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Brazilian Relativistic O(q4) Two-Pion Exchange Nucleon-Nucleon Potential: Parametrized Version
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In our recent works we derived a chiral O(q4) two-pion exchange nucleon-nucleon potential (TPEP) formu-
lated in a relativistic baryon (RB) framework, expressed in terms of the so called low energy constants (LECs)
and functions representing covariant loop integrations. In order to facilitate the use of the potential in nuclear
applications, we present a parametrized version of our configuration space TPEP.

Keywords: Two-pion exchange; Nucleon-nucleon potential; Relativistic baryon; Chiral symmetry; Chiral perturbation theory

I. INTRODUCTION

The one-pion exchange NN potential (OPEP) is simple,
has been well established long ago, and dominates completely
partial waves with orbital momentum L ≥ 5. The two-pion
exchange potential (T PEP), on the other hand, is rather com-
plex and has become free of important ambiguities only in the
1990s, after the systematic use of chiral symmetry in its theo-
retical description [1–11].

Chiral perturbation theory is based on the existence of a
characteristic scale q, set by both pion four-momenta and nu-
cleon three-momenta, such that q < 1 GeV. Due to this tech-
nique, nowadays one understands rather well the internal hier-
archies of the NN potential in terms of chiral layers. Leading
terms of the chiral T PEP are of order O(q2) and expansions
which go up to O(q4) are already available. One of them was
produced recently by our group [10, 11]. We departed from
a relativistic Lagrangian and evaluated the relevant Feynman
diagrams covariantly, without resorting to heavy baryon ap-
proximations. The so obtained T -matrix was then transformed
into a potential, expressed in terms of covariant loop integrals
and observable parameters. Without loss of generality, one
may choose these parameters to be either the subthreshold co-
efficients extracted from πN scattering [12] or the low-energy
constants (LECs) present in the effective Lagrangian.

The research on the T PEP performed in the last decade has
set its conceptual foundations on a rather solid basis, com-
parable to that of the OPEP in the late sixties. On the other
hand, the T PEP depends on several LECs, which must be
extracted from either πN scattering data or direct fits of NN
phase shifts. In general, this last kind of procedure tends to
be computationally heavy, for theoretical results are usually
given as cumbersome expressions. In order to make applica-
tions easier, in this work we present a parametrized version
of our O(q4) relativistic configuration space T PEP, which is
numerically accurate for distances larger than 1 fm. It is based
on the theoretical expressions derived in Ref. [11].

II. THEORETICAL POTENTIAL

The O(q4) relativistic expansion of the TPEP produced in
refs.[10, 11] was based on the evaluation of three families of
diagrams given in Fig. 1. The first of them involves only pion
and nucleon degrees of freedom into single loops and corre-
sponds to the minimal realization of chiral symmetry[3]. It
includes the subtraction of the iterated OPEP and yields the
terms in the profile functions given below which are propor-
tional to just g4

A/ f 4
π , g2

A/ f 4
π or 1/ f 4

π . Terms proportional to
1/ f 6

π , on the other hand, come from two-loop processes, either
in the form of t-channel contributions from the second family
or s and u-channel terms embodied in the subthreshold coeffi-
cients of the third family. Finally, the third group of diagrams
includes chiral corrections associated with other degrees of
freedom, hidden within the LECs ci and di, and gives rise to
contributions which are proportional to either (LEC)/ f 4

π or
(LEC)2/ f 4

π .
The configuration space potential has the isospin structure

V (r) = V +(r)+τ (1)·τ (2) V−(r) , (1)

with

V±(r) = V±
C +V±

LS ΩLS +V±
T ΩT +V±

SS ΩSS +V±
Q ΩQ , (2)

and ΩLS = L·(σ(1) +σ(2))/2, ΩT = 3σ(1)·r̂ σ(2)·r̂−σ(1)·
σ(2), ΩSS = σ(1)·σ(2). The form of the operator ΩQ in config-
uration space is highly non-local and can be found in ref.[13].

The radial components of the potential are expressed in
terms of the following dimensionless profile functions U±

I
with I = C, LS, T, SS:

V±
C (r) = τ± U±

C (x) , (3)

V±
LS(r) = τ±

µ2

m2
1
x

d
dx

U±
LS(x) , (4)

V±
T (r) = τ±

µ2

m2

[
d2

dx2 −
1
x

d
dx

]
U±

T (x) , (5)

V±
SS(r) = −τ±

µ2

m2

[
d2

dx2 +
2
x

d
dx

]
U±

SS(x) , (6)
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FIG. 1: Dynamics of the relativistic TPEP. The small black dots represent vertices from L(1)
πN , the big shaded dots, the ππ scattering amplitude,

and the big black dots, the πN subthreshold coefficients. The latter contains implicitly other two loop contributions, as well as vertices from
L(2)

πN and L(3)
πN .

where τ+ = 3 and τ− = 2.

Therefore, the configuration space potential is written in
terms of numerical coefficients which multiply dimension-
less functions arising form the Fourier transforms of Feyn-
man loop integrals. The former are combinations of external
parameters representing the pion and nucleon masses, µ and
m, respectively, the pion decay constant fπ, the axial coupling
constant gA, and the LECs ci and di. The latter, denoted by
U±

I , depend on just µ, m and x≡ µr.

III. PARAMETRIZED POTENTIAL

We keep the external quantities as free and parametrize the
dimensionless Feynman loop integral functions U±

I and their
derivatives in terms of Zi ≡ (Gi, Hi, Ii). They have the follow-
ing structure

Zi =
µ

(4π)5/2

(
µ
fπ

)4 [
∑γi xn] e−2x

x2 . (7)

which is a combination of an exponential function times a
polynomial with coefficients γi. This parametrization is more
than 1% accurate in the range 0.8 fm ≤ r ≤ 10 fm.

Using the definition α≡ µ/m, the profile functions are writ-

ten as

V +
C =

{
3α2

2

[
(4mc1)2 H1 +

1
5

(mc2)2
(

4H2−H3

)

+ (2mc3)2
(

H1−H3

)
− 16

3
m2c1 c2 H2

− 16m2c1 c3

(
2H2−H1

)
+

4
3

m2c2 c3

(
2H2−H3

)]}

−
(gA

2

)2
3α

{
8mc1

[
I2−2α(H1−H2)

]
+

2mc2

3
α

×
(

3H1−2H3

)
−4mc3

[
I1− I3 +α

(
2H1−2H2−H3

)]}

+
(gA

2

)4
3

{
G1 +

(
µ

π fπ

)2
[

I6 +
π
4

(
4 I3 +6 I2−7 I1

)]}

+
(gA

2

)6
12

(
µ

π fπ

)2 (
I1− I3

)
(8)

V +
LS =−

(gA

2

)2
16α2 mc2 H5 +

(gA

2

)4
6αG2 , (9)

V +
T =

(gA

2

)2 4α2

3

(
m2 d̃14−m2 d̃15

)(
H3−3H5

)

−
(gA

2

)4
G3−

(gA

2

)6
(

µ
π fπ

)2 (
2H3−H5

)
(10)

V +
SS = −

(gA

2

)2 8α2

3

(
m2 d̃14−m2 d̃15

)
H3

+
(gA

2

)4
2G4 +

(gA

2

)6
(

µ
π fπ

)2 4
3

H3 (11)
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V−
C =

H2

12
− µ2 H8

π2 f 2
π

+α2

[
mc4

6
H3 +

2m2

3
(d1 +d2)

×
(

2H2−H3

)
+

m2d3

5

(
4H2−H3

)
+

8
3

m2d5 H2

]

+
(gA

2

)2
{[

2
3

(
5H2−3H1

)
−α

(
I1− I3

)

− α2
(

2H1−2H2−H3

)]

+
α2

3

[
2mc4

(
5H3−12H1 +12H2

)

− 8m2(d1 +d2)
(

5H3 +2H2−6H1

)

− 4m2d3

5

(
7H3−8H2

)
+32m2d5

(
5H2−3H1

)]

−
(

µ
π fπ

)2

H7

}
+

(gA

2

)4
[

2G5−
(

µ
π fπ

)2

H6

]

−
(gA

2

)6
(

µ
π fπ

)2

H9 (12)

V−
LS =

α2

24
(3+16mc4)H5−

(gA

2

)2
[

2α I4

+ α2
(

1− 40
3

mc4

)
H5 +8α2mc4 H4

]

+
(gA

2

)4
αG6 (13)

V−
T = − α2

144
(1+4mc4)

2
(

H3−3H5

)
+

+
(gA

2

)2 α
36

(1+4mc4)
{

6 I5 +4α

×
[(

2H3−3H1 +3H2

)
−3

(
8H5−3H4

)]}

−
(gA

2

)4
[

α
3

G7 +
(

µ
π fπ

)2 1
24

(
I7−2π I5

)]

+
(

µ
π fπ

)2 (gA

2

)6 2I5

3
(14)

V−
SS =

α2

72
(1+4mc4)

2 H3−
(gA

2

)2 α
18

(1+4mc4)

×
[

6 I3 +4α
(

2H3−3H1 +3H2

)]

−
(gA

2

)4
[

2α
3

G8 +
1
12

(
µ

π fπ

)2 (
I8−2π I3

)]

+
(gA

2

)6
(

µ
π fπ

)2 4I3

3
(15)

The fitted functions Zi ≡ (Gi, Hi, Ii) given by eq. (7) can be
re-written as

Zi =
µ

(4π)5/2

(
µ
fπ

)4

PZi

e−2x

x2 , (16)

where PZi ≡ (PGi , PHi , PIi) = ∑γi xn is the adjusted polyno-
mial, which is given by

PH1 = − 1
x1/2 −

3
16x3/2 +

15
512x5/2 −

105
8192x7/2

+
0.0069211

x9/2 − 0.002031054
x11/2 (17)

PH2 = +
3

2x3/2 +
45

32x5/2 +
315

1024x7/2 −
0.050879

x9/2

+
0.0105639

x11/2 (18)

PH3 = +
6

x3/2 +
165

8x5/2 +
8715

256x7/2 +
27.45483

x9/2

+
5.43256

x11/2 (19)

PH4 = +
2

x3/2 +
23

8x5/2 +
153

256x7/2 −
0.0723934

x9/2 (20)

PH5 = − 3
x5/2 −

129
16x7/2 −

3555
512x9/2 −

1.33605
x11/2 (21)

PH6 = −1.61597
x1/2 − 7.96919

x3/2 − 13.8967
x5/2 +

12.1099
x7/2

+
44.0911

x9/2 +
24.1372

x11/2 (22)

PH7 =
0.08333

x1/2 − 0.46679
x3/2 − 2.63262

x5/2 − 0.52125
x7/2

+
3.12711

x9/2 +
2.16473

x11/2 (23)

PH8 =
0.0104167

x3/2 − 0.113031
x5/2 − 0.106544

x7/2

+
0.00197044

x9/2 +
0.0394014

x11/2 (24)

PH9 =
1.33333

x1/2 +
6.65
x3/2 +

19.3609
x5/2 +

30.6421
x7/2

+
24.4818

x9/2 +
4.86312

x11/2 (25)

PG1 = 2.83823− 7.200711
x

+
38.9637

x2 − 55.5164
x3

+
47.2443

x4 − 16.2395
x5 (26)
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PG2 = −6.12315
x

− 28.1422
x2 − 30.2813

x3 +
0.023458

x4

− 15.8996
x5 +

7.18869
x6 (27)

PG3 = 0.5579+
17.1039

x
+

16.8038
x2 +

9.94755
x3

+
3.40171

x4 − 2.7544
x5 (28)

PG4 = 0.569624+
15.9429

x
− 4.26031

x2 +
15.6445

x3

− 5.06641
x4 (29)

PG5 = −0.217221x−9.98415− 4.662
x

− 36.9761
x2

+
13.4087

x3 − 6.21047
x4 (30)

PG6 = +
7.90985

x
+

55.9568
x2 +

86.3242
x3 +

66.9540
x4

− 29.5680
x5 +

11.8985
x6 (31)

PG7 = 1.69219+
25.5612

x
+

6.53589
x2 +

160.459
x3

− 169.567
x4 +

120.612
x5 − 36.7881

x6 (32)

PG8 = 1.7661+
21.2122

x
− 9.87710

x2 +
116.454

x3

− 144.344
x4 +

103.063
x5 − 30.9265

x6 (33)

PI1 = 0.000483761x2−0.0226386x+1.53346

+
0.0595627

x
− 0.0913580

x2 +
0.0291743

x3 (34)

PI2 = −0.000483761x2 +0.0218747x−1.50179

− 3.31974
x

− 1.22868
x2 +

0.0773095
x3 (35)

PI3 = +0.242214− 8.87827
x

− 6.47733
x2 − 30.5206

x3 (36)

PI4 = −0.00147946
x

+
2.99191

x2 +
6.86185

x3

+
1.82098

x4 (37)

PI5 = +0.242214− 8.87383
x

− 15.4531
x2 − 51.1062

x3

− 5.46294
x4 (38)

PI6 = −0.07382x3/2 +2.35815x1/2 +
12.5677

x1/2

+
26.0361

x3/2 +
39.5975

x5/2 − 14.1886
x7/2 − 49.6305

x9/2 (39)

PI7 = −6.82062
x3/2 − 39.5219

x5/2 − 11.2626
x7/2 +

48.2308
x9/2 (40)

PI8 = −28.6452
x3/2 − 101.827

x5/2 +
28.3771

x7/2 +
99.2609

x9/2 (41)

For instance, the parametrized function I8 is given by:

I8 =
µ

(4π)5/2

(
µ
fπ

)4
[
− 28.6452

x3/2 − 101.827
x5/2

+
28.3771

x7/2 +
99.2609

x9/2

]
e−2x

x2 , (42)

IV. CONCLUSIONS

Nowadays, the asymptotic expressions for the chiral TPEP
have the status of theorems and are written as sums of chiral
layers, with little model dependence. These asymptotic func-
tions were our guide to guess what were the correct choice
of the parametrized functions to fit the potential profile func-
tions.

The parametrized profile functions given in the preced-
ing section depend explicitly on four well known quantities,
namely m, µ, gA, fπ, and on the less known LECs ci and di.
Therefore, the latter may be extracted from fits to data. When
doing this, however, one has to bear in mind that, as discussed
in Ref. [11], the influence of the LECs over the profile func-
tions is rather uneven. Indeed, their influence over V +

C , V−
LS,
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V−
T , and V−

SS is rather strong, but barely perceptible in V−
C ,

V +
LS, V +

T and V +
SS.

We conclude saying that the various channels of the po-
tential are clearly dominated by either nucleonic (minimal
model) or non-nucleonic (LECs) degrees of freedom, mainly
because we found the role of intermediate ππ scattering (two-
loops) to be small.
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Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72, 1982
(1994); Phys. Rev. C 53, 2086 (1996).

[2] L.S. Celenza, A. Pantziris, and C.M. Shakin, Phys. Rev. C 46,
2213 (1992); J.L. Friar and S.A. Coon, Phys. Rev. C 49, 1272
(1994); M.C. Birse, Phys. Rev. C 49, 2212 (1994).

[3] M. R. Robilotta Nucl. Phys. A 595, 171 (1995); M. R. Robilotta
and C. A. da Rocha, Nucl. Phys. A 615, 391 (1997); M. R.
Robilotta, Phys. Rev. C 63, 044004 (2001).

[4] J-L. Ballot, M. R. Robilotta, and C. A. da Rocha, Phys. Rev. C
57, 1574 (1998).

[5] N. Kaiser, R. Brockman, and W. Weise, Nucl. Phys. A 625, 758
(1997).

[6] N. Kaiser, S. Gerstendörfer, and W. Weise, Nucl. Phys. A 637,
395 (1998); N. Kaiser, Phys. Rev. C 64, 057001 (2001); Phys.
Rev. C 65, 017001 (2001).

[7] M. C. M. Rentmeester, R. G. E. Timmermans, J. L. Friar, and J.

J. de Swart, Phys. Rev. Lett. 82, 4992 (1999); M. C. M. Rent-
meester, R. G. E. Timmermans, and J. J. de Swart, Phys. Rev.
C 67, 044001 (2003).
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[12] G. Höhler, group I, vol. 9, subvol.b, part 2 of Landölt-Bornstein
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R. Strauss, Nucl. Phys. B 39, 273 (1972).

[13] N. Hoshizaki and S. Machida, Progr. Theor. Phys. 24, 1325
(1960).


