that includes
particle input. At zeroth order the formalism yields a Poisson
distribution whose mean is given by the mean-field or macro-
scopic equation. Computational enumeration of diagrams al-
lows us to derive the series coefficients for the first four sta-
tionary moments of the process. The expansion parameter,
ε, is small when the mean population size 〈n〉 is large, but
is of order unity when 〈n〉 is small. In the latter regime the
expansion fails, but in the former its predictions are in near-
perfect agreement with numerical results, despite evidence
that the series is divergent. Truncating the series at third or-
der, we find excellent agreement with numerical results when
the mean population 〈n〉 ≥ 35. Our analysis yields asymptotic
expressions (valid for large population size) for the moments
of MVP.

Our study of the MVP with input shows that the poor be-
havior of the series, when ε is not small, is not due the pres-
ence of an absorbing state, since input eliminates such a state
from the process. Since the present approach is based on sys-
tematic approximations to mean-field theory, one should not
expect it to yield useful results where the latter is seriously in
error, as is the case for λ ≤ 1 in the MVP with or without in-
put. For parameter values such that the mean-field solution is
reasonable, the series provides useful corrections to it. Devel-
opment of a globally accurate perturbation method remains as
an open challenge, one we hope to explore in future work. An
approach based on the Fokker-Planck equation does yield re-
liable predictions if we use the master equation to fix the form
of the probability distribution at n = 0.

Comparison with van Kampen’s Ω-expansion shows that
(for the problems considered here), the latter method, to low-
est order, yields results that are very similar, though slightly
superior to our first-order expansion. Including higher order
terms, the quality of the ε series improves. In the present
case (and in other problems likely to arise in stochastic mod-
eling), deriving higher-order corrections is simpler using the
diagrammatic approach, making our method an attractive al-
ternative to the Ω-expansion.
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Appendix
In this appendix we collect the terms of our expansion up

to O(ε5), as described in Section II B.
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Writing Eq. (24) in the form 〈n∞〉 = n[1+∑m≥1 gmεm], and using u ≡ 2−λ, we have:

g1 = −1,

g2 = 2u−5,

g3 = −10u2 +(55−4w)u+19w−60,

g4 = 78u3 − (689−62w)u2 +(1665−504w+8w2)u

−65w2 +745w−1165,

g5 = −750u4 +(9437−880w)u3 − (37078−10259w+266w2)u2

+(57620−32328w+3117w2 −16w3)u

+211w3 −6040w2 +27786w−29390 (65)

For higher moments, writing the contribution to 〈nr〉 f coming from Dr in Eq. (35) as nr ∑m≥1 gr,mεm, we have, for r = 3,4 and
m = 5:

g3,1 = 0,

g3,2 = 2u−5,

g3,3 = −10u2 +(57−4w)u+19w−65,

g3,4 = 78u3 − (699−62w)u2 +(1722−508w+8w2)u

−65w2 +764w−1230,

g3,5 = −750u4 +(9515−880w)u3 − (37777−10581w+266w2)u2

+(58432−32836w+3125w2 −16w3)u

−30560+28550w−6105w2 +211w3 (66)

and

g4,1 = 0,

g4,2 = 3,

g4,3 = 6u2 −41u−9w+53,

g4,4 = −54u3 +(547−30w)u2 − (1452−330w)u

+27w2 −576w+1088,

g4,5 = 570u4 − (7785−564w)u3 +(32515−7799w+114w2)u2

−(52118−26354w+1895w2)u

+28058−24234w+4361w2 −81w3. (67)
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