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Color Flavor Locked Phase Transition in Strange Quark Matter
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We discuss macroscopic aspects of quark matter phase transition in cold dense stellar matter, considering
global charge neutrality and baryonic charge conservation. We determine the critical condition for the phase
transition between the strange quark matter, SQM, and the color-flavor locked, CFL, superconducting phase.
We also discuss the sensitivity of our results to variations in the gap energy, ∆, and in the current strange quark
mass, ms0. The phase transition is calculated taking into account the baryonic density dependence of the quark
masses in dense baryonic medium.

Keywords: Cold dense stellar matter; Phase transition; Color superconductivity

I. INTRODUCTION

The strange quark matter (SQM) is supposed to be the most
stable quantum state of the hadronic matter [1],[2]. The SQM
can be originated by a first-order hadron-quark phase transi-
tion occurring in the core of a massive star at the end of its
evolutionary path when a gravitational collapse of the struc-
ture takes place. This hadron-quark phase transition leads to a
deconfined quark gas at densities presumably near to 2-3 times
the normal nuclear matter density. At sufficiently large baryon
chemical potential, the more stable configuration of SQM is
the color flavor locked (CFL)[3] superconducting phase in
which Cooper pairs of quarks of different flavors and colors
are coupled with total zero momentum. For very high den-
sity, the mass of the strange quark is negligible compared to
the baryonic chemical potential, leading to the same density
of the three flavors of u, d and s quarks. Consequently, the
CFL phase is naturally electrically neutral.

In the present work we study the phase transition between
the SQM and CFL phases, determining the critical value of
the baryonic chemical potential,µ, for different baryonic den-
sities. A phenomenological model taking into account the de-
pendence of the quark mass with the baryonic density is em-
ployed: the dynamical density quark mass DDQM model[4].
The sensitivity of the calculated values for the critical chemi-
cal potential for the SQM −CFL phase transition is analyzed
in respect to the parameter of DDQM model used. We also
discuss some results obtained when the values of the color su-
perconducting gap and the current strange quark mass are both
changed.

II. THE DDQM MODEL IN THE SQM PHASE

According to the low-density regime of QCD, the quark
masses are not merely originated from the explicit breaking
of chiral symmetry. So, in the study of stability of quark mat-
ter, we can not neglect the dynamical mass induced by the
strong quark interaction with the medium. For low and mod-
erate density regime, we model the dynamical mass by the

density dependent quark mass given by[4], [5]

MD =
C

3nB
, (1)

where nB denotes the baryon density and C is a free parame-
ter that in the zero density limit (nB → 0) correspond to the
constant energy density in the DDQM model. For null current
masses of quarks u and d and for the current strange quark
mass, ms0, we have

m∗
u = m∗

d = MD,

m∗
s = ms0 +MD. (2)

The DDQM model establish the effective quark mass val-
ues in pertubative and nonperturbative regime through the de-
pendence with the dynamical mass MD. With this model two
characteristic situations for quark matter (the confinement of
quarks and asymptotic freedom regime)is reproduced when
the corresponing densities regime is considered.

We consider the quark matter in stellar medium, that can be
treated as a degenerate Fermi gas of u,d, s quarks and elec-
trons with chemical equilibrium maintained by the weak in-
teraction processes

d(s) ←→ u+ e− +νe

u+d ←→ u+ s.

If neutrinos freely scape from the medium, playing no role on
the beta equilibrium conditions, the processes displayed above
imply the following relation between the chemical potentials:

µu = µd −µe,

µd = µs. (3)

leaving only two independent chemical potentials for the ther-
modynamical description of the system.



Milva Orsaria et al. 21

When the temperature is small enough, the antiquarks are
statistically negligible and the density of fermions in the ab-
sence of interactions may be approximated by

Nq

V
= nq � 1

π2

(
µ2

q −m∗2
q

) 3
2 . (4)

where, q = u,d,s. The same expression is valid for the elec-
trons with a factor 1

3 in the right hand side.
The electromagnetic charge neutrality and the baryonic

density are

2nu −nd −ns −3ne = 0, (5)

nB =
1
3

(nu +nd +ns) , (6)

respectivelly. To solve the nonlinear system of Eqs. (5) and
(6) we replace the quark densities nq by its corresponding ex-
pressions in terms of chemical potentials of (3).

The pressure of the SQM in the DDQM model aplying to
the SQM case is given by the thermodynamic relation

P =
∂Ω/nB

∂(1/nB)

∣∣∣∣
T,{µq}

= nB
∂Ω
∂nB

∣∣∣∣
T,{µq}

−Ω, (7)

where Ω is the thermodynamical potential of the system. No-
tice that the first term on the right hand side is necessary to
make the pressure expression thermodynamically consistent
with the energy density given by

ε = ∑
q

εq = ∑
q

(−Pq +µqnq)−T
∂Ω
∂T

∣∣∣∣
nB,{µq}

, (8)

with the quark density defined by

nq = − ∂Ωq

∂µq

∣∣∣∣
T,nB

. (9)

At T = 0,the expressions for the quarks pressure and energy
density are

Pq =
gq

48π2 m4
q

[
F(xq)− C

nB

4
mq

G(xq)
]
, (10)

εq =
gq

48π2 m4
q

[
3H(xq)+

C
nB

4
mq

G(xq)
]
, (11)

where xq = [( µq
m∗

q
)2 −1]

1
2 .

In the above equations the auxiliary functions F , G and H,
are defined as

F(x) = x(x2 +1)1/2(2x2 −3)+3sinh−1(x), (12)

G(x) = x(x2 +1)1/2 − sinh−1(x), (13)

and

H(x) = x(x2 +1)1/2(1+2x2)− sinh−1(x). (14)

The contributions of free electrons to the thermodynamic po-
tential is given by

Ωe = − 1
12π2 µ4

e . (15)

From Eq.(10) we can see that there is a given value of bary-
onic density for which the pressure is null. At this density the
null pressure can be interpreted as a consequence of the attrac-
tive internal interaction among the constituents of the system,
simulated by the change of MD in the model. This null pres-
sure situation represents the quark matter confinement. On
other hand in Eq.(10), the increase of density leads to a pres-
sure expression of a free fermionic gas, characterizing the as-
ymptotic freedom.

III. THE CFL PHASE

In the CFL phase the Cooper pairs occup the same low-
est energy quantum state at zero temperature, leading to a
Bose condensate. In this configuration, the ground state of
quark matter becomes a color superconductor[6], [7], [8].
The main consequence of color superconductivity is the ap-
pearance of a nonzero energy gap in the one-particle energy,
εi =

√
(Ei −µ)2 +∆2, with ∆ being the CFL superconducting

gap.
The CFL phase is characterized by same density of quarks

u, d and s, so the charge neutrality is automatically satis-
fied. The gap ∆ can be calculated with perturbative QCD with
quark-gluon exchange[ref.], but in this work we consider it
like a free parameter whit characteristic values for the transi-
tion.
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FIG. 1: Pressures difference, PSQM −PCFL, versus baryonic chemical
potential, µB for ms0 = 170MeV . The difference between the pres-
sures is null for the critical value µB ∼ 482MeV , coinciding whit µc
showed in the Fig.(2-a) in which the phase transition occurs.
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FIG. 2: Critical chemical potential, µc, versus the C parameter of the DDQM model for differents ms0, fixing the gap in all the cases: a)
∆CFL=20 MeV, b) ∆CFL=15 MeV e ∆CFL=10 MeV.

The pressure in the CFL reads

PCFL = ∑
q

Pq +
3∆2µ2

π2 , (16)

where the first term gives the pressure of free quarks, with
equal number densities nu = nd = ns = (ν3 +2∆2µ)/π2, where
ν is the common Fermi momentum, given by

ν = 2µ−
√

µ2 +
m2

s

3
,

and µ = (µu + µd + µs)/3. The second term in Eq. (16) is
the contribution from the formation of the condensate to the
pressure.

IV. RESULTS AND CONCLUSIONS

We have applied the Gibbs conditions for construct the
phase transition between the two phases described in the last

section. The critical chemical potential is defined as the value
for which the pressure of the pure SQM phase equals the pres-
sure of the pure CFL phase. Besides the Gibbs conditions,
the local (neutral) electromagnetic charge of each phase and
the global baryonic charge conservation are simultaneously
required. In Fig.(1) we can see the difference of pressures
PSQM −PCFL as a function of the baryonic chemical potential,
for a given value of the gap and current strange quark mass,
ms0, showing the critical potential value.

The main result of this work consists in discuss the sensi-
tivity of the critical chemical potential of the phase transition
in the DDQM model parameter, C. In Fig.(2) we display the
critical chemical potential as a function of the parameter C, for
different values of the superconducting gap and ms0. The re-
sults show that the critical chemical potential is less sensitive
to the model parameter C than the gap and the current strange
quark mass. Consequently, it is very important to have a satis-
factory values for these last two external parameters in order
to obtain a more accurate discution for the SQM−CFL phase
transition.
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