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Charmed-Meson Scattering on Nucleons in a QCD Coulomb Gauge Quark Model
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The scattering of charmed mesons on nucleons is investigated within a chiral quark model inspired on the
QCD Hamiltonian in Coulomb gauge. The microscopic model incorporates a longitudinal Coulomb confin-
ing interaction derived from a self-consistent quasi-particle approximation to the QCD vacuum, and a traverse
hyperfine interaction motivated from lattice simulations of QCD in Coulomb gauge. From the microscopic in-
teractions at the quark level, effective meson-baryon interactions are derived using a mapping formalism that
leads to quark-Born diagrams. As an application, the total cross-section of heavy-light D-mesons scattering on

nucleons is estimated.
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I. INTRODUCTION

The study of the interactions of charmed hadrons with nor-
mal hadrons is of interest in several instances. One exam-
ple refers to experiments of relativistic heavy ion collisions
(RHIC). Since the early suggestion of Matsui and Satz [1]
that the suppression of J/¥ production in RHIC could pro-
vide a signature of quark-gluon deconfinement, the impor-
tance of charmonium interaction with normal nuclear matter
hadrons has attracted much attention [2]. Another example
is the understanding and identification of the effective degrees
of freedom that are responsible for dynamical chiral symmetry
breaking an the confinement of quarks and gluons in hadrons.
Heavy-light mesons, like the D-mesons, are sometimes con-
sidered as the hydrogen atom of QCD. This is so because the
charm quark c is much heavier that the light u and d quarks,
and to a good approximation these mesons can be described
as one-body bound states. Moreover, since the properties of
u and d quarks are determined by the dynamical breaking of
chiral symmetry, the interaction of these quarks with a heavy
color source, as the ¢ quark, can provide valuable information
on the properties of the QCD interaction at the confinement
regime. Also, recent results for J/¥ dissociation cross sec-
tions obtained using SU(4) symmetric meson-exchange mod-
els [3] indicate that these models provide cross sections that
are one order of magnitude smaller than those calculated us-
ing quark models [2]. This is an important issue, the reasons
for such discrepancies should be understood.

In the present communication we report on a ongoing study
of the interaction of charmed D-mesons on nucleons using
a microscopic quark model inspired on the Hamiltonian of
QCD in the Coulomb gauge. Specifically, the microscopic
model incorporates a longitudinal Coulomb confining interac-
tion derived from a self-consistent quasi-particle approxima-
tion to the QCD vacuum [4], and a traverse hyperfine interac-
tion motivated from lattice simulations of QCD in Coulomb
gauge [5]. Given the microscopic quark Hamiltonian, we
solve a gap equation for the constituent quark mass function
and obtain the bound states of D mesons and of nucleons.
This is done by using a low-energy approximation of the full
Bethe-Salpeter bound-state kernels and using an ansatz for the
Fock-space meson amplitudes. Once the bound-state ampli-
tudes of the mesons and the nucleons are obtained, we employ

the Fock-Tani mapping formalism [6] of Refs. [7-9] to obtain
an effective meson-nucleon Hamiltonian describing quark in-
terchange between the mesons and baryons. This approach
gives equivalent results as the quark-Born diagram formalism
of Barnes and Swanson [10]. As an illustration of the for-
malism, we calculate the total cross section for the process
p+D° — p+D° We also calculate the same cross section
using as microscopic interaction the hyperfine component of
one-gluon-exchange, which is traditionally used in the context
of nonrelativistc quark models.

The paper is organized as follows. In the next Section we
discuss the microscopic quark model based on the Hamil-
tonian in Coulomb gauge QCD, and obtain the gap equation
that gives the constituent quark mass function. In Section III
we use obtain the effective meson-baryon interaction using a
low energy approximation of the interaction. Numerical re-
sults are presented in Section IV and our Conclusions and
Perspectives are presented in Section V.

II. THE MICROSCOPIC QUARK MODEL

The model Hamiltonian we use is given by [11]

H=H,+Hc+Hr, M
with
H, = /d3x \Iﬁ(x) [—io- V + Bmo] w(x), )
1 3 3 a a
He=—5 [@xdyp@V(k-yDp'@).  ©)
1 3 3 a a
Hr = Q/d xd”y Jj'(x) Usj (e = y[) J} (x) @

In these expressions, Y(x) is the quark field operator (with
color and flavor indices suppressed) and mg = m,,mgy,--- is
the current quark mass matrix. In addition, the quark charge
and current densities p*(x) and J*(x) are given by

P =¥ ()T (x), I =y ()T aw(x), (5)
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where T =A/2,a=1,---,8, with A% the SU(3) Gell-Mann
matrices. The Coulomb and transverse potentials V and U will
be discussed in Section I'V.

One can approximately diagonalize the effective quark
Hamiltonian using a BCS treatment for quark field operators.
One way to implement this is as follows. Initially one expands
the quark field operators as

vy (), (k)] €,

3
v = [ oo X ket
(6)

s=+1/2
where ¢ (k) and g (k) are creation and annihilation operators,
and

E,+ M, 1
k) = : 7
R (S AU
Er+M;, [ —-S% .

where Ey = (k> +M?)'/2, 3¢ = —ic?y, and ¥, is a Pauli
spinor. Next, one substitutes this into the Hamiltonian and
uses Wick contraction techniques so that it can be rewritten as

H = Hy+H> + Ha, &)

where Hj is a c-number and H, (Hy) contains normal ordered
terms with products of two (four) creation and/or annihilation
operators. The last step consists in demanding that H> is in
diagonal form. This implies that M} must satisfy the following
gap equation

filk,q)V([k—ql) —g1(k,q)U(]k—ql)
3/ [ }(10)

Eq
with
filkq) = MiLk-g-m,, an
q (kq—k)(kq—q°)
k,q) = 2M,+2M, .2
gi(k.q) + kk kalk—q (12)

In addition, one finds that H» is given as

Hy = / E kZ[Qs

O+ala®], a3

where
k2+m0Mk
/ fqu) (|k—ql) +g2(k,q)U (Jk —q|) (14)
3 EyE, ’
with
f2(k7q) = Mqu+k'Qa (15)
k-q—k*)(k-q— ¢*
gi(k,q) = 2Mqu—2%( ! kl(qﬁ q)- (16)

Numerical solutions of the gap equation will be presented
in Section IV. In the next Section, we discuss the derivation
of an effective meson-baryon interaction.
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III. THE EFFECTIVE MESON-BARYON INTERACTION

The effective meson-baryon interaction will depend on the
microscopic quark Hamiltonian Hs and the bound-state am-
plitudes of the mesons and baryons [7—10]. For heavy-light
mesons and baryons, one can write the corresponding Fock-
space states as follows [12]. For a one-meson state one can
write,

o)) = MG |Q) = @’ 4,430, amn
where @ is the Fock-space amplitude, with o indicating all
quantum numbers necessary to specify the meson state, like
c.m. momentum, spin and flavor, and y, v indicate the corre-
sponding quantum numbers of the quarks and antiquarks — a
sum or integral over repeated indices is implied. The state |0)
is the constituent-quark, chirally-broken vacuum state, i.e. the
state annihilated by the constituent quark and antiquark anni-
hilation operators g and §. For a one-baryon state, one can
write

prikms o f

0 = BLIQ) = —= W g gl gl [0), (18)

where W is the Fock-space amplitude, and o, i, v, have the
same meaning as for the meson state. To simplify notation,
we write the relevant piece of Hy in the form

1 - -
5 Vaa(v,p0) ;4\ 4o G

+ Vaa(uvipo)q, 4\ as qp, (19)

H4=1V(v-p<s)TT -
) qq\MV; 9.9y 495 49p

where V,,,--- contain products of the Dirac spinors and the
interactions V and U.

] :

L0000
Q10000

3) (4)

FIG. 1: Pictorial representation of the four different quark-
interchange processes that contribute to the DN interaction.

In this paper we consider only quark interchange processes,
i.e. those that do not involve valence ¢4 annihilation processes
like p+D° — p+D° n+D° — p+D, etc. InFig. 1 we
present a pictorial representation of such quark interchange
processes. In these graphs, the exchanged quarks are always
the light # and d quarks, the ¢ antiquarks are not interchanged
with the light quarks of the baryons. The Fock-Tani mapping
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procedure leads to the following expression for the effective
DN interaction

Voy = —3 (I):;,u\/] VI3 V (/JV Gp) le gﬂzm (20)

— 3PP WIS (uv; op) c1>'“VlP“”2“3 1)

— 6D WVHE Y, (uv;op) BV PO (22)

— 6Dy WVIHE Y, 4 (uv; op) YT P (23)

In order to get insight into the problem and avoid massive
numerical evaluation of multidimensional integrals, we use
a low-energy expansion for Hs in Eq. (9) and use Gaussian

ansitze for the Fock-space amplitudes @ and ¥. Expanding
M, for small k as

My =M—M k— M)k, (24)

one can easily show that the quark spinors u and v can be
written for small k as

Pk
uy (k) ~ ( e )x (25)
2M
_ ok
w(k)( 2 )x (26)
3M?2

Replacing these into Eq. (19), one obtains a Hamiltonian
that is like the Breit Hamiltonian of QED. The different
pieces of the Hamiltonian contain momentum-dependent and
-independent central interactions, spin-spin, spin-orbit, and
tensor interactions. The momentum dependence of the am-
plitudes @ and ¥ in momentum space with width parameters
B and o are taken as

1 3/2 k2 8 2
(1)(](17](2) = <T|:Bz) e w1/ 8B ; 27)

where ky; = (Mgky — Myky) /2(M, + Mj), and

Wy (ki ko k) = 8O ( Zk)

3\ Y2 3 2 502
% (W) e~ Limi(ki=P/3)7/207 (7 gy

Given these, the general expression for the effective DN
interaction is given as

1
2;

M-lk

Von(p.p') = Vilp,p')+Vi(p'.p)] (29)

i=1

where each term in the sum corresponds to a graph in Fig. 1
given as

(o) — 38 2/2/ d’q —aiq® +bi-q
‘/l(pap) - {(3—1—23)750(2] (27:)3 V(q)e

2 g 2
» {m,-e cip?—dip +e,pp}’ (30)
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where the ®; come from summing over quark color-spin-
flavor quantum numbers and their values depend on spin struc-
ture of the microscopic quark interactions (see below), and the
a;,b;,---, can be written as a ratio a; = n(a;)/d(a;)0,b; =
n(a;)/d(a;)a?,--- . The corresponding expressions are given

as follows:
Graph (1):

n(la;) = 3g, d(a;))=B+2g)

n(by) = —g (1+4p)(p+p')

d(b1) = (3+2g) (1+p)

n(er) = 3¢2+3(1+p)°+g (7+8p+10p?)

d(c) = 6(3+2g) (1+p)?

nler) = g+ (1+p)*—2g (—1+p?)

d(er) = (3+2g) (1+p)%, (31)
Graph (2)

n(az) = g(3+g), d(a)=2(3+2g)

n(by) = g[(2+g+2p)p—(1+g—2p)p]

d(by) = (3+2g) (1+p)

n(ca) = n(c1), d(cz)=d(c1)

n(dy) = n(dy), d(dy)=d(dy)

n(ez) = n(e1), d(e2)=d(er), (32)
Graph (3)

nlaz) = 6+7g, d(az)=4(3+2g)

n(b3) = =3[1+g+(1+2g)plp
+ B+g+(B-29)p]p
d(b3) = 2(3+2g) (1+p)
n(cs) = 382 +3(1+p)* +g(7+8p+10p?)
d(es) = 6(3+2¢g) (1+p)?
n(ds) = n(c3), d(d3)=d(c3)
n(es) = n(e1), d(e3)=d(er), (33)
Graph (4):
n(as) 2+g, d(ay) =4
n(bs) = —(1+g+p) (p—r)
d(bs) = 2(1+p)
n(cs) = n(c1), n(ds)=n(dy)
d(cs) = d(c1), d(ds)=d(d))
n(es) = nler), d(es)=d(ey). (34)

In these, g = & /B? and p = M,,/M..

IV. NUMERICAL RESULTS

Initially we solve the gap equation, Eq. (10). For the
Coulomb part of the interaction, V, we employ the expression
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derived in Ref. [4], which uses a quasi-particle self-consistent
treatment of the gluonic vacuum — see also Ref. [13]. The nu-
merical solution of the quasi-particle gap equation leads to an
expression for V that can be parametrized in momentum space
as

8.07 log’o'(’z(qz/mg-&-O.SZ)

C(Q) = q2 lOgO.S(qZ/m%JrlAl) fOr q > mg
Vig) = o3
L(q):—% (%) o, for g < my
(35)

where m, is a free parameter that comes from renormalization
and sets the scale of the theory. In Ref. [4], m, was fitted to
the ground state static potential of heavy quarks. The value
extracted was m, = 600 MeV. For U (g), we the potential for
the interaction of transverse gluons in momentum space, we
use the following expression extracted from a fit of a lattice
simulation of QCD in the Coulomb gauge [5]

q2

-, 36
q4+m‘("; (36)

Ulg) =

where m is the Gribov mass. This is motivated by the Gribov
ansatz [14] that the equal-time correlation function of trans-
verse gluon fields DZ (¢) should vanish at ¢ = 0. The value
quoted in Ref. [5] for mg, using the string tension as scale
/6 = 440 MeV to fix the lattice spacing in physical units,
was mg = 768 MeV.

For discussions on the solution of the gap equation for a
confining interaction like in Eq. (35), see Refs. [15, 16]. Us-
ing the value of Ref. [4] for m,, one obtains that the solution
of the gap equation gives a too small value for the quark con-
densate, of the order of (Gg) = (—100 MeV)?. Now, adding
the transverse-gluon interaction, Hr, with U given by the lat-
tice form, and using m, = mg, one obtains a quark condensate
close to the physical value. The improvement in the value of
quark condensate with the addition of a transverse part has
also been found in Ref. [11]. Our results for the constituent
quark mass function M — normalized to M = My — for dif-
ferent values of the current quark mass m is shown in Fig. 2
as a function of the momentum scaled to m,. The same inter-
action was used to study the baryon density dependence of the
quark condensate [16], with the result that the chiral restora-
tion comes out at a too low density.

In this paper we concentrate on the elastic process p+D° —
p+D° — the other quark-interchange processes will be dis-
cussed in a separate publication. In terms of color-spin-flavor
matrix elements, this quark-interchange process is equivalent
to the elastic process K p, discussed in Ref. [17]. The most
important contributions of Hy to this channel come from the
momentum dependent central and spin-spin (proportional to
S1-S2) components, for which
247
- 3MM’

where M’ = M,, = M for graphs (1) and (3), and M’ = M,
for graphs (2) and (4). The corresponding color-spin-flavor
coefficients ®; for these interactions are shown in Table 1.

vs(q) U(q), (37

S. M. Antunes, G. Krein, and V.E. Vizcarra

k

M /M

FIG. 2: The constituent quark mass function My, normalized to M =
My—p as a function of the momentum (scaled to my), for different
values of the current quark mass my.

qq interaction ‘ (O] ) w3 Wy
Central -4/9 4/9 4/9 -4/9
Spin-spin -1/3 -1/3 -1/18 -1/18

TABLE I: The color-spin-flavor coefficients ®; from the central and
spin-spin interactions.

We compare results with the traditional one-gluon ex-
change (OGE) interaction, for which the spin-spin component
is given by

&no
o) =~ (38)

where 0 is the strong coupling constant.
The expression of the total cross section is given by

tmax  do(s)
= dt
o(s) /tm,-,, o, (39)
with
2
do(s) e [sz — (M2 —M3) }

= Von 2)
di e (4 M3)’ [ - (M3 - M3)?] Vor

(40
where the Mandelstam s and ¢ can be easily related to the mo-
menta p and p’ in the c.m. system.

Our results are shown in Fig. 3,. In this figure we show the
prediction using the Coulomb-gauge quark model, together
with the corresponding result using the interaction of Eq. (38).
We use standard quark model parameters for oo = 400 MeV
and B = 383 MeV. For the charm quark mass we use M, =
1600 MeV, and for the u# and d quark masses we use M, =
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80 T T T T

O(s) [mb]

FIG. 3: Total cross-section for the elastic process p +D? — p + D

. 1/2
as a function of s'/2 — s /

th
stl h/ ? is the threshold value of 5. Solid line is for the Coulomb-gauge

quark model and dashed line is for the one-gluon-exchange hyperfine
interaction.

, where s is the total c.m. energy and

M, = 330 MeV when using the OGE interaction, and M,, =
M, =250 MeV when using the Coulomb-gauge quark model.

One sees that the Coulomb-gauge quark model predicts
larger values for the cross sections than the hyperfine OGE
interaction. One reason for this is that the hyperfine interac-
tions for two of the graphs in Fig. 1, come with the mass of
the charm quark in the denominator, which reduces a lot the
interaction at low energies. Including the Coulomb part of
the OGE interaction, increases the cross section and becomes
comparable to the Coulomb-gauge quark model.
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V.  CONCLUSIONS AND PERSPECTIVES

In this paper we have introduced a method to calculate
meson-baryon interactions in the context of a microscopic
quark model inspired on the Hamiltonian of QCD in the
Coulomb gauge. We used the elastic process p+D° — p+D°
to illustrate the procedure, obtaining corresponding numer-
ical values for the total cross section. The model contains
a longitudinal Coulomb confining interaction derived from a
self-consistent quasi-particle approximation to the QCD vac-
uum [4], and a traverse hyperfine interaction motivated from
lattice simulations of QCD in Coulomb gauge [5]. The model
is confining and realizes the spontaneous breaking of chiral
symmetry. We have also compared results using the hyper-
fine component of the traditional OGE interaction, commonly
used in the context of nonrelativistic quark models. We pre-
dict values above 10 mb for total cross sections close to thresh-
old. The Coulomb-gauge quark model predicts larger val-
ues for the cross sections than the hyperfine OGE interac-
tion, since the hyperfine interactions are suppressed by the
large charm quark mass in the denominator for two quark-
interchange graphs.

Our model can be improved in several respects. One di-
rection is to use a variational estimate for the parameters o
and B optimizing the masses of the mesons and baryons. An-
other improvement is to avoid the expansion of the constituent
quark mass function in powers of momentum, at the cost of
increasing substantially the computational complexity.
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