102

Brazilian Journal of Physics, vol. 37, no. 1, March, 2007

Causal Structure of Relativistic Dissipative Hydrodynamics
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We present a new formalism for the relativistic dissipative hydrodynamics consistent with causality. We
start from the physical analysis of the irreversible currents according to the Landau-Lifshitz theory. Then, the
irreversible currents are given by integral expressions which take into account the relaxation time. Only one
additional parameter was introduced, the relaxation time, Tg. We verified that the linearized equation of motion
for small perturbations in the homogeneous, static background coincides with Hiscock-Lindblom
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I. INTRODUCTION

The ideal hydrodynamical description for the dynamics of
hot and dense matter achieved in the RHIC experiments works
amazingly well, particularly for the behavior of collective flow
parameters. However, we know that there still exist several
open problems in the interpretation of data in terms of the hy-
drodynamical model [1]. These questions require careful ex-
amination to extract quantitative and precise information on
the properties of QGP. In particular, we should study the ef-
fect of dissipative processes on the collective flow variables.
Several works have been done in this direction [2]. How-
ever, strictly speaking, a quantitative and consistent analysis
of the viscosity within the framework of relativistic hydrody-
namics has not yet been done completely. This is because the
introduction of dissipative phenomena in relativistic hydrody-
namics casts difficult problems, both conceptual and techni-
cal. Initially Eckart, and later, Landau-Lifshitz introduced the
dissipative effects in relativistic hydrodynamics in a covari-
ant manner [3, 4]. It is, however, known that their formalism
leads to the problem of acausality, that is, a pulse signal prop-
agates with infinite speed. Thus, relativistic covariance is not
a sufficient condition for a consistent relativistic dissipative
dynamics [5, 6].

II. PROBLEM OF CAUSALITY IN DIFFUSION PROCESS

The fundamental problem of the first order theory like the
Navier-Stokes theory is attributed to the fact that the diffusion
equation is parabolic. The diffusion process is a typical relax-
ation process of conserved quantities. Thus, it should satisfy
the equation of continuity,
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where n is a density of a conserved quantity. The irreversible
current fis, phenomenologically assumed to be proportional
to a thermodynamic force F, and it is phenomenologically
given by the gradient of n,

j=—CF =-Lvn, )

where  is the Onsager coefficient. Substituting Eq.(2) into
Eq.(1), we get the diffusion equation,

%n ={Vn.

Fick’s law tells us that the above diffusion process is in-
duced by an inhomogeneous distribution. In Eq.(2), the irre-
versible current is directly proportional to the space inhomo-
geneity. However, this is a very special case. In general, the
generation of a irreversible current has a time delay. Thus, we
may think of memory effects within the linear response of the
system. Phenomenologically, this can be done by introducing
the following memory function [7, 8],

G(Lt’) _ Tie—(t—;/)/t,\,7 (>
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where Tp is a constant (relaxation time) and rewrite Eq.(2) as

t
ji= —/ G (t,1')CF (1) dr,
In the limit of Tz — 0, we have G (¢,#') — 8 (¢ — ') so that the
original equation (2) is recovered [9]. Substituting into the
equation of continuity (1), we arrive at
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This equation is hyperbolic. This telegraph equation is some-
times called the causal diffusion equation.

For a suitable choice of the parameters Tz and {, we can
recover the causal propagation of diffusion process. In fact,
the maximum velocity of the signal propagation governed by
this equation is shown to be [10]

E- “4)

TR

Vmax =

The diffusion equation corresponds to Tz = 0 and hence
Vmax — ©°. This is the reason why the diffusion equation
breaks causality.
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III. RELATIVISTIC DISSIPATIVE HYDRODYNAMICS

Eckart and Landau-Lifshitz derived the relativistic dissi-
pative hydrodynamics following non-equilibrium thermody-
namics as discussed in the preceding section [3, 4]. Their
theories are just the covariant versions of the Navier-Stokes
equation and the corresponding equations still continue to be
parabolic.

As a matter of fact, the irreversible currents of the Landau-
Lifshitz theory (LL) are constructed as follows. First of all,
the energy-momentum tensor is expressed as

™ =eut'y’ — P (p+10) + 7, (5)

where, €, u*, IT and " are respectively the energy density,
the four velocity of the fluid and the bulk and shear viscous
stresses. In the LL, the velocity field is defined in such a
way that the energy current vanishes in the local rest frame,
u! — (1,0,0,0). In this local rest frame, it is assumed that the
equation of state and thermodynamical relations are valid as
if it were in equilibrium. As usual, we write

u“=< 'Y_.>
W

where 7 is the Lorentz factor and
My,
wu, = 1.

The tensor P* is the projection operator to the space orthog-
onal to u* and given by

P = gV — My,

On the other hand, the current for the conserved quantity
(e.g., baryon number) takes the form

NEw v, (6)

where V¥ is the heat conduction part of the current.
It should be noted that for the irreversible currents, we re-
quire the constraints [4],

u,,n’“"' =0 (7
and
UV = 0. 8)

Then, the divergence of the entropy four flux is given by
1
Oy (st —avt) = T (—PVIT47) 9ty — VIO, (9)

where o= /T and p is the chemical potential. Due to the sec-
ond law of thermodynamics, the r.h.s. of the equation should
be positive. Then, the irreversible currents are given by

I = —CF = —Laqu’,
Ty = PWOLB%‘*B:nPwaBF“B:nPwaﬁa‘*uB,

Vy = PV = —kPyF’ = —xPyd'q, (10)
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where {, 1 and x are bulk viscosity, shear viscosity and ther-
mal conductivity coefficients, respectively. Here, PHVB s the
double symmetric traceless projection operator,

puvop _ l (pﬂ(lp\’ﬁ + P,uﬁp\’a) _ LP,UVPGB
2 Pi‘ ’

and we have introduced the quantities 7 and V¥ which corre-
spond respectively to the shear tensor and irreversible current
before the projection. They are in general not orthogonal to
u" so the projection operators are necessary to satisfy the con-
straints Egs.(7) and (8).

One can see that the irreversible currents are induced by in-
homogeneous distribution, and the space inhomogeneity im-
mediately gives rise to the irreversible current. This is the
same structure as the diffusion equation. In this sense, the LL
is parabolic and does not obey causality. To solve this prob-
lem, we will introduce the memory effect in the same way
as in the diffusion equation. Then, we use the same memory
function as Eq. (3). Thus, the modified irreversible currents
are

I(1) —/j dvG (1,7) {ou® ('),
V(1) = /j dvG (1,7)no*u (1),

V(1)

—/T dv'G (t,7) k"o (7), (11

where T = T (7,t) is the local proper time. As before, the shear
tensor T and the irreversible current V¥ are given by the pro-
jection of these integrals as

R = PN (c),
Vi = P, (1). (12)

It is important to remark that in the limit of Tg — 0, we
have G(t,1') — 8(¢t —1t') so that the original equations (10)
are recovered. When we start with the finite initial time, say
To, the above integrals should read

T
(1) =— / dv'G (t,7) Qau® (V) + e~ (R, (13)
T0
T
7 (1) = / UG (1,0 o () + e~ TR0/ RpY (14
To

T
VH (1) = —/T dvG (1,7) k!0 (7) + e~ ()Y, (15)
0

Till now, we have considered that the relaxation time Ty
is constant. However in practical problems, it is a function
of thermodynamical variables. Then the memory function
should be generalized as

1 . I Wd‘r”
TR (T)

In our formulation, the irreversible currents are modified by
introducing the memory function. However, the original cur-
rents are defined to satisfy the second law of thermodynamics.
Therefore, our definition, in general, does not satisfy it. For

example, if the relaxation time Tz becomes large, the entropy
production becomes negative [11].

G(t,7)— (16)
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FIG. 1: The time evolution of the energy density. The dashed curves
correspond to the calculations with the constant viscosity and relax-
ation time. The first two lines from the top represents the results of
the LL. Next two lines shows the results of our theory. The last line
is the result of ideal hydrodynamics.

IV. BJORKEN’S SCALING SOLUTION

To see how the above scheme works, let us apply it to the
one dimensional scaling solution of the Bjorken model.
The time component of the divergence of TH¥ gives

d e+P+I1I 2Q

— —+-—=0 17

gt (DT —— 37 =0 (17)
where

Q1) =— [ d7UG(1,7) J +1& (10) G (7,70) Q(T0) -
(18)

The equation for the space component is automatically satis-
fied by the scaling ansatz showing its consistency. The en-
tropy production rate is calculated to be

Ou(su' —ovH) = —%% (H—i—iQ), (19)
Since IT and Q are negative definite, the entropy production is
positive definite. For simplicity, we consider only the effect
of Q.

A typical estimate from the kinetic theory shows that the
shear viscosity 1 is proportional to the entropy density s, N =
bs, where b is a constant [12, 13]. Following Ref. [13], we
choose b = 1.1. Furthermore, we use the relaxation time [12,
13] 1 = 323% = 2—2. We further assume the equation of state
of the ideal pion gas.

In Fig. 1, we show the energy density € obtained by solving
Eq. (17) as function of proper time T. As a initial condition,

we set £(T) = 1 GeV/fm®, T1 (1) = Q(19) = 0 at the initial
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FIG. 2: The time evolution of energy density with the different initial
conditions from Fig. 1. The dashed and short dashed lines represent
the result of the LL and our theory, respectively . For comparison,
our result of Fig. 1 is shown, again (ideal T*V(tp)). The last line
from the top is the result of ideal hydrodynamics. In this case, the
energy heat-up is observed even in our theory.

proper time Typ = 0.1 fm/c. The first two lines from the top
represents the results of the LL. The next two lines shows the
results of our theory. The last line is the result of ideal hydro-
dynamics. For the solid lines, we calculated with the viscosity
and relaxation time which depend on temperature. Initially,
the effect of viscosity is small because of the memory effect
and the behavior of our theory is similar to that of ideal hy-
drodynamics. After a time larger than the relaxation time, the
memory effect is not effective anymore and the behavior is
similar to the result of the LL. As we have mentioned, the
behavior of our theory is the same as the result obtained in
Ref. [13] in this case. For the dashed lines, we calculated
with the constant viscosity and relaxation time, 1) = 1(&p) and
Tr = Tr(€0). In this case, the viscosity is constant so that the
heat production stays longer and has a smaller slope as func-
tion of time asymptotically.

Sometimes the emergence of the initial heat-up in the LL
(the dashed curve in Fig. 1) is interpreted as an intrinsic prob-
lem of the first order theory. However, such behavior can also
appear even in the second order theory. In Fig. 2, we set
(1) = &(70)/T0 and Q(T9) = M(To)/To as the initial con-
ditions. In particular, the initial heat-up also appears in the
second order depending on the initial condition for the irre-
versible currents (see Fig. 2). Therefore, this heat-up is not a
problem of the first order theory but rather the specific prop-
erty of the scaling ansatz. This was already pointed out by
Muronga. The physical reason for this heat-up is due to the
use of the Bjorken solution for the velocity field. In this case,
the system acts as if an external force is applied to keep the
velocity field as a given function of t. Thus, depending on the
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relative intensity of the viscous terms compared to the pres-
sure, the external work converted to the local heat production
can overcome the temperature decrease due to the expansion.

V. SUMMARY AND CONCLUDING REMARKS

In this report, we presented a new formalism for the rela-
tivistic dissipative hydrodynamics consistent with causality.
We start from the physical analysis of the irreversible cur-
rents according to the Landau-Lifshitz theory. Then, the irre-
versible currents are given by integral expressions which take
into account the relaxation time. In this way, causality is re-
covered and at the same time a simple physical structure of
the LL is preserved. In our approach, only one additional pa-
rameter was introduced, the relaxation time, Tg. The resulting
equation of motion then becomes hyperbolic and causality can
be restored [5]. Naturally, causality depends on the choice of
the values of the parameters including the relaxation time.

More specifically, we verified that the linearized equation
of motion for small perturbations in the homogeneous, sta-
tic background coincides with Hiscock-Lindblom [14-16] ex-
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cept for the coupling among the different irreversible currents.
These couplings are not included in our theory considering the
Curie principle. Of course the Curie principle is believed to
be valid in the regime of the first order theory and in the sec-
ond order regime these couplings might be present. However,
the existence of the Curie principle may imply that these cou-
plings are small compared with the direct terms.

We have applied our theory to the case of the one-
dimensional scaling solution of Bjorken and obtained the
analogous behavior of previous analysis. In this case we can
prove explicitly the positiveness of entropy production. We
showed the time evolution of the temperature. As expected,
our theory gives the same result of Ref. [13], because the
no-acceleration condition used in Ref. [13] is automatically
satisfied in this model. Note that our theory is applicable to
more general case where the acceleration is important.

Our theory is particularly adequate to be applied to a hydro-
code such as SPheRIO which is based on the Lagrangian co-
ordinate system [17, 18]. Implementation of the present the-
ory to the full three-dimensional hydrodynamics is now in
progress.
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