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Semiclassical Approximation for the Partition Function in QFT
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In this paper we discuss the semiclassical approximation for the thermodynamics of scalar fields. We con-
struct a semiclassical propagator in terms of two solutions of an ordinary differential equation. The main result
is an analytic (non-perturbative) expression for the partition function written in terms of known quantities.
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I. INTRODUCTION

Semiclassical methods are widely used in many areas of
physics. In one-dimensional quantum mechanics, strong re-
sults on ordinary differential equations lead to a simple ex-
pression for the semiclassical propagator in terms of the clas-
sical solution. Using the semiclassical propagator, one can
construct the whole semiclassical series, either in quantum
mechanics[1] or in quantum statistical mechanics[2].

Simple methods can also be applied in higher-dimensional
quantum mechanical systems with radial or transverse
symmetry[3]. Even in quantum field theories, where one has
to deal with partial differential equations, there are relevant
examples[4–6] where the semiclassical propagator can be ob-
tained using elementary methods[7].

In this paper, we discuss a semiclassical approximation
for the thermodynamics of scalar fields. The method is es-
sentially non-perturbative[8]. Usual perturbative calculations
in quantum field theories at finite temperature are plagued
with infrared divergencies at high (and physical relevant) val-
ues of the coupling constant[9, 10]. Involved methods have
been used to circumvent that problem and to bring the valid-
ity of perturbation results closer to experimental and lattice
data[11, 12]. In QCD, resummation techniques work down
to around 2Tc, where Tc is the deconfinement phase transition
temperature[11].

Here, we obtain an analytic expression for the partition
function in terms of two solutions of an ordinary differential
equation determined by a time-dependent classical field. The
paper is organized as follows: in Section II we present the
usual expansion around a classical solution. Difficulties in im-
plementing that expansion lead us to propose an expansion in
fluctuations of the boundary conditions of the classical equa-
tions of motion. The whole procedure is presented in Section
III. Finally, Section IV is reserved to conclusions and final
remarks.

II. FLUCTUATIONS AROUND A CLASSICAL SOLUTION

The starting point is the expression of Z in terms of path
integrals :

Z =
∫

[Dϕ(x)]
∫

φ(−β/2,x)=φ(β/2,x)=ϕ(x)

[Dφ(τ,x)]e−SE [φ] , (1)

where SE [φ] is the euclidean action of the field:

SE [φ] =

β∫

0

dτd3x

[
1
2

∂µφ∂µφ+
1
2

m2φ2 +U(φ)
]

. (2)

Assume for the time being that we know the solution φc(τ,x)
of the classical equation of motion :

(−¤+m2)φc(τ,x)+U ′ (φc(τ,x)) = 0 ,

φc(−β/2,x) = φc(β/2,x) = ϕ(x) , (3)

where ¤ = ∂2
τ +∇2. The functional integration over φ(τ,x) in

eq. (1) is dominated by field configurations in the vicinity of
that classical solution. We introduce fluctuations: φ(τ,x) ≡
φc(τ,x) + η(τ,x), and then, expand the euclidean action to
second order in η(τ,x) :

SE [φ]≈ SE [φc] + (4)

+
1
2

β∫

0

dτ1dτ2d3x1d3x2
δ2SE [φ]

δφ(τ1,x1)δφ(τ2,x2)

∣∣∣∣
φ=φc

×

×η(τ1,x1)η(τ2,x2) .

The gaussian functional integration over η can be performed
and the result is formally given by a determinant:

Z ≈
∫

[Dϕ(x)] e−SE [φc]
[

det
(

δ2SE

δφ1δφ2

)]−1/2

. (5)

The integrand is an implicit functional of ϕ(x) through the
dependence of the classical solution φc on the boundary con-
ditions in eq. (3). In order to complete the semiclassical cal-
culation of Z, one has to integrate over ϕ(x). This step will not
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be feasible, in general. Besides that, the only integral over ϕ
that we are able to perform is a Gaussian integral. In order to
avoid these problems, we are forced to perform some further
approximations.

III. PERTURBATION OF THE BOUNDARY CONDITIONS

We suppose that we can solve equation (3) for the subset of
boundary configurations which are uniform in space. In other
words, there are known functions φ0(τ) such as

(−∂2
τ +m2)φ0(τ)+U ′ (φ0(τ)) = 0 ,

φ0(−β/2) = φ0(β/2) = ϕ0 . (6)

We now perturb the boundary condition. We expand the clas-
sical solution φc (and then the classical action SE [φc]) as

ϕ(x) = ϕ0 +ξ(x) , (7)

and the solution of the classical equation of motion can there-
fore be expanded in a similar manner :

φc(τ,x) = φ0(τ)+φ1(τ,x)+φ2(τ,x)+ · · · , (8)

where φn is of order n in ξ.
It is possible to show that, in order to find the classical ac-

tion SE [φc] at order two in the fluctuation ξ(x) of the boundary
(corresponding to a gaussian integral over ξ(x)), it is enough
to obtain the classical solution φc at order one in ξ(x). Also,
for the integration over ξ(x) in eq. (5) to be a Gaussian in-
tegral, we need to evaluate the determinant at lowest order in
ξ(x), i.e. at order 0.

A. Correction to φc due to boundary fluctuations

The next step is to find the correction φ1(τ,x) to the classi-
cal solution φc. In our approximation, we obtain the following
(linearized) equation for φ1 :

∂2
τφ1 +∇2

xφ1 = m2φ1 +U ′′ (φ0(τ)))φ1 , (9)

with the boundary condition: φ1(−β/2,x) = φ1(β/2,x) =
ξ(x). Using elementary calculus one can show that the first
order correction to the classical solution will be, in Fourier
space:

φ1(τ,k) = ξ(k)
[
∂τ′G(τ,τ′,k)

]τ′=β/2
τ′=−β/2 , (10)

with a propagator that obeys:
[
∂2

τ′ − (k2 +m2)−U ′′ (φ0(τ′)
)]

G(τ,τ′,k) = δ(τ−τ′) , (11)

and G(τ,−β/2,k)= G(τ,β/2,k)= 0. From the knowledge of
two linearly independent solutions ηa,b of the homogeneous
linear differential equation associated to (11) it is fairly easy
to determine the propagator:

G(τ,τ′;k) =
Ω(β/2,max(τ,τ′);k2)Ω(min(τ,τ′),−β/2;k2)

W Ω(β/2,−β/2;k2)
(12)

where W is the wronskian of {ηa,ηb} and

Ω(τ,τ′;k2)≡ ηa(τ;k2)ηb(τ′;k2)−ηb(τ;k2)ηa(τ′;k2) .
(13)

The determinant that appears in eq. (5), restricted to the
space of functions that vanish at τ = −β/2 and τ = β/2, can
be built (to order 0 in ξ(x)) entirely from the knowledge of
the classical solution φ0(τ). We obtain the following non-
renormalized result:

detA = exp
∫ d3k

(2π)3 log
(

Ω(−β/2,β/2;k2)
W

)
. (14)

B. Integration of the boundary fluctuations

The final analytic step is the calculation of the functional in-
tegral over the fluctuation ξ(x) of the boundary. Before doing
this integration, we must expand the classical action SE [φc] to
quadratic order in ξ, using the expansion of eq. (8) for φc:

SE [φc]≈ SE [φ0]+δ2SE [φc,φ0] (15)

where

δ2SE [φc,φ0] =
1
2

∫ d3k
(2π)3 ξ(−k)ξ(k)C(k)

and C(k) = ∂τ
(
∂τ′G(τ,τ′,k)

)
evaluated at the boundaries.

Therefore, the functional gaussian integral over ξ(x) would
lead to the following result:

e−SE [φ0]
√

∏
k

C(k)
, (16)

that can be calculated in terms of ηa and ηb.
Collecting everything together, we can write the following

formula for the non-renormalized partition function:

Z(β)≈
+∞∫

−∞

dϕ0 e−SE [φ0]
√

C(0)×

×exp
{
−βV

∫ d3k

(2π)3
1

2β
log

[
C(k)

Ω(−β/2,β/2;k2)
W

]}
,

(17)

where the factor
√

C(0) arises from the fact that we do not in-
tegrate over the zero mode ξ(k = 0), since the uniform com-
ponent goes into ϕ0.

For the free theory the previous expression is exact. For
non-trivial cases it is a non-perturbative approximation.

IV. CONCLUSION AND FINAL REMARKS

We have obtained a simple expression for the partition func-
tion of a scalar field theory in a semiclassical approximation.
The ingredients have a closed form expression in terms of
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classical solutions for boundary conditions homogeneous in
space, and it is in principle straightforward to finish the calcu-
lation of Z numerically.

In the present, we are finishing the particular case of the
λφ4 interaction, where we can build ηa and ηb analytically.
We hope to reproduce hard-thermal loop results[11, 12] for
the pressure in the limit of high temperature.
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