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Effect of Event-by-Event Fluctuations on Hydrodynamical Evaluation of Elliptical Flow
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Elliptic flow at RHIC is computed event-by-event with NeXSPheRIO. We show that when symmetry of
the particle distribution in relation to the reaction plane is assumed, there is a disagreement between the true
and reconstructed elliptic flows. We suggest a possible way to take into account the asymmetry and get good
agreement between these elliptic flows.
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Hydrodynamics is one of the main tools to study the collec-
tive flow in high-energy nuclear collisions. Here we discuss
results obtained with the hydrodynamical code NeXSPheRIO.
It is a junction of two codes: NeXus and SPheRIO. The SPhe-
RIO code is used to compute the hydrodynamical evolution.
It is based on Smoothed Particle Hydrodynamics, a method
originally developed in astrophysics and adapted to relativis-
tic heavy ion collisions [1]. Its main advantage is that any
geometry in the initial conditions can be incorporated. The
NeXus code is used to compute the initial conditions Tµν, jµ

and uµ on a proper time hypersurface [2]. NeXSPheRIO is
run many times, corresponding to many different events or
initial conditions. At the end, an average over final results is
performed. This mimics experimental conditions. This is dif-
ferent from the canonical approach in hydrodynamics where
initial conditions are adjusted to reproduce some selected data
and are very smooth. This code has been used to study a range
of problems concerning relativistic nuclear collisions [3–8].
Here a calculation of elliptic flow is performed [9].

In a hydrodynamical code, the impact parameter~b is usu-
ally known. The theoretical, or true, elliptic flow parameter at
a given pseudo-rapidity η is defined as

〈vb
2(η)〉= 〈

∫
d2N/dφdηcos[2(φ−φb)]dφ∫

d2N/dφdηdφ
〉 (1)

φb is the angle between~b and some fixed reference axis. The
average is performed over all events in the centrality bin.

Experimentally, the impact parameter angle φb is not
known. In the so-called standard method, an approximation,
ψ2, is estimated. Elliptic flow parameter with respect to this
angle, vobs

2 (η), is calculated. Then a correction is applied
to vobs

2 (η) to account for the reaction plane resolution, lead-
ing to the experimentally reconstructed elliptic flow parameter
vrec

2 (η). For example in a Phobos-like way [10, 11]

〈vrec
2 (η)〉= 〈 vobs

2 (η)√
〈cos[2(ψ<0

2 −ψ>0
2 )]〉

〉 (2)

where

vobs
2 (η) = ∑i d2N/dφidηcos[2(φi−ψ2)]

∑i d2N/dφidη
(3)

and

ψ2 =
1
2

tan−1 ∑i sin2φi

∑i cos2φi
(4)

In the hit-based method, ψ<0
2 and ψ>0

2 are determined for
subevents η < 0 and > 0 respectively and if v2 is computed
for a positive (negative) η, the sums in ψ2, eq. (4), are over
particles with η < 0 (η > 0). In the track-based method, ψ<0

2
and ψ>0

2 are determined for subevents 2.05 <| η |< 3.2, the
sums in ψ2, eq. (4), are over particles in both sub-events, v2
is obtained for particles around 0 < η < 1.8 and reflected (to
account for the different multiplicities between a subevent and
the sums in eq. (4), there is also an additional

√
2α with α∼ 1,

in the reaction plane correction in eq. (2)). Since both meth-
ods are in agreement but only the hit-based method covers a
large pseudo-rapidity interval, we use this latter method.

We want to check whether the theoretical and experimental
estimates are in agreement, i.e., 〈vb

2(η)〉= 〈vrec
2 (η)〉. A neces-

sary condition for this, from eq. (2), is, 〈vb
2(η)〉 ≥ 〈vobs

2 (η)〉.
In Fig. 1, we show the results for 〈vb

2(η)〉 (solid line) and
〈vobs

2 (η)〉 (dashed line).
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FIG. 1: Comparison between various ways of computing v2 using
NeXSPheRIO for Phobos 15-25% centrality window[11]: solid line
is vb

2, obtained using the known impact parameter angle φb, dashed
(dotted) line is vobs

2 (vrec
2 ), obtained using the reconstructed impact

parameter angle ψ2 without (with) reaction plane correction.

We see that 〈vb
2(η)〉 ≤ 〈vobs

2 (η)〉 for most η’s. So, as shown
also in the figure, dividing by a cosine to get 〈vrec

2 (η)〉 (dotted
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curve) makes the disagreement worse: 〈vb
2(η)〉 and 〈vrec

2 (η)〉
are different. This is true for all three Phobos centrality win-
dows and more pronounced in the most central window.

Since the standard way to include the correction for the
reaction plane resolution (eq. (2)) seems inapplicable, we
need to understand why. When we look at the distribution
d2N/dφdη obtained in a NeXSPheRIO event (presumably
also in a true event), it is not symmetric with respect to the

reaction plane. (We recall that the reaction plane is the plane
defined by the impact parameter vector and the beam axis.)
This happens because i) the incident nuclei have a granular
structure, ii) the number of produced particles is finite. The
symmetry might be better with respect to the plane with incli-
nation ψ2 in relation to the reference axis and containing the
beam axis. Therefore we must write for each event

d2N
dφdη

= v0(η)[1+∑
n

2vb
n(η)cos(n(φ−φb))+∑

n
2v′bn (η)sin(n(φ−φb))] (5)

= v0(η)[1+∑
n

2vobs
n (η)cos(n(φ−ψ2))+∑

n
2v′obs

n (η)sin(n(φ−ψ2))] (6)

It follows that

vobs
2 (η) = vb

2(η)cos[2(ψ2−φb)]+ v′b2 (η)sin[2(ψ2−φb)] (7)

Due to the sine term [9], we can indeed have 〈vobs
2 (η)〉 >

〈vb
2(η)〉, and therefore 〈vrec

2 (η)〉 > 〈vb
2(η)〉 as in Fig. 1 (for

a more detailed discussion, see [9]).
In the standard approach, it is assumed that d2N/dφdη is

symmetric with respect to the reaction plane and there are no
sine terms in the Fourier decomposition in (eq. (5)); eq. (7)
leads to (for the hit-based or track-based method)

〈vb
2(η)〉= 〈vobs

2 (η)〉/〈cos[2(ψ2−φb)]〉 (8)

and eq. (2) follows. However as explained above, the use of
NeXus initial conditions leads to d2N/dφdη not symmetric
with respect to the reaction plane (and presumably this is also
the case in each real event), so eq. (8) and (2) are not valid.

As already mentioned, the symmetry might be better with
respect to the plane with inclination ψ2 in relation to the ref-
erence axis and containing the beam axis. From (5) and (6),
we have

vb
2(η)= vobs

2 (η)×cos[2(ψ2−φb)]+v′obs
2 (η)×sin[2(ψ2−φb)].

(9)
If the symmetry is perfect v′obs

2 = 0. Otherwise, 〈v′obs
2 (η)×

sin[2(ψ2−φb)]〉= 0 (for a more detailed discussion, see [9]).
So whether the symmetry is perfect or approximate, 〈vb

2(η)〉∼
〈vobs

2 (η)× cos[2(ψ2− φb)]〉 and instead of eq. (2) we would
have

〈vRec
2 (η)〉=

〈
vobs

2 (η)×
√
〈cos[2(ψ<0

2 −ψ>0
2 )]〉

〉
(10)

In Fig. 2, we show 〈vRec
2 (η)〉 (dash-dotted line) and 〈vb

2(η)〉
(solid line). We see that the agreement between both methods
is improved compared to Fig. 1.

We have also computed the elliptic flow parameter as func-
tion of transverse momentum for charged hadrons with 0 <

η < 1.5 for the 50% most central collisions. We found that
〈vb

2(p⊥)〉 computed as in eq. (1) is well approximated by
〈vRec

2 (p⊥)〉 computed as in eq. (10).
In summary, from Fig. 1, elliptic flow estimated from the

standard method with reaction plane correction is an overes-
timate of true elliptic flow (vrec

2 > vb
2). From Fig. 2, using a

method that takes into account the more symmetrical nature
of particle distribution in relation to the plane with inclination
ψ2 with respect to the reference axis and containing the beam
axis (rather than with respect to the reaction plane), we get a
better agreement between reconstructed and true elliptic flows
(vRec

2 ∼ vb
2).

As for overestimating the true elliptic flow, a similar con-
clusion was reached in [12] and [13]. In both papers, it is
found and expected that there will be differences between
vb

2, calculated using the known quantity ~b, and vrec
2 , calcu-

lated with the reaction plane method or two-particle cumu-
lant method both because of the so-called non-flow correla-
tions (overall momentum conservation, resonance decays, jet
production,etc) and event-by-event fluctuations (mostly ec-
centricity fluctuations). In principle, higher-order cumulant
methods take care of non-flow effects. If there is still disagree-
ment between the true elliptic flow and higher-order cumulant
methods, as in [12], then fluctuations are important. If there is
agreement as in [13], then non-flow effects are important and
not fluctuations. In addition to the disagreement between their
conclusions, [12] and [13] do not (neither are expected to) re-
produce the RHIC data. So an interesting question is whether
a more accepted hydrodynamical description would lead to a
sizable effect. Using NeXSPheRIO, we found that true elliptic
flow vb

2(η = 0) is overestimated by ∼ 15-30 % (according to
centrality) with the reaction plane method, and vb

2(p⊥) by ∼
30% at p⊥=0.5 GeV. In our case, since 〈vb

2〉 ∼ 〈vRec
2 〉, a large

part of the difference between the true 〈vb
2〉 and reconstructed

〈vrec
2 〉 is due to the (wrong) assumption of symmetry of the

particle distribution around the reaction plane, made to obtain
〈vrec

2 〉.
Finally, we would like to emphasize that it is important to

have precise experimental determination of elliptic flow, in
particular free from the assumption of symmetry that we dis-
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FIG. 2: Comparison between true elliptic flow vb
2 (solid line) and sug-

gested method to compute reconstructed elliptic flow from data vRec
2

(dash-dotted) for the three Phobos centrality windows[11]. Squares
represent Phobos data (black error bars are 1 σ statistical errors and
grey bands, systematic uncertainties at ∼90% confidence level).

cussed. Elliptic flow teaches us about the initial conditions
and thermalization, in principle. In this manner [14], Hirano
had noted that with his hydrodynamical code plus freeze out,
he could not reproduce v2(η), in particular at large η, per-
haps signalizing lack of thermalization. In subsequent works
[15, 16], Hirano and collaborators argued that agreement with
v2(η) data could be obtained with adequate initial conditions,
a similar hydrodynamical code and, instead of freeze out, a
transport code providing hadronic dissipation. However these
conclusions would be affected if v2(η) data were lower, as
we think they should be. (Incidentally, though our objective
was not to reproduce data, note that our model with freeze out
(no transport code) reproduces reasonably both the v2(η) data
as in [16] (Fig. 3) and the v2(p⊥) data (not shown).) There-
fore, to know e.g. what the initial conditions are or if there
is viscosity and in what phase, we need to settle the question
of whether event-by-event fluctuations are important and take
them into account in the experimental analysis.
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