
742 Brazilian Journal of Physics, vol. 37, no. 2C, June, 2007

QCD Sum Rule Approach to the New Mesons and the gDsJDK Coupling Constant
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We use diquark-antidiquark currents to investigate the masses and partial decay widths of the recently ob-
served mesons D+

sJ(2317), D∗0
0 (2308) and X(3872), considered as four-quark states, in a QCD sum rule ap-

proach. In particular we investigate the coupling constant gDsJDK . We found that the gDsJDK obtained in this
four-quark scenario is smaller than the coupling constant obtained when D+

sJ(2317) is considered as a conven-
tional cs̄ state.
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I. INTRODUCTION

The constituent quark model provides a rather successful
descrition of the spectrum of the mesons in terms of quark-
antiquark bound states, which fit into the suitable multiplets
reasonably well. Therefore, it is understandable that the re-
cent observations of the very narrow resonances D+

sJ(2317)
by BaBar [1], D+

sJ(2460) by CLEO [2], X(3872) by BELLE
[3], and the very broad scalar meson D∗0

0 (2308) by BELLE
[4], all of them with masses below quark model predictions,
have stimulated a renewed interest in the spectroscopy of open
charm and charmonium states. The difficulties to identify the
mesons D+

sJ(2317) and D+
sJ(2460) as cs̄ states are rather simi-

lar to those appearing in the light scalar mesons below 1 GeV
(the isoscalars σ(500), f0(980), the isodublet κ(800) and the
isovector a0(980)), whose masses are also smaller than naive
quark model predictions, and that can be interpreted as four-
quark states [5, 6]. In the case of X(3872), besides its small
mass, the observation, reported by the BELLE collaboration
[7], that the X decays to J/ψπ+π−π0, with a strength that is
compatible to that of the J/ψπ+π− mode:

Br(X → J/ψπ+π−π0)
Br(X → J/ψπ+π−)

= 1.0±0.4±0.3 , (1)

establishes strong isospin violating effects, which can not be
explained if the X(3872) is interpreted as a cc̄ state.

Due to these facts, these new mesons were considered as
good candidates for four-quark states by many authors [8]. In
refs. [9, 10] the method of QCD sum rules (QCDSR) [11–
13] was used to study the two-point functions for the mesons
D+

sJ(2317), D∗0
0 (2308)and X(3872) considered as four-quark

states in a diquark-antidiquark configuration. The results ob-
tained for their masses are compatible with the experimental
values and, therefore, in refs. [9, 10] the authors concluded
that it is possible to reproduce the experimental value of the
masses using a four-quark representation for these states.

Concerning their decay widths, the study of the three-point
functions related to the decay widths D+

sJ(2317) → D+
s π0,

D∗0
0 → D+π− and X(3872) → Jψπ+π−, using the diquark-

antidiquark configuration for DsJ , D∗0
0 and X , was done in

refs. [14–16]. The results obtained for their partial decay
widths are given in Table I, from where we see that the par-
tial decay widths obtained in refs. [14, 15], supposing that

the mesons D+
sJ(2317) and D∗0

0 are four-quark states, are con-
sistent with the experimental upper limit for the total decay
width.

TABLE I: Numerical results for the resonance decay widths

decay D+
sJ → D+

s π0 D∗0
0 → D+π− X → J/ψπ+π−

Γ (MeV) (6±2)×10−3 120±20 50±15
Γexp

tot (MeV) < 5 270 < 2.3

However, in the case of the meson X(3872), the partial de-
cay width obtained in ref. [16] is much bigger than the exper-
imental upper limit to the total width.

In ref. [16] it was shown that it is possible to reduce the
value of the estimated X(3872) decay width, by imposing
that the initial four-quark state has a non-trivial color struc-
ture. In this case, some diagrams are eliminated and the
partial decay width can be reduced to Γ(X → J/ψπ+π−)) =
(0.7±0.2) MeV. However, that procedure may appear some-
what unjustified and, therefore, more study is needed until one
can arrive at a definitive conclusion about the structure of the
meson X(3872).

Concerning the meson D+
sJ(2317), although its mass and

decay width can be explained in a four-quark scenario, they
can also be reproduced in other approaches [8], and it is not
yet possible to discriminate between the different structures
proposed for this state. Therefore, it is important to find ex-
perimental observations that could be used to descriminate
between the different quark structure of these mesons. As
pointed out in ref. [17], a signal could be obtained by the
analysis of certain heavy-ion collision observables. Another
possibility is to study the D+

sJ(2317) production in photonu-
cleon reactions. Whith the 12 GeV Upgrade of the CEBAF
accelerator at Jefferson Lab., the D+

sJ(2317) can be produced
in reactions of the type: γp→ ΛD+

sJD̄0. Therefore, if the cou-
pling constant, gDsJDK , is found to be very different depending
on the structure for D+

sJ(2317), then the photo-production of
D+

sJ(2317) can be used as a signal to descriminate its structure.
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II. THE gDsJDK COUPLING CONSTANT

The coupling, gDsJDK , defined through the effective la-
grangian

LDsJDK = gDsJDK (D̄sJDK +DsJD̄K̄) , (2)

was evaluated in ref. [18], supposing that the meson
D+

sJ(2317) is a conventional cs̄ state. They got:

gDsJDK = (9.2±0.5) GeV (3)

Here, we extend the calculation done in refs. [14, 15] to study
the hadronic vertex DsJDK. The QCDSR calculation for the
vertex, DsJDK, centers around the three-point function given
by

Tµ(p, p′,q) =
∫

d4xd4y eip′.x eiq.y〈0|T [ jD(x) j5µ(y) j†
DsJ

(0)]|0〉,
(4)

where jDsJ is the interpolating field for the scalar DsJ meson
[9]:

jDsJ =
εabcεdec√

2

[
(uT

a Cγ5cb)(ūdγ5Cs̄T
e )+u↔ d

]
, (5)

where a, b, c, ... are colour indices and C is the charge con-
jugation matrix. In Eq. (4), p = p′ + q and the interpolating
fields for the kaon and for the D mesons are given by:

j5µ = s̄aγµγ5qa, jD = iq̄aγ5ca, (6)

where q stands for the light quark u or d.
The calculation of the phenomenological side proceeds by

inserting intermediate states for D, K and DsJ , and by using

the definitions: 〈0| j5µ|K(q)〉 = iqµFK , 〈0| jD|D(p′)〉 = m2
D fD
mc

,
〈0| jDsJ (p)〉= λ. We obtain the following relation:

T phen
µ (p, p′,q) =

λm2
D fDFK gDsJDK/mc

(p2−m2
DsJ

)(p′2−m2
D)(q2−m2

K)
qµ

+ continuum contribution , (7)

where the coupling constant, gDsJDK , is defined by the on-
mass-shell matrix element: 〈DK|DsJ〉 = gDsJDK . The contin-
uum contribution in Eq.(7) contains the contributions of all
possible excited states.

In the case of the light scalar mesons, considered as
diquark-antidiquark states, the study of their vertex functions
using the QCD sum rule approach at the pion pole [12, 13, 19],
was done in ref.[20]. It was shown that the decay widths de-
termined from the QCD sum rule calculation are consistent
with existing experimental data. Here, we follow ref. [21] and
work at the kaon pole. The main reason for working at the
kaon pole is that one does not have to deal with the compli-
cations associated with the extrapolation of the form factor
[22]. The kaon pole method consists in neglecting the kaon
mass in the denominator of Eq. (7) and working at q2 = 0. In
the OPE side one singles out the leading terms in the operator
product expansion of Eq.(4) that match the 1/q2 term. Since

we are working at q2 = 0, we take the limit p2 = p′2 and we
apply a single Borel transformation to p2, p′2 → M2. On the
phenomenological side, in the structure qµ we get:

T phen(M2) =
λm2

D fDFK gDsJDK

mc(m2
DsJ
−m2

D)

(
e−m2

D/M2 − e−m2
DsJ

/M2)

+ A e−s0/M2
+

∫ ∞

u0

ρcc(u) e−u/M2
du, (8)

where A and ρcc(u) stands for the pole-continuum transitions
and pure continuum contributions, with s0 and u0 being the
continuum thresholds for DsJ and D respectively [14, 15]. For
simplicity, one assumes that the pure continuum contribution
to the spectral density, ρcc(u), is given by the result obtained
in the OPE side. Therefore, one uses the ansatz: ρcc(u) =
ρOPE(u). In Eq.(8), A is a parameter which, together with
gDsJDK , has to be determined by the sum rule.

On the OPE side we single out the leading terms propor-
tional to qµ/q2. Transferring the pure continuum contribution
to the OPE side, the sum rule for the coupling constant, up to
dimension 7, is given by:

C
(

e−m2
D/M2 − e−m2

DsJ
/M2)

+A e−s0/M2
=

=
1√
2

[
〈q̄q〉+ 〈s̄s〉

24π2

∫ u0

m2
c

du e−u/M2
u
(

1− m2
c

u

)2

+
mcms〈s̄s〉

25π2

∫ u0

m2
c

du e−u/M2
(

1− m2
c

u

)2

+
ms〈q̄q〉〈s̄s〉

12
e−m2

c/M2

− mc〈q̄q〉(〈q̄q〉+ 〈s̄s〉)
3

e−m2
c/M2

]
, (9)

with

C =
λm2

D fDFK

mc(m2
DsJ
−m2

D)
gDsJDK . (10)

III. RESULTS AND CONCLUSIONS

In the numerical analysis of the sum rules, the values
used for the meson masses, quark masses and condensates
are: mDsJ = 2.317 GeV, mD = 1.87 GeV, mc = 1.2 GeV,
ms = .13 GeV 〈q̄q〉 = −(0.23)3 GeV3, 〈s̄s〉 = 0.8〈q̄q〉. For
the meson decay constants we use FK = 160 MeV and fD =
0.22 GeV [23]. We use u0 = 6 GeV2 and for the cur-
rent meson coupling, λ, we are going to use the result ob-
tained from the two-point function in ref. [9]. Considering
2.6≤√s0 ≤ 2.8 GeV we get λ = (2.9±0.3)×10−3 GeV5.

In Fig. 1 we show, through the dots, the right-hand side
(RHS) of Eq.(9) as a function of the Borel mass. To determine
gDsJDK we fit the QCDSR results with the analytical expres-
sion in the left-hand side (LHS) of Eq.(9):

C
(

e−m2
Ds /M2 − e−m2

DsJ
/M2)

+A e−s0/M2
, (11)

Using
√

s0 = 2.7GeV we get: C = 4.53×10−4 GeV7 and A =
−4.68×10−4 GeV7. Using the definition of C in Eq.(10) and
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FIG. 1: Dots: the RHS of Eq.(9), as a function of the Borel mass.
The solid line gives the fit of the QCDSR results through the LHS of
Eq.(9).

λ = 2.9×10−3 GeV5 (the value obtained for
√

s0 = 2.7GeV)
we get gDsJDK = 2.8 GeV. Allowing s0 to vary in the interval
2.6 ≤ √s0 ≤ 2.8 GeV, the corresponding variation obtained
for the coupling constant is

2.5 GeV≤ gDsJDK ≤ 3.8 GeV. (12)

Fixing
√

s0 = 2.7GeV and varying the quark condensate,

the charm quark and the strange quark masses in the intervals:
−(0.24)3 ≤ 〈q̄q〉 ≤ −(0.22)3 GeV3, 1.1≤ mc ≤ 1.3GeV and
0.11 ≤ ms ≤ 0.15GeV, we get results for the coupling con-
stant still between the lower and upper limits given above. it is
important to mention that the agreement between the RHS and
LHS of the sum rule in Fig.1 is not so good, in this case, as it
was in the case of the couplings gDsJDsπ and gD∗0

0 Dπ evaluated
in refs. [14, 15]. One possible reason for that is the fact that
the kaon mass is much bigger than the pion mass. Therefore,
neglecting the kaon mass in Eq. (7) is not an approximation as
good as it is in the case of the sum rule in the pion pole.

We have presented a QCD sum rule study of the vertex
function associated with the hadronic vertex DsJDK, where
the DsJ(2317) meson was considered as diquark-antidiquark
state. Comparing the results in Eqs. (12) and (3) we see that
when the meson DsJ(2317) is considered as a conventional cs̄
state one gets a gDsJDK coupling constant much bigger than
when DsJ(2317) is considered a four-quark state. This result
can be usefull to experimentally investigate the quark struc-
ture of the meson DsJ(2317) through, for example, its photo-
production on nucleon targets.
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