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Cold and Dense Perturbative Yukawa Theory with Massive Fermions
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Recent results for the two-loop thermodynamic potential of QCD at finite density have shown that nonzero
quark mass corrections to the pressure are relevant and can dramatically affect the structure of compact stars.
Motivated by these findings, we consider a simple toy model – cold and dense Yukawa theory – to study the
effects of finite fermion masses on the pressure. The role of renormalization group running of the coupling and
mass is also discussed. Results within this simple model might be useful in the description of condensates in
the core of neutron stars.
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The role of finite quark masses in QCD thermodynamics
has received increasing attention in the last few years. Since
their effects might be relevant in the description of phenomena
associated with the chiral and the deconfinement transitions,
more realistic investigations of the phase structure of strong
interactions should incorporate them.

For finite temperature and vanishing chemical potential,
lattice simulations can now investigate the effect of nonzero
quark masses more reliably, and preliminary results for the
corrections to the behavior of the quark condensate and the
renormalized Polyakov loop with temperature have been ob-
tained [1]. Although none of these quantities is a true or-
der parameter under such conditions, they still provide useful
information on chiral symmetry breakdown and confinement
within the framework of effective field theories [2].

In the case of cold and dense QCD, it was generally be-
lieved that the effects of nonzero quark masses on the equation
of state were negligible, thereby yielding only minor correc-
tions to the mass-radius diagram of compact stars. At the time
of the first investigations of (strange) quark star structure [3],
the seminal computations of the thermodynamic potential for
cold QCD at finite chemical potential in perturbation theory to
∼α2

s had already been done [4–6]. Nevertheless, properties of
quark stars were then computed making use of the bag model
description of the equation of state with corrections only up
to order αs from perturbative QCD, a practice that remains in
most treatments to date [7]. In the massless case, however,
first-order corrections cancel out in the equation of state, so
that one ends up with a free gas of quarks modified only by
a bag constant. Including a finite quark mass for the strange
quark, for instance, brings a correction that was first estimated
to modify the equation of state by less than 5% and was es-
sentially ignored.

In fact, mass, as well as color superconductivity gap, con-
tributions to the pressure are supressed by two powers of
the chemical potential as compared to zero-mass interacting
quark gas terms. Therefore, assuming a critical chemical po-
tential for the chiral transition of the order of a few hundred
MeV, naively those terms should not matter. However, re-
cent results for the thermodynamic potential to two loops have
shown that corrections are sizable, and may dramatically af-
fect the structure of compact stars [8]. Moreover, the situation

in which mass (as well as gap) effects are significant corre-
sponds to the critical region for chiral symmetry breakdown
in the phase diagram of QCD. Hence, not only the value of
the critical chemical potential will be affected, but also the
nature of the chiral transition. In particular, if the latter is
strongly first-order there might be a new class of compact
stars, smaller and denser, with a deconfined quark matter core
[9]. Of course, contributions due to color superconductivity
[10] as well as chiral condensation [11] will also affect this
picture.

In this paper, we consider a simple toy model – cold and
dense Yukawa theory – to study the influence of fermion
masses on the pressure. The extremely simplified formal
structure allows for a detailed investigation of the features that
come about in higher-order contributions to the equation of
state, some of which will be preserved in the case of cold and
dense full QCD. Here, we present a two-loop calculation of
the pressure with massive fermions in the modified minimal
subtraction (MS) renormalization scheme, and discuss qual-
itatively the role to be played by the renormalization group
running of the coupling and the fermion mass. Higher-order
corrections and a thorough analysis of renormalization group
effects will be presented elsewhere [12].

The use of corrections ∼ α2
s with a modern definition of

the running coupling constant to model the non-ideality in the
equation of state for cold, dense QCD with massless quarks
[9] has shown that the renormalization group flow plays a key
role, a feature that is probably even more important in the case
of massive quarks [8]. In fact, as will be discussed below, the
introduction of a nonzero mass for the fermions brings the first
logarithmic contribution to the equation of state to two-loop
order, whereas in the massless case such corrections appear
only at three loops.

Although our framework is assumedly very simplified, our
results could be useful not only to provide insight for in-
medium QCD phenomena, but also in many different applica-
tions, since Yukawa-type couplings appear in several contexts
as will be discussed later.

In what follows, we consider a gas of massive fermions
whose interaction is mediated by a real scalar field, φ, with
an interaction Lagrangian of the Yukawa form:

LI = g ψψφ , (1)
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where g is the coupling constant.
Although we are interested here in the limit in which the

temperature vanishes, it is convenient to work initially with
finite temperature and density. Within the imaginary-time
framework [13], the time dimension is compactified and as-
sociated with temperature (T ). Furthermore, imposition of
periodicity or anti-periodicity of the fields in the imaginary
time reflects the spin-statistics theorem, characterizing, re-
spectively, bosons (B) or fermions (F). As a consequence,
only specific discrete Fourier modes depending on the sta-
tistical nature of the field are allowed. Therefore, as is cus-
tomary in finite-temperature field theory, integrals over the
zeroth four-momentum component are mapped into discrete
sums over Matsubara frequencies, denoted by ωB

n = 2nπT and
ωF

n = (2n+1)πT , with n integer. To take finite density effects
into account, the chemical potential µ is included, represent-
ing, in practice, a shift in the zeroth component of the fermi-
onic four-momentum.

From the partition function written in terms of the euclidean
action SE , Z(T,µ) = Tr exp(−SE), one derives the perturba-
tive series for the pressure P:

P =−T
V

lnZ =−T
V

lnZ0− T
V

ln

[
1+

∞

∑
l=1

(−1)l

l!
〈Sl

I〉0
]

, (2)

where V is the volume of the system, Z0 is the partition func-
tion of the free theory and SI represents the interaction action.
In our case, Wick’s theorem implies that only even powers
in the above expansion survive. Therefore, the perturbative
method results in a power series of αY ≡ g2/4π [15]. Up to
O(αY ), the first non-trivial contributions to the pressure are
given by the free massive gas term, P0, and the “exchange di-
agram”, P1.

Using the Feynman rules in the imaginary time formalism
at finite temperature [13], one can compute the pressure of a
gas of interacting massive fermions order-by-order in pertur-
bation theory. The free gas contribution for fermions of mass
m has the form:

lim
T→0

P0 = lim
T→0

∑
∫

P
Tr ln[6P−m] = (3)

=
1

12π2

[
µp f

(
µ2− 5

2
m2

)
+

3
2

m4 ln
(

µ+ p f

m

)]
,

where the trace is performed over the Dirac structure, Pµ =
(iωF

n +µ,p) is the fermionic four-momentum, p f =
√

µ2−m2

is the Fermi momentum, and we use the following notation for
the sum-integrals:

∑
∫

= T ∑
n

∫ d3p
(2π)3 . (4)

The O(αY ) correction is given by the exchange term [13, 14]:

P1 =−2παY ∑
∫

P,Q,K
Tr

[
(2π)3βδ(4)(K−P+Q)

(6P−m)K2(6Q−m)

]
, (5)

where β = 1/T and Kµ = (iωB
l ,k) is the bosonic four-

momentum.

Resorting to a particular representation of the Dirac delta
function [14], one can rewrite the Matsubara sums in (5) in
a decoupled form and solve them independently via equiva-
lent contour integrations. We obtain, performing all the sum-
integrals explicitly, the following renormalized result in the
limit T → 0:

lim
T→0

P1 = − αY

4π3

{
3
4

[
µp f −m2 ln

(
µ+ p f

m

)]2

− p4
f

+ m2
[

3+2ln
Λ2

m2

][
µp f −m2 ln

(
µ+ p f

m

)]}
,

(6)

where Λ is the renormalization scale in the MS scheme.
It is interesting to notice that the inclusion of mass for the

fermions brings the presence of logarithmic corrections one
order down in αY . In massless QCD, for instance, one has
∼αs corrections at two loops and∼{α2

s ,α2
s lnαs,α2

s ln(Λ/µ)}
at three loops [9]. However, in the massive case one finds not
only ∼ αs terms, but also a contribution ∼ m2αs ln(Λ/µ) at
two loops, as can be seen above. In our case, this feature
will be important when we incorporate renormalization group
running of αY and m.
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FIG. 1: Pressure normalized by the free fermion gas pressure as a
function of the fermion chemical potential for Λ = 2µ and different
values of the fermion mass.

In Fig. 1 we illustrate the effect of modifying the mass on
the total pressure to O(αY ), P = P0 + P1, normalized by the
pressure of the free gas, as a function of the fermionic chem-
ical potential. The choice of range for µ, and accordingly for
the masses, are inspired by the scales found in the case of
QCD [8]. In the same vein, the coupling is fixed to αY = 0.3.
It is clear from the figure that mass corrections bring signifi-
cant changes to the pressure, even in the absence of renormal-
ization group (RG) running for the coupling and the mass. On
the other hand, to perform a RG analysis it is more convenient
to plot P vs. µ and look at the small µ region [12], given the
sign of the beta function for this theory.

Fig. 2 displays the dependence on the renormalization scale
Λ. The values chosen are motivated by the ones which appear
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FIG. 2: Pressure normalized by the free fermion gas pressure as a
function of the fermion chemical potential for m = 100 MeV and
different values of the renormalization scale Λ.

in QCD, as before. Although the effects of varying Λ appear
to be relatively small, it would be premature to conclude that
this feature will remain after implementing the RG flow. In
fact, the results presented in Fig. 2 most probably underes-
timate the scale dependence of the full correction, since not
only the coupling but also the mass will run with Λ. In the
Yukawa theory, in contrast to QCD, the effect will become
larger as we increase the chemical potential. For fixed cou-
pling, larger values of Λ yield larger modifications in the pres-
sure. However, after the inclusion of RG running, this behav-
ior can be mantained, as should be the case here, or become
the opposite, as is the case in QCD, depending on the sign of
the beta function. Since the Λ-dependence comes from the
term ∼ m2αY ln(Λ/m) in (6), there will be a competition be-
tween the behavior of the renormalization scale Λ and that of
m and αY as functions of µ.

Recently, finite fermion mass corrections were shown to af-
fect significantly the cold and dense equation of state for QCD
[8], despite the previous disbelief in its relevance. In this

work, we investigated further these effects in the context of
the Yukawa theory. The first non-trivial correction to the pres-
sure of a free gas of massive fermions at finite density was
calculated. Even at two-loop order, as discussed before, mass
effects bring into play logarithmic corrections originated in
the MS subtraction scheme. As usual, they bring about a non-
physical dependence on the renormalization scale Λ, since one
has to cut the perturbative series at some order. Higher-order
computations in this framework are in progress [12], and will
give a better handle on the choice of this scale, which in our
case should be a function of µ and m. On the other hand,
one can also choose the scale in a phenomenological way in
a given model, imposing physical constraints to the equation
of state, as was done in Ref. [9] to model the non-ideality of
QCD at finite density with massless quarks.

A detailed renormalization group flux analysis is an essen-
tial step towards understanding the role of fermion masses in
the equation of state at different energy scales and is also un-
der current development [12]. These results may show that
the modifications remain stable through the perturbative ex-
pansion and contribute to establish the importance of nonzero
fermion mass corrections in high-density strongly interact-
ing media. In the framework of effective theories, in which
Yukawa-type couplings appear frequently, corrections due to
finite fermion masses might yield appreciable deviations from
the conventional results and affect different physical systems.
If one also considers temperature effects, several applications
are found from the realms of the electroweak phase transition
in the early universe to the formation of condensates in the
core of neutron stars.
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