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In our recent works we derived a chiral O(q4) two-pion exchange nucleon-nucleon potential (TPEP) formu-
lated in a relativistic baryon (RB) framework, expressed in terms of the so called low energy constants (LECs)
and functions representing covariant loop integrations. In order to facilitate the use of the potential in nuclear
applications, we present a parametrized version of our configuration space TPEP.
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I. INTRODUCTION

The one-pion exchange NN potential (OPEP) is simple,
has been well established long ago, and dominates completely
partial waves with orbital momentum L > 5. The two-pion
exchange potential (T PEP), on the other hand, is rather com-
plex and has become free of important ambiguities only in the
1990s, after the systematic use of chiral symmetry in its theo-
retical description [1-11].

Chiral perturbation theory is based on the existence of a
characteristic scale g, set by both pion four-momenta and nu-
cleon three-momenta, such that g < 1 GeV. Due to this tech-
nique, nowadays one understands rather well the internal hier-
archies of the NN potential in terms of chiral layers. Leading
terms of the chiral TPEP are of order O(¢*) and expansions
which go up to O(g*) are already available. One of them was
produced recently by our group [10, 11]. We departed from
a relativistic Lagrangian and evaluated the relevant Feynman
diagrams covariantly, without resorting to heavy baryon ap-
proximations. The so obtained 7-matrix was then transformed
into a potential, expressed in terms of covariant loop integrals
and observable parameters. Without loss of generality, one
may choose these parameters to be either the subthreshold co-
efficients extracted from 7N scattering [12] or the low-energy
constants (LECs) present in the effective Lagrangian.

The research on the T PE P performed in the last decade has
set its conceptual foundations on a rather solid basis, com-
parable to that of the OPEP in the late sixties. On the other
hand, the TPEP depends on several LECs, which must be
extracted from either TN scattering data or direct fits of NN
phase shifts. In general, this last kind of procedure tends to
be computationally heavy, for theoretical results are usually
given as cumbersome expressions. In order to make applica-
tions easier, in this work we present a parametrized version
of our O(g*) relativistic configuration space TPEP, which is
numerically accurate for distances larger than 1 fm. It is based
on the theoretical expressions derived in Ref. [11].

II. THEORETICAL POTENTIAL

The O(g*) relativistic expansion of the TPEP produced in
refs.[10, 11] was based on the evaluation of three families of
diagrams given in Fig. 1. The first of them involves only pion
and nucleon degrees of freedom into single loops and corre-
sponds to the minimal realization of chiral symmetry[3]. It
includes the subtraction of the iterated OPEP and yields the
terms in the profile functions given below which are propor-
tional to just g4/ fx, g%/ fa or 1/f# Terms proportional to
1/ f,?, on the other hand, come from two-loop processes, either
in the form of #-channel contributions from the second family
or s and u-channel terms embodied in the subthreshold coeffi-
cients of the third family. Finally, the third group of diagrams
includes chiral corrections associated with other degrees of
freedom, hidden within the LECs ¢; and d;, and gives rise to
contributions which are proportional to either (LEC)/f2 or
(LEC)?/f.

The configuration space potential has the isospin structure

Vi) =vir)+ s v(r), (1

with
VE(r) = Vg + Vs Qus+ Vi Qr + Vs Qss + V5 Qo, ()
and Q5= L-(O'(l) +a(2))/2, Qr=3cW.p g@.p—gl).
0@, Qgs=0c).c®). The form of the operator £ in config-
uration space is highly non-local and can be found in ref.[13].
The radial components of the potential are expressed in

terms of the following dimensionless profile functions U;"
with/ =C, LS, T, SS:

Vo(r) = T U (x), 3)
2
TSN o) O
Vig(r) = 1 ) xdeLS(x)’ 4)
2 2
oy _ M (4 Ld)oo
VT (r) =1 m2 |:dx2 xdx:| UT (‘x)7 (5)

Vfg(r) = 1

2 2
2 24
+ ﬁ |:dx2+xdx:| U;S(X), (6)



76

C. A. da Rocha, R. Higa and M. R. Robilotta

+ J \ + { ) I
= = = = e = = = = = =
. . . ' . 1\:./:: . }l:; | |
—~ —~ —~ —~ —~ P ~ p - - p -
P S T Y (R M
- 5 - - p - - - - - 5 -

FIG. 1: Dynamics of the relativistic TPEP. The small black dots represent vertices from LT(EI), the big shaded dots, the 7w scattering amplitude,
and the big black dots, the TN subthreshold coefficients. The latter contains implicitly other two loop contributions, as well as vertices from

L,ilz\; and LT(;V) .

where T+ =3 and 1~ = 2.

Therefore, the configuration space potential is written in
terms of numerical coefficients which multiply dimension-
less functions arising form the Fourier transforms of Feyn-
man loop integrals. The former are combinations of external
parameters representing the pion and nucleon masses, u and
m, respectively, the pion decay constant fr, the axial coupling
constant g4, and the LECs ¢; and d;. The latter, denoted by
U,i, depend on just y, m and x = ur.

III. PARAMETRIZED POTENTIAL

We keep the external quantities as free and parametrize the
dimensionless Feynman loop integral functions U, Ii and their
derivatives in terms of Z; = (G;, Hj, I;). They have the follow-
ing structure

—2x

4
Z=bo (£) w0

which is a combination of an exponential function times a
polynomial with coefficients y;. This parametrization is more
than 1% accurate in the range 0.8 fm < r < 10 fm.

Using the definition ot = u/m, the profile functions are writ-
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The fitted functions Z; = (G;, H;, I;) given by eq. (7) can be

re-written as
4 —2x
H M e
Z,= — | Ps—
© (4m)2 (fn) S

where PZi = (PG,'v PH,‘, Pli)
mial, which is given by

(16)
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For instance, the parametrized function I3 is given by:
o p\*| 28.6452 101827
8 = (4m)3/2 Fr 32 B2
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R R ) ] 2 (42)

IV. CONCLUSIONS

Nowadays, the asymptotic expressions for the chiral TPEP
have the status of theorems and are written as sums of chiral
layers, with little model dependence. These asymptotic func-
tions were our guide to guess what were the correct choice
of the parametrized functions to fit the potential profile func-
tions.

The parametrized profile functions given in the preced-
ing section depend explicitly on four well known quantities,
namely m, u, g4, fr, and on the less known LECs ¢; and d;.
Therefore, the latter may be extracted from fits to data. When
doing this, however, one has to bear in mind that, as discussed
in Ref. [11], the influence of the LECs over the profile func-
tions is rather uneven. Indeed, their influence over VCJr > Viss
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Vi, and Vg is rather strong, but barely perceptible in V.,
Vs, Vit and V.

We conclude saying that the various channels of the po-
tential are clearly dominated by either nucleonic (minimal
model) or non-nucleonic (LECs) degrees of freedom, mainly
because we found the role of intermediate 7w scattering (two-
loops) to be small.
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