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Casimir Force in Confined Polymer Blends or Ternary Polymer Solutions

M. Benhamou, M. El Yaznasni, H. Ridouane, and E.-K. Hachem
Laboratoire de Physique des Polymères et Phénomènes Critiques
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This paper is devoted to a review of recent progresses concerning the computation of the Casimir force
between two parallel plates delimitating a polymer blend or a ternary polymer solution (with a good solvent).
We assume that, close to the consolute point, one or the two polymers of the mixture are strongly attracted by the
plates (critical adsorption). For both systems, the induced force originates from the fluctuations of composition
near the consolute point. In polymer blends case, it was found that the force decreases with separation L between
the two plates as L−4, with a known universal amplitude. For ternary polymer solutions, however, it has been
shown that the interaction force decays rather as L−3. This drastic change of the force expression is due to
the presence of the good solvent, which gives rise to additional fluctuations of polymer concentration. To do
calculations, for the two systems, use is made of the standard ϕ4-theory, where the field ϕ is the order parameter
or composition fluctuation.
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I. INTRODUCTION

The computation of the interaction forces induced by the
fluctuations of some physical entity in confining geometries
is an old problem. The first investigation was due to Casimir
[1], who discovered that the vacuum fluctuations of a confined
electromagnetic field generate an attractive force between two
parallel uncharged conducting plates, which are a finite dis-
tance L apart. This is the Casimir effect [2], which has re-
ceived its final confirmation in recent experiments [3,4].

Afterwards, Fisher and de Gennes [5] remarked that an
analogous effect also appears in the context of Statistical
and Condensed Matter Physics, for those critical systems re-
stricted by boundaries. In this case, the critical fluctuations
of the order parameter play the role of the vacuum quantum
fluctuations.

Confined critical fluids, such as a fluid near the liquid-gas
critical point, a binary liquid near the consolute point, 4He liq-
uid near the λ-point, generate long-range forces between the
confining walls. These forces, termed critical Casimir forces
in literature [6], obey universal scaling functions [7− 10]. At
criticality, these scaling functions reduce to universal ampli-
tudes multiplying a negative power law in separation L be-
tween the confining walls [7− 10]. From a theoretical point
of view, the critical Casimir forces have been extensively in-
vestigated, using conformal invariance in d = 2 [11 − 15],
Renormalization-Group (RG) in d = 4− ε [6,9,10,16− 21],
and Monte Carlo (MC) simulations [22]. Experimentally, con-
fined critical fluids or colloids immersed in binary liquid mix-
tures have been the subject of numerous investigations [23].

Very recently [24], one has shown the existence of some
universal force within critical polymer blends confined to
two parallel plates, which strongly adsorb polymers near the
critical point Tc. This is the so-called critical adsorption
[5,25 − 35]. It was found [24] that this force, Π, decays
with thickness L according to a negative power law, that is
Π ∼ L−4, with a known universal amplitude. These results
were extended to ternary solutions made of two chemically

incompatible polymers immersed in a good solvent, and re-
stricted by the same boundaries [36]. Of course, the pres-
ence of the good solvent affects the expression of the induced
force. It has been shown [36] that the latter decreases rather as
Π ∼ L−3.

In this paper, we review recent trends concerning the com-
putation of the Casimir force between two parallel plates de-
limitating a polymer blend or a ternary polymer solution. To
this end, use will be made of the ϕ4-field theory, where the
field ϕ is nothing else but the composition fluctuation.

The remainder of the presentation proceeds as follows. In
Sec. II, we present the computation of the induced force of a
confined binary polymer mixture. Extension to ternary poly-
mer solutions is the aim of Sec. III. We draw some concluding
remarks in the last section.

II. CASIMIR FORCE IN CONFINED POLYMER BLENDS

Consider a critical mixture made of two incompatible
polymers A and B confined between two parallel homoge-
neous plates 1 and 2, which are separated by a finite dis-
tance L. We assume that the thickness L is much smaller
than the bulk thermal correlation length of the mixture ξ0

t ∼

a
√

N |1−Tc/T |−1/2, that is L << ξ0
t . Thus, we are concerned

with a film geometry. There, N is the common polymeriza-
tion degree of polymer chains and a the monomer size. We
suppose that, close to the consolute point, one or the two
polymers prefer to be attracted by the plates (critical ad-
sorption). A point of the medium can be described by a
three-dimensional vector r = (ρ,z), where z ∈ [0,L] is the
distance from the plate 1 taken as origin and ρ = (x,y) the
two-dimensional parallel vector. To describe the physics of
the system, we introduce an order parameter (or composition
fluctuation) ϕ = ΦA −ΦB, which is a scalar field depending
on the considered point r. Here, ΦA is the monomer fraction
of polymer A, and ΦB = 1−ΦA that of polymer B. We de-
note by ϕ1 (ρ) and ϕ2 (ρ) the values of ϕ-field on plates 1 and
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2, respectively. Because of the homogeneity property of the
two plates, the order parameter ϕ depends only on the per-
pendicular distance z. The translational symmetry property
along the parallel directions implies that the surface composi-
tion fluctuations are independent on the considered point, and
they will be simply denoted by ϕ1 and ϕ2. We shall be con-
cerned only with two special cases : symmetric or asymmetric
plates. For symmetric plates, we have the same composition
on both sides, and we will set ϕ1 = ϕ2 ≡ ϕ0. While for asym-
metric plates, we have opposite surface compositions, and we
will set ϕ1 = −ϕ2 ≡−ϕ0.

The confined polymer mixture can be described by the fol-
lowing free energy functional (per unit area) [24]

F [ϕ]
AkBT

= f1 (ϕ1)+ f2 (ϕ2)+a−3
∫ L

0
dz

[
G(ϕ)+κ

(
dϕ
dz

)2
]

,

(1)
where A is the plates area, T the absolute temperature and
kB the Boltzmann constant. The first two terms f1 (ϕ1) and
f2 (ϕ2) account for the contributions of the surfaces to the
free energy. Their forms will be given below. The last one
accounts for the bulk contribution, with G(ϕ) the bulk free
energy density [37],

G(ϕ) =
χc −χ

4
ϕ2 +

1
12N

ϕ4 , (2)

which is the expansion to fourth order of the standard Flory-
Huggins (FH) free energy [37,38], in the vicinity of the critical
monomer fraction Φc = 1/2, or equivalently around ϕ = 0. In
the above expression, χ is the standard Flory interaction pa-
rameter, which is inversely proportional to the absolute tem-
perature T , and χc = 2/N its critical value. In relation (1),
κ = a2/9 is a constant. The surface contribution is that usu-
ally encountered in surface critical phenomena [39,40], that
is

f1 (ϕ1)+ f2 (ϕ2) = ∑
i=1,2

(
−hiϕi +

ci

2
ϕ2

i

)
. (3)

In this equality, hi’s are the surface chemical potentials dif-
ferences of the two polymers, and ci’s the surface coupling
constants measuring the interaction strength of A and B-
monomers with plates. Let us discuss these surface parame-
ters. First, the surface coupling constant is the same for sym-
metric and asymmetric plates, and will be simply denoted by
c ≡ c1 = c2. For the symmetric case, the surface field has
the same values on both surfaces, and will be denoted by
h ≡ h1 = h2. While for the asymmetric one, the fields on the
two sides are opposite, that is h ≡ −h1 = h2. The critical ad-
sorption emerges in the limit h → ∞, at fixed surface coupling
constant c > 0. This is equivalent to impose the condition :
ϕ0 → ∞, which is the fixed point of the so-called normal tran-
sition [40].

The equilibrium profile, ϕ(z), can be obtained through a
standard minimization of the above total free energy, that is
δF/δϕ = 0. Then, the profile is solution to the following non-
linear differential equation

χc −χ
2

ϕ2 +
1

3N
ϕ3 −2κ

d2ϕ
dz2 = 0 , (4)

together with the following boundary conditions

2a−3κ
[

dϕ
dz

]
z=0

= cϕ0 −h , 2a−3κ
[

dϕ
dz

]
z=L

= −cϕ0 +h ,

(5)
for symmetric plates, or

2a−3κ
[

dϕ
dz

]
z=0

= cϕ0 −h , 2a−3κ
[

dϕ
dz

]
z=L

= cϕ0 −h ,

(6)
for asymmetric ones.

The first integral of the above differential equation is

κ
(

dϕ
dz

)2

= G(ϕ)+C , (7)

where C is an integration constant that depends on the bulk
parameters, the surface ones c and h and the separation L. For
symmetric plates where ϕ(0) = ϕ(L) = ϕ0, the expected pro-
file exhibits a minimum point at the middle of the film [41],
that is at z = L/2. In this case, the integration constant C
is directly related to the value of the FH free energy density
G(ϕm), that is C = −G(ϕm). Here, ϕm = ϕ(L/2) is the min-
imal value of the equilibrium profile. For asymmetric plates
where ϕ(0) =−ϕ(L) = ϕ0, it becomes rather a monotonously
decreasing function from z = 0 to z = L.

We have now all necessary ingredients for the determina-
tion of the induced force, which results from the fluctuations
of composition, that are strong near the critical point. To this
end, we first consider the symmetric case, for which the equi-
librium profile is solution to the differential equation (4) with
boundary conditions (5). The starting point is the first integral
defined by relation (7), with C = −G(ϕm). It is easy to show,
from this relation, that the minimal value ϕm of the equilib-
rium profile is given by the quadrature formula

L = 2
∫ ϕ0

ϕm

√
κ

G(ϕ)−G(ϕm)
dϕ , (8)

where the function G(ϕ) is taken at the critical point, that
is G(ϕ) = ϕ4/12N. The above relation expresses the de-
pendence of the minimal value ϕm on the film thickness L
and surface composition ϕ0. On the other hand, the attrac-
tive force (per unit area), Πa, is given by the first derivative
of the total free energy, with respect to separation L, that is
Πa = −(1/AkBT )∂F/∂L. It has been shown [41] that this
force is simply given by

Πa = −kBTc

a3 G(ϕm) . (9)

Then, the induced force is directly proportional to the integra-
tion constant C, that is Πa = kBTca−3C. Since G(ϕm) is pos-
itive definite, the force is attractive. In addition, relation (9)
indicates that the induced force is simply given by the knowl-
edge of the minimal value ϕm of the profile.

Come back to quadrature formula (8) and make the variable
change : ϕ → x = ϕ/ϕm, to get

L
a
√

N
=

4√
3

1
ϕm

∫ ϕ0/ϕm

1

dx√
x4 −1

. (10)
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In the critical adsorption limit, the upper bound of the above
integral goes to infinity, that is ϕ0/ϕm → ∞, and one finds the
following exact expression for the interaction force [24]

Πa =
NkBTc

a3
∆↑↑

(L/a)4 , (11)

with the universal amplitude

∆↑↑ = − [Γ(1/4)]8

432π2 �−7.002693379 , (12)

where Γ(z) is the gamma function [42].
For asymmetric plates, the profile is solution to the differen-

tial equation (4) with the boundary conditions (6). The asso-
ciated force is directly proportional to the integration constant
C as in symmetric case, that is Πr = kBTca−3C [24,41]. Since
C is positive [24,41], this force is repulsive. To obtain its scal-
ing behavior, one can follow the same techniques as above.
We recall simply the result [24]

Πr =
NkBTc

a3
∆↑↓

(L/a)4 , (13)

with the universal amplitude

∆↑↓ =
[Γ(1/4)]8

108π2 � 28.01077353 . (14)

Now, let us comment the above results.
Firstly, we note that both attractive and repulsive forces de-

cay with separation L according to the same power law, that is
Πa,r ∼ ∓L−4.

Secondly, when these forces are reduced by the NkBTca−3-
factor, they exhibit a universal behavior, and depend only
on film thickness L and not on surface interactions details
(through c and h). The surface parameters c and h contribute
only to corrections to the leading critical behavior. In addition,
the corresponding amplitudes ∆↑↑ and ∆↑↓ are pure numbers.

Thirdly, as it should be, these forces are proportional to the
polymerization degree N of chains.

Fourthly, remark that this power law in L resembles that
defining the electromagnetic Casimir force in the same geom-
etry [1].

Sixthly, notice that, intuitively, the repulsive force must be
stronger than the attractive one, for the same separation L. In-
deed, this is due to the fact that, for opposite plates, the mix-
ture may be regarded as two lamellar phases alternatively rich
is A and B-polymers. Quantitatively, one has the ratio∣∣∣∣ Πr

Πa

∣∣∣∣ = 4 , (15)

which is a pure integer number, independently on separation
L. This same relation shows that the repulsive force is four
times more intense than the attractive one.

Finally, attractive and repulsive forces versus distance L are
depicted in Figs. 1 and 2, respectively.

FIG. 1: The reduced attractive induced force a3Πa/NkBTc versus the
separation L (expressed in monomer size a units).

FIG. 2: The reduced repulsive induced force a3Πr/NkBTc versus the
separation L (expressed in monomer size a units).

III. CASIMIR FORCE IN CONFINED TERNARY
POLYMER SOLUTIONS

Now, consider a mixture of two incompatible long poly-
mers A and B dissolved in a common good solvent. We as-
sume that the ternary polymer solution is confined between
two adsorbing parallel plates 1 and 2, which are a finite dis-
tance L apart. The latter is assumed to be smaller than the
bulk thermal correlation length ξt (L << ξt). This charac-
teristic length that will be defined below, measures the spa-
tial extent of correlations. The opposite case where L >> ξt
contributes to the leading critical behavior only by exponen-
tially decreasing small corrections [7,43]. We suppose that
plates attract strongly one or the two polymers close to the
consolute point (critical adsorption). As consequence, plates
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experience an effective force originating from the strong fluc-
tuations of composition near the consolute point. Such a force
depends on film thickness L and the considered surface uni-
versality class. For the sake of simplicity, we will assume that
either plates have the same preference to attract one compo-
nent (symmetric plates) or they have an opposed preference
(asymmetric plates). Besides the chemical segregation be-
tween unlike chains, one is in the presence of excluded vol-
ume interactions leading to swelling of polymer chains.

The fundamental problem to apprehend is a quantitative
study of the influence of the good solvent on the force expres-
sion. Calculations will be done using, first, the blob model
[44], and second the RG.

A. Mean-field results

To determine the induced force, we shall need the free en-
ergy. To get its expression, we start by recalling some useful
background on the demixing transition in the presence of a
good solvent of infinite extent.

Start with a mixture of two chemically incompatible poly-
mers A and B, dissolved in a common good solvent. This mix-
ture may be polystyrene-poly(methylmethacrylate) in toluene
or polystyrene-poly(dimethylsiloxane) in propylbenzene. For
simplify, the two polymers A and B are assumed to have the
same polymerization degree N (monodisperse system). We
denote by Φ = ΦA +ΦB the overall monomer fraction, where
ΦA and ΦB are the respective monomer fractions of A and B-
polymers.

We recall that, in dilute solution, where the overall
monomer fraction Φ is below the threshold Φ∗

∼ N1−νd (ν �
0.588, in d = 3) [37], A and B-chains behave like separated
swollen coils avoiding each other completely, and in princi-
ple no phase separation is expected. In semi-dilute solution
(Φ∗ << Φ < 1), however, chains overlap and can be regarded
as a sequence of uncorrelated subunits or blobs of types A and
B. Each chain contains Z (Φ) ∼ NΦ1/(νd−1) blobs. The blob
size or screening length [37], ξ(Φ), depends only on the total
monomer fraction Φ, and scales as [37] : ξ(Φ) ∼ Φν/(1−νd),
where a is the monomer size.

Using field-theoretical RG, it has been shown [44] that, for
a high-molecular-weight solution, a given chain cannot distin-
guish between an A and B-chain. This means that the chemical
difference is irrelevant, and manifests itself only in correction
to the leading behavior of the osmotic pressure. In fact, these
corrections are important and govern thermodynamics of the
demixing transition. From the obtained expression of the os-
motic pressure, the authors of Ref. [44] derived the following
expression for the free energy

F0

kBT
=

x
Z (Φ)

lnx+
1− x
Z (Φ)

ln(1− x)+ χ̂(Φ)x(1− x) , (16)

with x = ΦA/Φ the composition of polymer A. In the above
equality, the quantity

χ̂(Φ) ∼ χΦ∆̃2 (16a)

accounts for the Flory effective interaction parameter between
unlike blobs, where χ is the standard one, and ∆̃2 some
crossover exponent, of three-dimensional value ∆̃2 � 0.30
[44]. This exponent characterizes the correction to the os-
motic pressure [44]. Expression (16a) can be understood, in
a certain sense, as a renormalization of interactions due to the
chemical mismatch between A and B-polymers.

Return to expression (16) and notice that it shows an ob-
vious analogy with that defining the usual Flory-Huggins free
energy of a mixture of two polymers A and B in the molten
state [37,38]. The difference comes form the fact that A and
B-chains have blobs of size ξ(Φ) as new subunits, and the seg-
regation parameter is no longer χ but the effective one χ̂(Φ),
relation (16a). Of course, these two parameters coincide in
the limit Φ→ 1. The model of free energy (16) constitutes the
blob model [44], which is a direct consequence of the renor-
malization theory.

We recall now the coordinates of the demixing critical point
K. These can be obtained equating to zero the first and second
derivatives of free energy (16), with respect to composition x.
One gets [44]

χ̂(ΦK ,T ) =
2

Z (Φ)
, xK =

1
2

, (17)

with ΦK the critical monomer fraction, which is larger than the
overlap one Φ∗ defined above. The critical point K is located
at the top of the coexistence curve. Below ΦK (Φ < ΦK), the
ternary mixture is homogeneous, while above ΦK (Φ > ΦK),
this mixture phase separates in two phases alternatively rich
in A and B-polymers. Finally, we recall that the critical tem-
perature, TK , at fixed concentration, is given by [44]

χ(TK) ∼ N−1Φ−1/b , (18)

with the exponent b � 0.62 (d = 3). The above relation tells
us that the critical temperature TK should be proportional to
the polymerization degree N (or molecular-weight).

Now, to describe the critical phase behavior of the ternary
mixture, we introduce an order parameter that is defined by

x =
1+ x̂

2
, (19)

where x is the composition of A-polymer in the solution. The
above definition indicates that the order parameter x̂ is propor-
tional to the shift x− xK , where xK = 1/2 is the critical com-
position. The order parameter x̂ depends on the d-dimensional
position-vector r = (ρ,z) ∈ Rd , with the transverse vector
ρ ∈ Rd−1 and z ∈ [0,L] the perpendicular distance from plate
1 taken as origin. Therefore, the two plates 1 and 2 are located
at z = 0 and z = L, respectively. The homogeneity property of
plates implies that x̂ depends only on the perpendicular dis-
tance z. We denote by x̂1 and x̂2 the respective values of the
order parameter on plates 1 and 2. The symmetric plates cor-
respond to x̂1 = x̂2, and asymmetric ones to x̂1 = −x̂2. Since
swollen A and B-chains can be viewed as sequences of new
subunits or blobs, but interact chemically through the Flory
effective interaction parameter χ̂(Φ), defined in Eq. (16), the
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total free energy (per unit area) is given by a formula similar
to that defining a binary polymer mixture, relation (1). Then,

we write

F0 [x̂]
AkBT

= ∑
i=1,2

(
−h0

i x̂i +
c0

i
2

x̂2
i

)
+ξ−d (Φ)

∫ L

0
dz

[
t0
2

x̂2 +
u0

4
x̂4 +κ(Φ)

(
dx̂
dz

)2
]

, (20)

with A the common area of plates. Here, t0 =
(2/Z (Φ)− χ̂)/2 is the reduced temperature, u0 = 1/3Z (Φ)
the coupling constant, κ(Φ) = ξ2 (Φ)/9, and

(
c0

i ,h
0
i
)
’s are

the surface microscopic parameters relative to plates 1 and 2.
Notice that the integrand in the bulk part of the above free en-
ergy can be obtained expanding the free energy (16) to fourth
order around the critical composition xK = 1/2. The gradient
term is introduced to take into account the interfacial energy
between A and B-rich phases.

We emphasize that the above free energy is similar to that
corresponding to a confined binary polymer mixture (Eq. (1)),
with the simple substitutions : a → ξ(Φ), N → Z (Φ). This
means that chains in semi-dilute solution can be regarded as
sequences of Z (Φ) blobs of the same size ξ(Φ). Taking ad-
vantage of those results derived in Sec. II, and using the above
substitutions, one finds that the induced forces (per unit area)
is given by

Π0
a

kBTK
=

∆0
↑↑

L4 , (21)

for symmetric (or attractive) plates, and

Π0
r

kBTK
=

∆0
↑↓

L4 , (22)

for asymmetric (or repulsive) ones, with the following univer-
sal amplitudes

∆0
↑↑ = −Na

[Γ(1/4)]8

432π2 Φ(1−ν)/(3ν−1) , (22a)

∆0
↑↓ = Na

[Γ(1/4)]8

108π2 Φ(1−ν)/(3ν−1) . (22b)

Let us discuss these derived results.
First, we note that the above expressions obtained using

the blob model, show that the presence of a good solvent
simply induces a renormalization of the force amplitudes,
through the multiplicative power factor Φ(1−ν)/(3ν−1)

∼ Φ1/2

(d = 3,ν = 3/5) depending on the monomer fraction Φ.
Second, for both symmetric and asymmetric plates, the at-

tractive and repulsive forces decay according to the same neg-
ative fourth power law, but with different amplitudes.

Third, as for confined polymer blends, the repulsive force
is four times more important than the attractive one.

Finally, in the limit Φ → 1, the results corresponding to the
molten state are then recovered.

The blob model is a mean-field theory, and it has been
shown [44] that this is valid only for extremely high-
molecular-weight or very high monomer concentration. To go
beyond the mean-field theory, and in order to obtain correct
results close to the critical point where fluctuations of compo-
sition are strong enough, use will be made of RG applied to
the field theory described below.

B. RG results

The starting point is to rewrite the free energy (20) rescal-
ing the composition fluctuation in bulk and at surfaces and
parameters of the problem, according to

ϕ =
√

κ(Φ) [ξ(Φ)]−d/2 x̂ , ϕi =
√

κ(Φ) [ξ(Φ)]−d/2 x̂i ,
(23a)

t =
1

κ(Φ)
t0 , g =

6

[κ(Φ)]2
[ξ(Φ)]d u0 , (23b)

ci =
1

κ(Φ)
[ξ(Φ)]d c0

i , hi =
1√

κ(Φ)
[ξ(Φ)]d/2 h0

i ,

(23c)
where (t0,u0) and

(
c0

i ,h
0
i
)
’s are those parameters defined

above, and ξ(Φ) the screening length. With these consider-
ations, the total free energy reads

F [ϕ]
kBT

= ∑
i=1,2

∫
dρ

(
−hiϕi +

ci

2
ϕ2

i

)
+

∫
dr

(
1
2

(∇ϕ)2 +
t
2

ϕ2 +
g
4!

(
ϕ2)2

)
. (24)

The field ϕ depends on the spatial coordinates r = (ρ,z), with
ρ ∈ Rd−1 and 0 ≤ z ≤ L. The quantities ϕi’s are the surface
fields defined on the (d −1)-dimensional plates 1 and 2. The
parameter t ∼ (T −TK)/TK is the reduced temperature, g the
coupling constant, and (ci,hi)’s are the new surface parame-
ters. Then, fields ϕ and ϕi’s, and bulk and surface parameters
have the following dimensions : [ϕ] = [ϕi] = l1−d/2, [t] = l−2,
[g] = ld−4, [ci] = l−1, [hi] = l−d/2, where l is some length.
Notice that, at the critical dimension of the system dc = 4, the
coupling constant g becomes marginal.
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Therefore, the theoretical model is a ϕ4-field theory de-
scribed by the above Landau-Ginzburg-Wilson Hamiltonian.
Recall that the critical adsorption emerges in the limit hi →
±∞.

With the help of this field model, one can compute the
Casimir force. To this end, we first note that the above Hamil-
tonian is nothing else but that describing the critical properties
of binary liquid mixtures of small molecules near the con-
solute point, one-component fluids near the liquid-gas criti-
cal point, or Ising-like magnetic materials near the Curie tem-
perature. Thus, the ϕ-field (order parameter) may play the
role of the difference between compositions for simple liquid
mixtures, the difference between liquid and gas densities for
one-component fluids, or the local magnetization for Ising-
like magnetic materials. In this sense, the ternary mixture of
our interest belongs to the universality class (n = 1,d), where
n is the number of components of the order parameter. Thus,
the critical phase behavior of ternary polymer mixtures is of
Ising type [45,46]. One can thus take advantage of some work
by Krech [10], which was concerned with the computation of
the Casimir force in confined liquid mixtures. To determine
the force expression for confined ternary polymer mixtures,
one can follow those techniques used by the author. Let us
first write the Casimir force as [36]

Πa,r = Π0
a,r +δΠa,r . (25)

The quantity Π0
a,r is the mean-field force calculated above, re-

lations (21) or (22). The remaining part, δΠa,r, represents the
force deviation due to strong fluctuations of composition. We
recall that the induced force is defined through the expectation
mean-value of perpendicular component of the stress tensor
[10], which has been calculated using the well-known loop-
expansion [45,46]. The mean-field contribution Π0

a,r repre-
sents the zeroth order of this expansion, while δΠa,r accounts
for the contribution of higher orders.

To determinate the force deviation, the authors of Ref. [36]
started form the Casimir free energy per unit area, δ fa,r, which
can be written on the following scaling form

δ fa,r

kBT
=

1
Ld−1 ga,r

(
L
ξt

)
. (26)

The factor 1/Ld−1 simply expresses the natural dimension
of the reduced Casimir energy δ fa,r/kBT . Here, ξt ∼

R(Φ) [Z (Φ)]−νt+1/2 |1−T/TK |−νt denotes the thermal cor-
relation length, where νt � 0.6 is the standard Ising expo-
nent [45,46], and R(Φ) ∼ aN1/2Φ(2ν−1)/2(1−3ν) the size of
a chain in semi-dilute solution [37], with the swelling expo-
nent ν � 0.588 [47] that must not be confused with νt . On the
other hand, the scaling function ga,r (x) is analytic for x << 1
(L << ξt). Then, at the critical point T = TK (ξt → ∞),
ga,r (0) is finite and we write it as : ga (0) = δ∆↑↑/(d −1) or
gr (0) = δ∆↑↓/(d −1), where δ∆↑↑ and δ∆↑↓ are the Casimir
amplitudes. Then, at the critical point, the Casimir free energy
decays in a universal way as

δ fa

kBTK
=

δ∆↑↑/(d −1)
Ld−1 ,

δ fr

kBTK
=

δ∆↑↓/(d −1)
Ld−1 .

(27)

The Casimir force deviation (per unit area) δΠa,r is given
by the first derivative of δ fa,r with respect to separation L :
δΠa,r = −∂δ fa,r/∂L. One then finds, at three dimensions,

δΠa

kBTK
=

δ∆↑↑
L3 , (28)

for attractive walls, and

δΠr

kBTK
=

δ∆↑↓
L3 , (29)

for repulsive ones. Notice that, in general, the force ampli-
tudes are universal, and they depend only on space dimension
d and surface universality class (choice of boundary condi-
tions). The amplitudes δ∆↑↑ and δ∆↑↓ have been calculated
through a perturbative expansion with respect to the coupling
constant g. Then, at fixed point g∗, these amplitudes become
series in ε = 4− d (4 is the critical dimension of the system)
that must be resummed using Borel-Leroy techniques [45,46]
to get their best values at dimension d = 3 (ε = 1). In three
dimensions, these force amplitudes are [10]

δ∆↑↑ � −0.652 , δ∆↑↓ � 4.48 . (30)

These values are in good agreement with MC simulation [48].
With these considerations, the total Casimir forces (per unit

area) write

Πa

kBTK
=

∆0
↑↑

L4 +
δ∆↑↑
L3 , (31)

Πr

kBTK
=

∆0
↑↓

L4 +
δ∆↑↓
L3 , (32)

where the mean-field amplitudes ∆0
↑↑ and ∆0

↑↓ are those defined
by relations (22a) and (22b).

Let us make some commentaries.
Firstly, Eqs. (31) and (32) indicate that, when they are re-

duced by the kBTK-factor, the attractive and repulsive Casimir
forces Πa,r are universal, independently on the chemical struc-
ture of polymers and plates.

Secondly, we emphasize that the force expressions (31)
and (32), when they are compared to those corresponding to
the molten state [24], show that the solvent induces a drastic
change of the force expression. Indeed, the swelling of chains
modifies the dependence of the force on distance, through the
appearance of the L−3-decay. This change of the behavior is
not surprising, since in the presence of a good solvent, fluctu-
ations of composition close to the consolute point are strong
enough.

Thirdly, the above formulae suggest the existence of a
cross-over phenomenon occurring at some characteristic dis-
tance L∗, obtained making a comparison between the mean-
field contribution

(
∼ L−4

)
and the fluctuation one

(
∼ L−3

)
.

This comparison gives the cross-over distance

L∗
∼ aNφ(1−ν)/(3ν−1)

∼ aNφ1/2 , (33)
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which depends on the molecular-weight (through N) and
monomer fraction Φ. At the threshold Φ = Φ∗, the length
L∗ becomes of the order of the gyration radius RG ∼ aNν of a
single chain in dilute solution. At high separations (L >> L∗),
fluctuations of composition dominate, and then, the effective
force behaves as L−3. For low separations (L << L∗), how-
ever, a mean-field result is expected, and the effective force
scales rather as L−4. As a matter of fact, this can be under-
stood as follows. When the distance between plates is low-
ered, the local monomer concentration is increased, and one
assists to a strong screening of excluded volume interactions.
This is why the mean-field theory works at small distances.

In Fig. 3, we superpose curves representing attractive mean-
field force Π0

a (dashed line) and attractive fluctuations one δΠa
(solid line), versus separation L. In Fig. 4, we report curves
describing repulsive mean-field force Π0

r (dashed line) and re-
pulsive fluctuations one δΠr (solid line), versus separation L.
For the two cases, curves intersect at the cross-over distance
L∗ which is different for the two boundary conditions. All
these curves are drawn with parameters: a = 10 Angstroms,
N = 100, Φ = 0.5.

FIG. 3: Superposition of curves representing attractive mean-field
force (dashed line) and attractive fluctuations force (solid line), ver-
sus separation L. The curves are drawn with parameters : a = 10
Angstroms, N = 100, Φ = 0.5.

IV. CONCLUSIONS

In this review paper, we first considered a critical binary
mixture made of two incompatible polymers A and B, con-
fined between two parallel plates 1 and 2. We assumed that
the latter adsorb strongly the polymers at high temperature.
The fluctuations of composition generate an effective force
between the two plates. We were interested in the computa-
tion of such a force. To this end, use was made of the standard
ϕ4-theory, where ϕ is the composition fluctuation or order pa-
rameter. This plays the role of the magnetization of Ising-like
magnetic systems. It was shown that the presence of the sur-
faces can be taken into account by imposing two boundary

FIG. 4: Superposition of curves describing repulsive mean-field
force (dashed line) and repulsive fluctuations force (solid line), ver-
sus separation L. These curves are drawn with the same parameters
as for Fig. 3.

conditions, which are similar to the ones usually encountered
in surface critical phenomena. These boundary conditions de-
pend on two couples of parameters : (c1,h1) for plate 1, and
(c2,h2) for plate 2, where c1 and c2 (surface enhancements)
describe the interaction changes in the surface layers. The pa-
rameters h1 and h2 are analogous to surface magnetic fields.
For the sake of simplicity, we have chosen two typical bound-
ary conditions : symmetric and asymmetric plates, depending
on whether the plates have the same or opposite preferences
for the two polymers. For both symmetric and asymmetric
plates, one found that the (attractive and repulsive) forces (per
unit area) decrease with the separation L according to the same
negative power law, that is Πr,a ∼ ±L−4, with known exact
universal amplitudes. The obtained force for critical poly-
mer blends was compared to the electromagnetic one resulting
from vacuum fluctuations of the magnetic field confined to the
same geometry. Incidentally, the two kinds of forces decrease
with L according to the same power law.

We think that the expected force could be measured in an
experiment similar to that used for measurement of the repul-
sive force between two plates coated by an adsorbed polymer
[49].

We emphasize that since we were concerned with long-
polymer chains (N → ∞), mean-field theory was sufficient to
describe the phenomenon as demonstrated many years ago by
de Gennes [50]. Indeed, the critical region size scales as N−1,
and then, a classical behavior should be observed in the limit
N → ∞.

The second purpose was a succinct recall of the determina-
tion of the Casimir force within confined ternary polymer so-
lutions between two parallel adsorbing plates. These solutions
are made of two incompatible polymers A and B immersed in
a common good solvent. In addition to the chemical segrega-
tion between unlike chains, excluded volume interactions are
present. To determine the expression of the expected force, we
have restricted ourselves to two surface universality classes :
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symmetric and asymmetric plates. The induced force is attrac-
tive for symmetric plates, and repulsive for asymmetric ones.
Calculations have been done, first, using the blob model. For
the two boundary conditions, one found that the forces decay
similarly as L−4, and the corresponding amplitudes are simi-
lar to those relative to the molten state, up to a multiplicative
power factor of the monomer fraction.

Notice that the blob model has a mean-field character,
which is valid only for very strong monomer concentrations
or extremely high molecular-weights. To see this, denote by
∆∗Φ = Φ−ΦK and ∆∗T = T − TK the ranges of monomer
fraction and temperature, respectively. The determination of
the size of the critical region has been done using a Ginzburg
criterion [44]. We sketch simply the result that : ∆∗Φ/ΦK ∼

M−∆2/(1+∆2) and ∆∗T/TK ∼ (ΦK/Φ∗)−1/(3ν−1) with M the
molecular-weight, and ∆2 = ∆̂2 (3ν−1) � 0.22 a cross-over
exponent. Hence, in the limit of extremely long chains and
very high concentrations, the above expressions suggest that
the critical region is very narrow, and then, the phase behavior
can be obtained using the mean-field approximation.

To go beyond the blob model, and in order to obtain a cor-
rect induced force, one applied the RG-machineries to a ϕ4-
field theory we described above. In particular, it has been
shown the existence of two distance-regimes. Below some
characteristic length L∗, the blob model is reliable, and the
force decays as L−4. Above L∗, however, one assists to a dras-
tic change of the force expression due to the presence of strong
fluctuations of composition. In this regime, it was found that
the force decreases rather as L−3.

We recall that the used continuous field model belongs to

the same universality class as the (Ising-like) lattice model
[51]. The composition fluctuation plays the role of magne-
tization, and the surface chemical potential exchange the sur-
face magnetic field. Since, we are interested in phenomena
occurring at criticality, these models are equivalent for the de-
scription of physics.

We point out that we focused our attention on the critical
adsorption situation, only. In critical phenomena language,
this corresponds to infinitely strong surface field. In this limit,
the Casimir force was found to be universal. For both sym-
metric and asymmetric plates cases, the powers of separation
L are the same, but, as it should be, the corresponding univer-
sal amplitudes are numerically different. For finite values of
the surface parameters (coupling constants and surface fields),
however, the expected force is no longer universal, and must
depend on the particular choice of the boundaries conditions.

Finally, we emphasize that, from a theoretical point of view,
the Casimir force for a spherical geometry has also attracted
much attention. More precisely, in recent works [52−55],
the question was addressed to the computation of the induced
force between colloidal particles immersed in a critical binary
polymer mixture. As main result, the force decays as r−3,
where r is the interparticle distance.
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