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We use the linear δ expansion, or optimized perturbation theory, to evaluate the effective potential for the two
dimensional Gross-Neveu model at finite temperature and density obtaining analytical equations for the critical
temperature, chemical potential and fermionic mass which include finite N corrections. Our results seem to
improve over the traditional large-N predictions.
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I. INTRODUCTION

The development of reliable analytical non-perturbative
techniques to treat problems related to phase transitions in
quantum chromodynamics (QCD) represents an important do-
main of research within quantum field theories. The appear-
ance of large infrared divergences, happening for example in
massless field theories, like in QCD [1], close to critical tem-
peratures (in field theories displaying a second order phase
transition or a weakly first order transition [2]) can only be
dealt with in a non-perturbative fashion. Among the analytical
non-perturbative techniques one of the most used is the 1/N
approximation [3]. Though a powerful resummation method,
this approximation can quickly become cumbersome after the
resummation of the first leading contributions, like for the
N = 3 case which regards QCD. This is due to technical dif-
ficulties such as the formal resummation of infinite subsets
of Feynman graphs and their subsequent renormalization. In
this work we employ an alternative non-perturbative method
known as the linear δ expansion (LDE) [4] to investigate the
breaking and restoration of chiral symmetry within the two
dimensional Gross-Neveu model [5] at finite temperature (T )
and chemical potential (µ). As we shall see, the LDE great
advantage is that the actual selection and evaluation,including
renormalization, of the relevant contributions are carried out
in a completely perturbative way. Non-perturbative results are
generated through the use of a variational optimization pro-
cedure known as the principle of minimal sensitivity (PMS)
[6]. The two dimensional Gross-Neveu model offers a per-
fect testing ground for the LDE-PMS because, apart from
sharing common features with QCD, it is exactly solvable in
the large-N limit. The large-N result for the critical tempera-
ture (at zero chemical potential) of the Gross-Neveu model is
Tc ' 0.567mF(0) where mF(0) is the fermionic mass at T = 0.
However, due to the appearance of kink–anti-kink configura-
tions, the exact critical temperature for this model should be
zero [7]. Because kink configurations are unsuppressed the
system is segmented into regions of alternating signs of the
order parameter, at low temperatures. Then, the net average
value of the order parameter is zero. At leading order, the

1/N approximation misses this effect because the energy per
kink goes to infinity as N → ∞ while the contribution from
the kinks has the form e−N . Our strategy will be twofold.
First, we show that the LDE-PMS exactly reproduces, within
the N →∞ limit, the “exact” large-N result. Next we show ex-
plicitely that already at the first non trivial order the LDE takes
into account finite N corrections which induce a lowering of
Tc as predicted by Landau’s theorem. Here, the calculations
are performed for three cases which are: (a) T = 0 and µ = 0,
(b) T 6= 0 and µ = 0 and (c) T = 0 and µ 6= 0. Our main results
include analytical relations for the fermionic mass at T = 0
and µ = 0, Tc (at µ = 0) and µc (at T = 0) which include fi-
nite N corrections. The case T 6= 0 and µ 6= 0, which allows
for the determination of the tricritical points and phase dia-
gram is more complex, due to the numerics. This situation is
currently being treated by the present authors [8]. In the next
section we review the Gross-Neveu effective potential at finite
temperature and chemical potential in the large-N approxima-
tion. The LDE evaluations are presented in section III. The
results are discussed in section IV while section V contains
our conclusions.

II. THE GROSS-NEVEU EFFECTIVE POTENTIAL AT
FINITE TEMPERATURE AND CHEMICAL POTENTIAL IN

THE LARGE-N APPROXIMATION

The Gross-Neveu model is described by the Lagrangian
density for a fermion field ψk (k = 1, . . . ,N) given by [5]

L =
N

∑
k=1

[
ψ̄k (i 6∂)ψk +mF ψ̄kψk +

g2

2
(ψ̄kψk)2

]
. (1)

When mF = 0 the theory is invariant under the discrete trans-
formation

ψ→ γ5ψ , (2)

displaying a discrete chiral symmetry (CS). In addition, Eq.
(1) has a global SU(N) flavor symmetry.
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For the studies of the Gross-Neveu model in the large-N
limit it is convenient to define the four-fermion interaction as
g2N = λ. Since g2 vanishes like 1/N, we then study the the-
ory in the large-N limit with fixed λ [5]. As usual, it is useful
to rewrite Eq. (1) expressing it in terms of an auxiliary (com-
posite) field σ, so that [9]

L = ψ̄k (i 6∂)ψk−σψ̄kψk− σ2N
2λ

. (3)

As it is well known, using the 1/N approximation, the large-N
expression for the effective potential is [5, 9]

V N
eff(σc) = N

σ2
c

2λ
+ iN

∫ d2 p
(2π)2 ln

(
p2−σ2

c
)

. (4)

The above equation can be extended at finite temperature and
chemical potential applying the usual associations and re-
placements. E.g., momentum integrals of functions f (p0,p)
are replaced by

∫ d2 p
(2π)2 f (p0,p)→ iT ∑

n

∫ d p
(2π)

f [i(ωn− iµ),p] ,

where ωn = (2n+1)πT , n = 0,±1,±2, . . ., are the Matsubara
frequencies for fermions [10]. For the divergent, zero temper-
ature contributions, we choose dimensional regularization in
arbitrary dimensions 2ω = 1−ε and carry the renormalization
in the MS scheme, in which case the momentum integrals are
written as

∫ d p
(2π)

→
∫

p
=

(
eγE M2

4π

)ε/2 ∫ d2ω p
(2π)2ω ,

where M is an arbitrary mass scale and γE ' 0.5772 is the
Euler-Mascheroni constant. The integrals are then evaluated
by using standard methods.

In this case, Eq. (4) can be written as

V N
eff(σc)

N
=

σ2
c

2λ
−T ∑

n

∫ d p
(2π)

ln
[
(ωn− iµ)2 +ω2

p(σc)
]

, (5)

where ω2
p(σc) = p2 + σ2

c . The sum over the Matsubara’s fre-
quencies in Eq. (5) is also standard [10] and gives for the
effective potential, in the large-N approximation, the result

V N
eff(σc)

N
=

σ2
c

2λ
−

∫

p
ωp(σc)

+ T
∫

p
ln(1+ exp{− [ωp(σc)+µ]/T})

+ T
∫

p
ln(1+ exp{− [ωp(σc)−µ]/T}) . (6)

After integrating and renormalizing the above equation one
obtains

V N
eff(σc)

N
=

σ2
c

2λ
− 1

2π

{
σ2

c

[
1
2

+ ln
(

M
σc

)]
+2T 2I1(a,b)

}
,

(7)

where

I1(a,b) =
∫ ∞

0
dx

[
ln

(
1+ e−

√
x2+a2−b

)
+(b→−b)

]
, (8)

with a = σc/T and b = µ/T . Taking the T = 0 and µ = 0 limit
one may look for the effective potential minimum (σ̄c) which,
when different from zero signals dynamical chiral symmetry
breaking (CSB). This minimization produces [5, 9]

mF(0) = σ̄c = M exp
(
−π

λ

)
. (9)
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FIG. 1: A three dimensional graph showing the fermionic mass, mF ,
as a function of T and µ. One sees a second order phase transition at
µ = 0 while a first order transition occurs at T = 0. All quantities are
in units of 10×M while λ = π.
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FIG. 2: Top views of figure 1. On the LHS we have a shaded fig-
ure where the black region represents CSR. The contour lines of
the figure on the RHS indicate an abrupt (first order transition) for
small values of T . Both figures display a (tricritical) point where the
smooth descent meets the abrupt one. All quantities are in units of
10×M while λ = π.

One may proceed by numerically investigating mF as a
function of T and µ as shown in Figure 1 which shows a
smooth phase (second order) transition at µ = 0. At this point,
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the exact value for the critical temperature (Tc) at which chiral
symmetry restoration (CSR) occurs can be evaluated analyti-
cally producing [11]

Tc = mF(0)
eγE

π
' 0.567 mF(0), (10)

while, according to Landau’s theorem, the exact result should
be Tc = 0. By looking at Figure 1 one notices an abrupt (first
order) transition when T = 0. The analytical value at which
this transition occurs has also been evaluated, in the large-N
limit, yielding [12]

µc =
mF(0)√

2
. (11)

In the T −µ plane there is a (tricritical) point where the lines
describing the first and second order transition meet. This can
be seen more clearly by analyzing the top views of figure 1.
Figure 2 shows these top views in a way which uses shades
(LHS figure) and contour lines (RHS figure). The tricritical
point (Ptc) values can be numerically determined producing
Ptc = (Ttc,µtc) = [0.318mF(0),0.608mF(0)] [13].

III. THE LINEAR δ EXPANSION AND FINITE N
CORRECTIONS TO THE EFFECTIVE POTENTIAL

According to the usual LDE interpolation prescription [4]
the deformed original four fermion theory displaying CS
reads

Lδ =
N

∑
k=1

[
ψ̄k (i 6∂)ψk +η(1−δ)ψ̄kψk +δ

λ
2N

(ψ̄kψk)2
]

.

(12)
So, that at δ = 0 we have a theory of free fermions. Now, the
introduction of an auxiliary scalar field σ can be achieved by
adding the quadratic term,

−δN
2λ

(
σ+

λ
N

ψ̄kψk

)2

, (13)

to Lδ(ψ, ψ̄). This leads to the interpolated model

Lδ =
N

∑
k=1

[
ψ̄k (i 6∂)ψk−δη∗ψ̄kψk− δN

2λ
σ2 +Lct,δ

]
, (14)

where η∗ = η− (η−σc)δ. The counterterm Lagrangian den-
sity, Lct,δ, has the same polynomial form as in the original
theory while the coefficients are allowed to be δ and η depen-
dent. Details about renormalization within the LDE can be
found in Ref. [14].

From the Lagrangian density in the interpolated form, Eq.
(14), we can immediately read the corresponding new Feyn-
man rules in Minkowski space. Each Yukawa vertex carries
a factor −iδ while the (free) σ propagator is now −iλ/(Nδ).
The LDE dressed fermion propagator is

SF(p) =
i

6 p−η∗+ iε
, (15)

where η∗ = η− (η−σc)δ.

FIG. 3: LDE Feynman graphs contributing up to order-δ. The black
dot represents a δη insertion. The external dashed line represents σc
while the internal line is the σ propagator. The last diagram brings
the first finite N correction to the effective potential.

Finally, by summing up the contributions shown in figure 3
one obtains the complete LDE expression to order-δ

Veff,δ1

N
(η) = δ

σ2
c

2λ
− 1

2π

{
η2

[
1
2

+ ln
(

M
η

)]
+2T 2I1(a,b)

}

+ δ
η(η−σc)

π

[
ln

(
M
η

)
− I2(a,b)

]

+
δλη2

4π2 N

{[
ln

(
M
η

)
− I2(a,b)

]2

+ J2
2 (a,b)

}
.(16)

where I1(a,b) is defined by Eq. (8), with a = η/T . Also,

I2(a,b) =
∫ ∞

0

dx√
x2 +a2

(
1

e
√

x2+a2+b +1
+(b→−b)

)
,

(17)
and

J2(a,b) =
sinh(b)

a

∫ ∞

0
dx

1
cosh(

√
x2 +a2)+ cosh(b)

. (18)

Notice once more, from Eq. (16), that our first order already
takes into account finite N corrections. Now, one must fix the
two non original parameters, δ and η, which appear in Eq.
(16). Recalling that at δ = 1 one retrieves the original Gross-
Neveu Lagrangian allows us to choose the unity as the value
for the dummy parameter δ. The infra red regulator η can be
fixed by demanding Veff,δ1 to be evaluated at the point where it
is less sensitive to variations with respect to η. This criterion,
known as Principle of the Minimal Sensitivity (PMS) [6] can
be written as

dVeff,δ1

dη

∣∣∣
η̄,δ=1

= 0 . (19)

In the next section the PMS will be used to generate the non-
perturbative optimized LDE results.
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IV. OPTIMIZED RESULTS

From the PMS procedure we then obtain from Eq. (16), at
η = η̄, the general result

{[
Y (η,T,µ)+η

d
dη

Y (η,T,µ)
][

η−σc +η
λ

2πN
Y (η,T,µ)

]
+

λT 2

2πN
J2(η/T,µ/T )

d
dη

J2(η/T,µ/T )
}∣∣∣

η=η̄
= 0 , (20)

where we have defined the function

Y (η,T,µ) = ln
(

M
η

)
− I2(η/T,µ/T ) . (21)

Let us first consider the case N →∞. Then, Eq. (20) gives two
solutions where the first one is η̄ = σc which, when plugged
in Eq. (16), exactly reproduces the large-N effective potential,
Eq. (7). This result was shown to rigorously hold at any order
in δ provided that one stays within the large-N limit [15]. The
other possible solution, which depends only upon the scales
M,T and µ, is considered unphysical [15].

A. The case T = 0 and µ = 0

Taking Eq. (20) at T = µ = 0 one gets

[
ln

(
M
η̄

)
−1

][
η̄−σc− η̄

λ
2πN

ln
(

η̄
M

)]
= 0 . (22)

As discussed previously, the first factor leads to the model
independent result, η̄ = M/e, which we shall neglect. At the
same time the second factor in (22) leads to a self-consistent
gap equation for η̄, given by

η̄δ1(σc) = σc

[
1− λ

2πN
ln

(
η̄δ1

M

)]−1

. (23)

The solution for η̄δ1 obtained from Eq. (23) is

η̄δ1(σc) = M exp
{

2πN
λ

+W
[
−2πN

λ
σc

M
exp

(
−2πN

λ

)]}
,

(24)
where W (x) is the Lambert W function, which satisfies
W (x)exp[W (x)] = x.

To analyze CS breaking we then replace η by Eq. (24) in
Eq. (16), which is taken at T = 0 and µ = 0. As usual, CS
breaking appears when the effective potential displays minima
at some particular value σ̄c 6= 0. Then, one has to solve

Veff,δ1(σc,η = η̄δ1)
dσc

∣∣∣
δ=1,σc=σ̄c

= 0 . (25)

Since mF = σ̄c, after some algebraic manipulation of Eq. (25)
and using the properties of the W (x) function, one finds

mF(T = 0,µ = 0) = MF (λ,N)
(

1− 1
2N

)−1

, (26)

where we have defined the quantity F (λ,N) as

F (λ,N) = exp
{
− π

λ[1−1/(2N)]

}
. (27)

Eq. (26) is our result for the fermionic mass at first order in
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FIG. 4: The effective potential minimum,σ̄c, which corresponds to
the fermionic mass, as a function of λ for N = 1,3 and 10. The
dashed line represents the large-N result. σ̄c is given in units of M.

δ which goes beyond the large-N result, Eq. (9). Note that in
the N → ∞ limit, F (λ,N → ∞) = exp(−π/λ). Therefore, Eq.
(26) correctly reproduces, within the LDE non perturbative
resummation, the large-N result, as already discussed. In Fig.
4 we compare the order-δ LDE-PMS results for σ̄c with the
one provided by the large-N approximation. One can now
obtain an analytical result for η̄ evaluated at σ̄c = σc. Eqs.
(24) and (26) yield

η̄δ1(σ̄c) = MF (λ,N) . (28)

Fig. 5 shows that η̄(σ̄c) is an increasing function of both N
and λ kickly saturating for N & 3. The same figure shows the
results obtained numerically with the PMS.
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FIG. 5: The LDE optimum mass (η̄), evaluated at σc = σ̄c, as a func-
tion of λ for N = 1,3 and 10. The continuous lines were obtained
from the analytical result, Eq. (28), while the dots represent the re-
sults of numerical optimization. η̄ is given in units of M.

B. The case T 6= 0 and µ = 0

Let us now investigate the case T 6= 0 and µ = 0. In prin-
ciple, this could be done numerically by a direct application
of the PMS the LDE effective potential, Eq. (16). However,
as we shall see, neat analytical results can be obtained if one
uses the high temperature expansion by taking η/T = a ¿ 1
and µ/T = b¿ 1. The validity of such action could be ques-
tioned, at first, since η is arbitrary. However, we have cross
checked the PMS results obtained analytically using the high
T expansion with the ones obtained numerically without using
this approximation. This cross check shows a good agreement
between both results. Expanding Eq. (8) in powers of a and
b, the result is finite and given by [16]

I1(a¿ 1,b¿ 1) =
π2

6
+

b2

2
− a2

2
ln

(π
a

)
− a2

4
(1−2γE)

− 7ζ(3)
8π2 a2

(
b2 +

a2

4

)
+O(a2b4,a4b2) ,

(29)

and

I2(a,b) = ln
(π

a

)
− γE +

7ξ(3)
4π2

(
b2 +

a2

2

)
+O(a4,b4) ,

(30)
where ζ(3)' 1.202. If we then expand Eq. (16) at high tem-
peratures, up to order η2/T 2, we obtain

Veff,δ1

N
= δ

σ2
c

2λ
−T 2 π

6
− η2

2π

[
ln

(
MeγE

T π

)
− 7ζ(3)

4(2π)2
η2

T 2

]

+ δ
η(η−σc)

π

[
ln

(
MeγE

T π

)
− 7ζ(3)

2(2π)2
η2

T 2

]

+
δλη2

(2π)2N

[
ln2

(
MeγE

T π

)
− 7ζ(3)

(2π)2 ln
(

MeγE

T π

)
η2

T 2

]
.

(31)

Now, one sets δ = 1 and applies the PMS to Eq. (31) to obtain
the optimum LDE mass

η̄(σc,T ) = σc

{
1+

λ
N(2π)

[
ln

(
MeγE

T π

)

− 7ζ(3)
2(2π)2

σ2
c

T 2

[
1+

λ
N(2π)

ln
(

MeγE

T π

)]−2
]}−1

.

(32)

The above result is plugged back into Eq. (31) which, for
consistency, should be re expanded to the order η2/T 2. This
generates a nice analytical result for the thermal fermionic
mass

σ̄c(T ) = ± T

N2
√

14πζ(3)λ

[
2Nπ+ ln

(
MeγE

T π

)]3/2

×
[
−2Nπ+(2N−1)λ ln

(
MeγE

T π

)]1/2

. (33)

Figure 6 shows σ̄c(T )/M given by Eq. (33) as a function of
T/M, again showing a continuous (second order) phase tran-
sition for CS breaking/restoration. The numerical results illus-
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FIG. 6: The effective potential minimum, σ̄c, as a function of the
temperature. Both quantities are in units of M and have been plotted
for N = 3 and λ = π. The dotted line corresponds to the large result
predicting Tc = 0.208M while the continuous line, which represents
the LDE result, predicts Tc = 0.170M. In both cases the transition is
of the second kind.

trated by Fig. 6 show that the transition is of the second kind
and an analytical equation for the critical temperature can be
obtained by requiring that the minima vanish at Tc. From Eq.
(33) one sees that σ̄c(T = Tc) = 0 can lead to two possible
solutions for Tc.

The one coming from
[

2Nπ+ ln
(

MeγE

Tcπ

)]
= 0 , (34)

can easily be seen as not been able to reproduce the known
large-N result, when N → ∞, Tc = M exp(γE −π/λ)/π. How-
ever, the other possible solution coming from
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FIG. 7: The critical temperature (Tc), in units of M, as a function of λ
for N = 1,3 and 10. The continuous lines represent the LDE results
while the dotted line represents the large-N result.

[
−2Nπ+(2N−1)λ ln

(
MeγE

πTc

)]
= 0 , (35)

gives for the critical temperature, evaluated at first order in δ,
the result

Tc = M
eγE

π
exp

{
− π

λ[1−1/(2N)]

}
= M

eγE

π
F (λ,N) , (36)

with Fλ(N) as given before, by Eq. (27). Therefore, Eq. (36)
also exactly reproduces the large-N result for N → ∞. The
results given by this equation are plotted in Fig. 7 in terms
of λ for different values of N. The (non-perturbative) LDE
results show that Tc is always smaller (for the realistic finite N

case) than the value predicted by the large-N approximation.
According to Landau’s theorem for phase transitions in one
space dimensions, our LDE results, including the first 1/N
correction, seem to converge to the right direction.

C. The case T = 0 and µ 6= 0

One can now study the case T = 0,µ 6= 0 by taking the limit
T → 0 in the integrals I1, I2 and J2 which appear in the LDE
effective potential, Eq. (16). In this limit, both functions are
given by

lim
T→0

T 2I1(a,b) =−1
2

θ(µ−η)

[
η2 ln

(
µ+

√
µ2−η2

η

)

− µ
√

µ2−η2
]

, (37)

lim
T→0

I2(a,b) = θ(µ−η) ln

(
µ+

√
µ2−η2

η

)
, (38)

lim
T→0

T J2(a,b) = sgn(µ)θ(µ−η)
√

µ2−η2 . (39)

Then, one has to analyze two situations. In the first, η > µ,
the optimized η̄ is given by

{[
ln

(
M
η

)
−1

][
η−σc +

λη
2πN

ln
(

M
η

)]

− λµ2

2πN
1
η

ln
(

M
η

)}∣∣∣
η=η̄

= 0 , (40)

while for the second, η < µ, η̄ is found from the solution of

{[
η−σc− λη

2πN
ln

(
µ+

√
µ2−η2

M

)][
− ln

(
µ+

√
µ2−η2

M

)
− η2

(η2−µ2−µ
√

µ2−η2)

]
− λη

2πN

}∣∣∣
η=η̄

= 0 . (41)

Note that the results given by Eqs. (37-39) vanish for µ < η.
Fig. 8 shows µc, obtained numerically, as a function of λ for
different values of N. Our result is contrasted with the ones
furnished by the 1/N approximation. The analytical expres-
sions for η̄δ1(σ̄c), Eq. (28), and Tc, Eq. (36), suggest that an
approximate solution for µc at first order in δ is given by

µc(T = 0)' M√
2

F (λ,N) . (42)

It is interesting to note that both results, for Tc, Eq. (7), and
µc, Eq. (42), follow exactly the same trend as the correspond-
ing results obtained from the large-N expansion, Eqs. (10)

and (11), respectively, which have a common scale given by
the zero temperature and density fermion mass mF(0). Here,
the common scale is given by η̄ evaluated at σc = σ̄c and
T = µ = 0, η̄δ1(σ̄c) = MF (λ,N).

V. CONCLUSIONS

We have used the non-perturbative linear δ expansion
method (LDE) to evaluate the effective potential of the two
dimensional Gross-Neveu model at finite temperature and
chemical potential. Our results show that when one stays
within the large-N limit the LDE correctly reproduces the 1/N
approximation leading order results for the fermionic mass,
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FIG. 8: The critical chemical potential µc in units of M, plotted as
a function of λ for N = 3 and T = 0. The dashed line represents
the 1/N result at leading order, the dot-dashed line represents the
1/N result at next to leading order and the continuous line is the first
order LDE result.

Tc and µc. However, as far as Tc is concerned the large-N
predicts Tc ' 0.567mF(0) while Landau’s theorem for phase
transitions in one space dimensions predicts Tc = 0. Hav-

ing this in mind we have considered the first finite N correc-
tion to the LDE effective potential. The whole calculation
was performed with the easiness allowed by perturbation the-
ory. Then, the effective potential was optimized in order to
produce the desired non-perturbative results. This procedure
has generated analytical relations for the relevant quantities
(fermionic mass, Tc and µc) which explicitely display finite N
corrections. The relation for Tc, for instance, predicts smaller
values than the ones predicted by the large-N approximation
which hints on the good convergence properties of the LDE in
this case. The LDE convergence properties in critical temper-
atures has received support by recent investigations concerned
with the evaluation of the critical temperature for weakly in-
teracting homogeneous Bose gases [17]. In order to produce
the complete phase diagram, including the tricritical points,
we are currently investigating the case T 6= 0 and µ 6= 0 [8].
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