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Physical Variables of d = 3 Maxwell-Chern-Simons Theory by Symplectic Projector Method

J. A. Helayel-Neto?, M. A. Santos?, and 1. V. Vancea®
4 Centro Brasileiro de Pesquisas Fisicas, (CBPF) R. Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ, Brazil
b Departamento de Fisica, Universidade Federal do Espirito Santo (UFES),
Av. Fernando Ferrari S/N, Campos de Goiaberas, 29060-900 Vitéria, ES, Brazil
¢ Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), BR 465-07-Seropédica, RJ, Brazil

Received on 18 October, 2006

The Symplectic Projector Method is applied to derive the local physical degrees of freedom and the physical
Hamiltonian of the Maxwell-Chern-Simons theory in d = 1+ 2. The results agree with the ones obtained in the

literature through different approaches.
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The quantization of the constrained systems is crucial in
building realistic theoretical models. A major challenge in the
process of quantization is the identification of the physical de-
grees of freedom of the system. The most general method of
quantization, the BRST method, reduces this problem to the
task of solving the cohomology of some nilpotent operators
associated to the symmetry group [1]. Although elegant and
complete, the full construction of BRST is sometimes unnec-
essary as more intuitive, albeit less general methods, can be
used for quantization. In [2], a procedure for separate the
physical degrees of freedom for systems with second class
constraints, called ’symplectic projector method” (SPM), was
proposed and it was subsequently developed in [3—6]. The
idea behind the SPM is to construct a local projector from the
phase space of the constrained system to the surface of con-
straints and to use it to obtain the local physical coordinates
and the unconstrained Hamiltonian. The SPM represents a
first step to treat the gauge theories in a strictly canonical
way and it has already been applied to particles on holonomic
surfaces [7], non-comutative strings [8] and Abelian Chern-
Simons systems [9].

One of the most interesting class of models in field the-
ory is described by the so called Maxwell-Chern-Simons the-
ories (MCS) which are important because they are simultane-
ously massive and gauge invariant. Recently, the MCS mod-
els have been used to study various phenomena related to the
electric charges in the Standard Model Extension, topolog-
ical massive electrodynamics and fractional statistics, vortex
solutions in topological field theory, Lorentz symmetry break-
ing, D-brane Universe, large-N field theories, dualities in field
theories and quantum Hall effect to mention just some of
their applications. Therefore, the quantization of MCS the-
ories represents an interesting problem already addressed in
the frameworks of the symplectic quantization [11], geomet-
ric representation [13], covariant Coulomb gauge [15], canon-
ical Coulomb gauge [16], Fadeev-Jackiew formalism [17] and
BFT formalism [14] (see also [10, 12, 18-21]).

The aim of this letter is to explicitely derive the physical
degrees of freedom and the physical Hamiltonian of the d =3
MCS theories by using the SPM in the canonical Coulomb
gauge without matter. Our result is consistent with the one
given in [16] which uses the Dirac quantization procedure.
Compared to [16], our approach is simpler and faster. This

represents a non-trivial application of the SPM and proves that
it is an effective method applicable to interesting field theoret-
ical models.

Let us start by recalling the basic ideas of the SPM.
Consider an arbitrary system with second class constraints
0" (EM) = 0 where E¥ = (x4, p,), M = 1,2,...,2N are the
coordinates in the phase space which is assumed to be iso-
morphic to R?M and m = 1,2,...,r = 2k. One can define a
symplectic projector from the phase space of the system to
the constraint surface [3] by the following relation

50 50

AMN — SMN*JMLimA_l J 1
Here, JMV is the symplectic two-form in the original phase
space and A,,! is the inverse of the matrix constructed from

the Poisson brackets of the constraint functions

Apn = {¢m;¢n} (2)

The action of the symplectic projector given by the relation (1)
is to project the phase space variables ¥ onto a set of local
variables on the constraint surface &*

(From these, one can construct the physical Hamiltonian by
writing the original Hamiltonian in terms of the physical co-
ordinates (3) which are independent, unconstrained variables
that obey the canonical commutation relations. Next, one
can derive the equations of motion from the Hamilton-Jacobi
equations:

%

& :{a*’H*}’ “4)

where { , } are the Poisson brackets. Comparing the Dirac
matrix given by the following relation

DMN — (e gNY, :JMN_JMLJKNZZ'ZA”I; ;5227 )

with the symplectic projector from (1), one can see [5] that
the following relation holds:

A=—DJ. (6)
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One can quantize the theory starting from the physical Hamil-
tonian described above. The other observables of the quantum
theory are obtained in the same way and they depend on the
physical coordinates only.

Now let us apply the above procedure to the MCS theory
in Minkowski background. The Lagrangian is given by the
following relation

1

L= FnF" +me*PYA, 95 Ay, )

J
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where u,v = 1,2,3, € is the antisymmetric tensor in d = 3
and the metric has the signature (—1,1,1). Here, F = dA and
m represents the mass parameter. The canonical Hamiltonian
that is obtained from the Lagrangian (7) has the following well
known form

H = /d2 { nini 4= (’fa’AJ)2+EmzAkAkere’/A’nJ ) ®)
The system displays second class constraints given by the following relations
Q' = 1%=0, )
Q? = 9ini+me /AT =0 (10)
Q= A=o, (an
Qf = 9'AT=0 (12)
The inverse g;; of the matrix
g7 (xy)={Q' (1), ()}, (13)
constructed from the above constraints (9)-(12) defines a metric in the phase space which has the following form
0 82 (x—y) 0
-1 0 0 V-2
§ =1 _ 52 (x—y) 0 0 (14)
0 -V 0 0

By using the general formula (1), one can easily show that the local symplectic projector in quantum field theory should be given

by the following formula:

AL (x,y) =84 87 (x—y)—S”“/dzrdzwgij (n®) 8oy Q' (r) 8y(,) Q' (@),

where

S (x)

Q! (r) =

5)

SQ1 (1)
8E* (x)

(16)

We now have all the ingredients at hand to find out the physical variables of the MCS theory (8). As a first step we compute the
symplectic projector of the system by explicitly working out (15) and (14). After some tedious algebra one finds the following

result

0 0 0
0 8 (x—y) ~ %3 L
A 0 aéal 52(x—y) 5‘3'2
0 0 0
0 0 —md?(x—y)
0 md>(x—y) 0

0 0 0

0 0 0

0 0 0

0 0 0 a7
x Y

08—y -4 SRLE

9% 97 a a”
0 - ézl & (x—y)—

The next step is to apply the above projector to the field variables. Since the symplectic structure is most conveniently displayed
in a symmetric notation, let us rename the field variables as follows

(AO,AI,A2,n0,n1,n2) N (§1,§2’§37§4,§57g6>.

(18)
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The Hamiltonian (8) in this notation has the following form
1 1 2 1
%:/dzx [2 (B5+88) +5 (018 —028) "+ 5 m® (§3+83) +m(§286—8385) |- (19)
We denote the physical variables by E-‘; (x). The definition (3) now obviously reads
e ()= [ d2yAl (0y) € (). 20)
By using the relation (17) in to the equation (20) one obtains the following physical fields of the MCS theory
g (x) = & () =0, e2))
£ (x) = AT (), (22)
E%(x) = A5 (x), (23)
£ (x) = mp (1) —mA;y (v), 24
£ (1) = my (0)+mAT (x). (25)
By using the physical coordinates (21)-(25) in the relation (19) we obtain the following projected Hamiltonian
s 1 * * 1 * *\2 1 * * K% * gk
H* = /dzx [2 (&2 +8&7) + 5 (0183 —028;)" + Emz (857 +8&5%) +m (8385 — &383) | - (26)
From the projected Hamiltonian (26) one derives the equations of motion by using the Hamilton-Jacobi equations:
& = —2m*E5+ 020,85 — 910285 —2még, 27)
& = —2m’§5+010183 010285 —2mé5, (28)
s = —2mPE5+0:0:85-010:85+m [2m* — V] &, (29)
E6 = —2m*E¢+0191&5— 010285 —m [2m* — V2] &, (30)

In order to compare our results with the ones given in the literature we go back to the standard field notation in which the

physical Hamiltonian (26) has the form

1 1 . 2
H* = /d2x {2 (n#n}+4m2A,#A,-i) +5 (&lfa,-Aj) +2m (Alinzi—Azinli)] .

This represents the MCS Hamiltonian in the canonical
Coulomb gauge. The result (31) agrees with the transverse
expression of the Hamiltonian obtained in [16] along a differ-
ent line of arguments. Using the standard field notations, the
equations of motion given by the relations (27)-(30) take the
familiar look

(O+4m*) A} = —2mmy, (32)
(O+4m?) Ay = 2mny, (33)
Ony =0, (34)
Ony =0, (35)
which amounts to ensuring that
O(O+4m*) AF =0, (i=1,2). (36)

3D

(

This equation guarantees that the physical excitation is a mas-
sive (p2 = 4m2) transverse vector. The massless quantum

(p* = 0) is a spurious one: it has no dynamical rdle and does
not correspond to any physical mode . Indeed, by coupling
the A, field propagator to a conserved external current, the
current-current amplitude is such that the imaginary part of its
residue taken at the pole p?> = 0 vanishes, wich confirms that
the latter does not correspond to any physical excitation. On
the other hand, the non-trivial pole p> = 4m? yields a positive
defined residue which enforces its physical character as the
only degree of freedom carried by the A, field.

The quantization of the system should be performed in the
usual fashion, starting from the physical variables (21)-(25).
In order to avoid any confusion, we should stress out that the
true physical Hamiltonian is the one given in the relation (26)
in which the physical variables &*’s from (21)-(25) obey the
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canonical Poisson brackets [2]. The transverse field variables
used above just help us to compare the results obtained from
the SPM with the ones in the literature.

In conclusion, we have obtained the physical field variables
and the physical Hamiltonian of the MCS theory by projecting
the constrained system onto the constraint surface. Our results
agree with the one obtained in the literature in the context of

J. A. Helayel-Neto, M. A. Santos, and I. V. Vancea

quantization of MCS within the canonical formalism.
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