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Space-Time and Hadrons
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The hadronic structure is investigated in terms of a recently proposed theory which considers the effect of
the strong interaction in the space-time description. From the equations, the masses of the particles may be
calculated, and quark confinement appears as a natural result, without the need of confining potentials. Some
properties of the considered particles, such as the topponium size, are also estimated.
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The effect of space-time in quantum physics, or, semantics
apart, the effect of quantum physics in the structure of space-
time are subjects that until today do not have a theory. The
efforts made in the attempt of quantizing the gravitational field
illustrate this fact.

In most of the descriptions of quantum systems and of par-
ticle physics, for example, this question is not considered, and
the space is the flat Minkowski one, with the metric tensor

gµν = (1,−1,−1,−1) , (1)

and no interaction is considered to affect its structure. How-
ever a fundamental question that remains is whether the elec-
tromagnetic and strong interactions may affect space-time, in
a way similar to the role of the gravitational field in general
relativity, and if these effects may be observed.

With these questions in mind, recently, a theory has been
proposed [1]-[3], in which the effects mentioned above have
been taken into account, and very interesting results have been
obtained. For example, the agreement with the experimental
results of the deuterium atom spectrum is improved by one
decimal digit, when compared with the Dirac results [4]-[6], a
fact that may hardly be considered as a coincidence, and this
agreement shows the same pattern for all energy levels. The
results of the theory when applied to hadron physics are also
very interesting, and quark confinement appears in a natural
way.

In this work a brief review of this theory will be made, and
a special emphasis will be given to its application to the study
of hadrons. The fundamental principle of the theory will also
be formulated.

For simplicity, a first step is to consider a system with spher-
ical symmetry, but the basic ideas can be generalized to sys-
tems with arbitrary metrics. In fact, this approach is very il-
lustrative, many systems may be described by spherical sym-
metry, or at least, investigated in a first approximation. With
this procedure, the main results of the theory are obtained and
all the results may be obtained analytically.

So, if the spherical symmetry is considered, the space-time
is described by the metric derived in [1], that is very similar
to the Schwarzschild metric [7],[8],

ds2 = ξ dτ2− r2(dθ2 + sin2 θ dφ2)−ξ−1dr2 , (2)

where r, θ and φ are the particle coordinates, ξ(r) is deter-
mined by the interaction potential V (r) and is a function only

of r, for a time independent interaction.
The energy relation for this system is [1]

E√
ξ

=
√

p2c2 +m2
0c4 , (3)

with

ξ
1
2 = 1+

V
mc2 . (4)

Applying these ideas to the study of one electron atoms, V is
the Coulomb potential

V (r) =−α Z
r

, (5)

α is the fine structure constant and Z is the atomic number.
Consequently, the function ξ is given by

ξ = 1− 2α Z
mc2r

+
α2Z2

m2c4r2 , (6)

where m is the electron mass. These expressions determine
the horizon of events at r0, that appears from the metric sin-
gularity ξ(r0)=0, and using the values of [9], one finds

r0 =
αZ
mc2 = 2.818 Z fm , (7)

that is not a negligible value at the atomic scale.
In a space-time described by the metric (2), the quantum

wave equation for spin-1/2 particles is [1]

i~
ξ

∂
∂t

Ψ =
(
−i~c~α.~∇+βm0c2

)
Ψ (8)

where Ψ is a four-component spinor.
The spacial part of Ψ, that is a four component spinor, may

be written as

ψ =
(

F(r)χµ
κ

iG(r)χµ
−κ ,

)
(9)

with the aid of the usual two component spinors, χµ
κ [1],

where

κ = l for j = l−1/2 ,

κ =−l−1 for j = l +1/2 . (10)
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The radial part of eq. (8) may be rewritten as a pair of coupled
equations for the and the F and G functions

√
ξ

dF
dr

+(1+ k)
F
r

=

(
E√

ξ
+m0

)
G

√
ξ

dG
dr

+(1− k)
G
r

=−
(

E√
ξ
−m0

)
F .

(11)

Considering a Coulomb-like potential, the ξ function be-
comes

ξ =
(

1− αZ
m0c2 r

)2

, (12)

and inserting it (12) in eq. (11) and making the substitution
ρ = βr, the equations may be put in the form

ξ
dF
dρ

+
√

ξ(1+ k)
F
ρ

=
(

E
β

+
√

ξ
m0

β

)
G

ξ
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+
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ξ(1− k)
G
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=−
(

E
β
−

√
ξ

m0

β

)
F ,

(13)

for r 6= r0. Solving these equations, what may be done us-
ing the Frobenius method, the relation for the energy levels is
determined

EN =±mec2

√
1
2
− N2

8α2 ±
N
4α

√
N2

4α2 +2 , (14)

where the physical values are the positive ones.
At a first sight equation (8) may seem very similar to the

Dirac equation, but it shows some important differences. The
first one is the numerical aspect. Applying (14) to the deu-
terium atom [1], the agreement with the experimental values
of the energy levels is improved in comparison with the Dirac
spectrum and shows deviations from the data of the order of
0.005%. Another characteristic of the general quantum me-
chanics is the existence of the horizon of events at r0. In the
hydrogen atom, this fact is not important, r0 ∼2.8 fm, and,
from the solution of (8), an electron with energy of the order
of few eV has a very small probability of being found in this
region, so, in practical terms, no effect is observed. Although,
for heavy elements r0 increases and this effect is not negligible
[3].

Now let us turn our attention to the study of hadrons, that
today, we believe that are systems composed of quarks, which
interact via gluon fields and many authors suppose that the
mean effect of these interactions may be represented by self-
consistent effective potentials. In the Bogolioubov [10] and
in the MIT bag model [11] the constituent quarks are Dirac
particles, confined by a spherical step potential (with V0 →∞).
Other models consider different shapes for the potential, as for
example rn terms [12]- [14] and the Cornell model [15], [16],
that uses a linear plus strong Coulomb potential

V =
a
r

+br . (15)

TABLE I: Values of the masses M(GeV) of the hadrons, composed
of constituent quarks of mass m(GeV) compared with the experimen-
tal ones [9]. The calculations are made with eq. (14), obtained for
Coulomb potentials with coupling α.

m α r0(fm) M Mexp

N(qqq) 0.38 1.60 0.83 0.938 0.938 (proton)
J/ψ(cc̄) 1.79 1.00 0.11 3.10 3.10
ϒ(bb̄) 5.50 1.05 0.05 9.47 9.46
tt̄ 174 1.00 0.002 310 -

We may construct a model, supposing that the quarks inside
the hadrons are described by eq. (8), and the mean effect of the
interaction is given by a strong Coulomb potential (a Coulomb
potential with α ∼1). In a baryon, for example, the mass is
given by

M =
3

∑
i=1

EN(qi) (16)

with EN from eq. (14). Some numerical results may be found
in Table 1. Observing the Table, one must note that tt̄ and bb̄
must be very small mesons. In the topponium, for example,
rtt̄ ∼ 0.002 fm. One must also note that the agreement with
experimental data is very good.

The wave functions of the i quarks are determined by eq.
(8). An important result of this approach is that quark con-
finement occurs without the need of a confining potential, as
the wave functions of the quarks at r0 are Ψ(r0)=0. This dis-
continuity at the horizon of events determines a strong con-
finement.

The horizon of events is not an exclusive feature of the
Coulomb potential, it may appear for any attractive potential,
when the condition

ξ(r0) = 0 , (17)

is satisfied, what occurs for

V (r0) =−mc2 . (18)

One must remark that these preliminary estimates, just con-
sidering a strong Coulomb potential, provided very accurate
results, and even the magnetic moments calculated this way
are very accurate [1]. However we think that a better shape
of the potential must be considered in order to describe all the
baryons and mesons, and this is what is being done. A reli-
able description of the strong interactions must be based on
a short-ranged potential as, for example, a Woods-Saxon one
and we must note that changing the shape of the potential, the
main results presented here will not change.

In this work, we showed how to introduce the effect of the
strong and electromagnetic interactions in the metric of space
time and that this effect is important in order to understand the
quantum world and specially the hadronic structure.

The mathematical formulation presented in this work, is the
result of the following principle: different particles see the
space-time in different ways, or alternatively, different parti-
cles are affected by the space-time in different ways. So, what
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is being said, is that with this approach, an absolute space,
to every particles, as it appears in the general relativity, does
not exist. When we deal with quantum systems, the differ-
ences appear. For example, a quark sees a space curved by the
strong gluonic field of another quark and, in fact, this quark
is confined by a trapping surface, as defined by Penrose [17].
However this space is flat for a photon or for a lepton. There
is no absurd in this fact and it is observable, for example, in a
radiative decay of a hadron,

H → H ′γ (19)

The process may be understood in terms of an excited quark
q∗ that decays

q∗→ qγ (20)

producing a photon γ, the quark remains confined as the pho-
ton is emitted and escapes from the strong horizon of events.
This also supports the fact that it is a good idea to use leptons
in order to probe the interior of the hadrons as they are not
affected by the strong horizon of events.

It must be remarked that the theory presented in this work is
is still in an initial stage of development. Many aspects, even

in the foundations of the theory must be further examined.
Systems that do not present spherical symmetries, although
important in many physical situations have not been studied
yet, and different metrics must be considered. Other kinds of
interactions, such as a vector potential have not been included,
for simplicity, but it may be done by introducing then in the
energy-momentum tensor. Many of these questions will be
addressed in future works.

Despite of these limitations, in all of the studied systems,
the results obtained are very good and totally consistent with
experiment. This motivates the continuation of the studies in
this field.

Another important point that must be emphasized is that
the theory presented is a quantum one, that is, a theory for
very small objects. Any incautious reader should think that it
contradicts general relativity. This is right in the same sense
that quantum theory contradicts Newtonian mechanics. Tak-
ing the classical limit of the presented theory for large (macro-
scopic) masses, general relativity is recovered and the effects
presented in this paper vanish. From the point of view of this
work, general covariance does not occur in quantum systems,
it must be considered to be a classical property.
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[11] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. Weis-

skopf, Phys. Rev. D 9, 3741 (1974); A. Chodos, R. L. Jaffe, K.
Johnson, and C. B. Thorn, Phys. Rev. D 10, 2599 (1974).

[12] R. Tegen, Ann. Phys. 197, 439 (1990).
[13] P. L. Ferreira, J. A. Helayel, and N. Zagury, Nuovo Cim. A 55,

215 (1980).
[14] N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978); D 19, 2653

(1979).
[15] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. -M.

Yan, Phys. Rev. 17, 3090 (1978); 21, 203 (1980).
[16] E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981).
[17] R. Penrose, Phys. Rev. Lett. 14, 57 (1965); Riv. Nuovo Cim.

Speciale, 252 (1969).


