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A detailed study is presented of the counterrotating model (CRM) for electrovacuum stationary axially sym-
metric relativistic thin disks of infinite extension without radial stress, in the case when the eigenvalues of the
energy-momentum tensor of the disk are real quantities, so that there is not heat flow. We find a general con-
straint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the
disk as the superposition of two counterrotating charged dust fluids. We then show that, in some cases, this
constraint can be satisfied if we take the two counterrotating tangential velocities as equal and opposite or by
taking the two counterrotating streams as circulating along electro-geodesics. However, we show that, in gen-
eral, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the
two counterrotating tangential velocities as equal and opposite. A simple family of models of counterrotating
charged disks based on the Kerr-Newman solution are considered where we obtain some disks with a CRM well
behaved. We also show that the disks constructed from the Kerr-Newman solution can be interpreted, for all
the values of parameters, as a matter distribution with currents and purely azimuthal pressure without heat flow.
The models are constructed using the well-known “displace, cut and reflect” method extended to solutions of
vacuum Einstein-Maxwell equations. We obtain, in all the cases, counterrotating Kerr-Newman disks that are
in agreement with all the energy conditions.
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I. INTRODUCTION

Several methods are known to exactly solve the Einstein
and Einstein-Maxwell field equations, or to generate new ex-
act solutions from simple known solutions [1]. However, the
above mentioned methods in general lead to solutions without
a clear physical interpretation or to solutions that depend on
many parameters without a clear physical meaning. Accord-
ingly, it is of importance to have some appropriate procedures
to obtain physical interpretations of these exact solutions. So,
in the past years such procedures have been developed for sta-
tic and stationary axially symmetric solutions in terms of thin
and, more recently, thick disk models.

Stationary or static axially symmetric exact solutions of
Einstein equations describing relativistic thin disks are of
great astrophysical importance since they can be used as mod-
els of certain stars, galaxies and accretion disks. These were
first studied by Bonnor and Sackfield [2], obtaining pressure-
less static disks, and then by Morgan and Morgan, obtaining
static disks with and without radial pressure [3, 4]. In con-
nection with gravitational collapse, disks were first studied by
Chamorro, Gregory, and Stewart. Also thin disks with radial
tension were considered [6]. Several classes of exact solu-
tions of the Einstein field equations corresponding to static
thin disks with or without radial pressure have been obtained
by different authors [7-15].

Rotating thin disks that can be considered as a source of
a Kerr metric were presented by Bic̆ák and Ledvinka [16],
while rotating disks with heat flow were studied by González
and Letelier [17]. The nonlinear superposition of a disk and a

black hole was first obtained by Lemos and Letelier [10]. Per-
fect fluid disks with halos were studied by Vogt and Letelier
[18]. The stability of some general relativistic thin disks mod-
els using a first order perturbation of the energy-momentum
tensor was investigated by Ujevic and Letelier [19].

González and Letelier [20] constructed models of static rel-
ativistic thick disks in various coordinate systems. Although
the disks have constant thickness, the matter density decreases
rapidly with radius and the z coordinate, and in principle they
also can be used to represent both the disk part and the cen-
tral bulges of galaxies. Also Vogt and Letelier [21] consid-
ered more realistic three-dimensional models for the gravi-
tational field of Galaxies in the General Relativistic context.
Essentially they formulate the General Relativistic versions in
isotropic coordinates of the potential-density pairs deduced by
Miyamoto and Nagai [22, 23] and Satoh [24].

Disk sources for stationary axially symmetric spacetimes
with magnetic fields are also of astrophysical importance
mainly in the study of neutron stars, white dwarfs and galaxy
formation. Although disks with electric fields do not have
clear astrophysical importance, their study may be of inter-
est in the context of exact solutions. Thin disks have been
discussed as sources for Kerr-Newman fields [25], magne-
tostatic axisymmetric fields [26], conformastationary metrics
[27], while models of electrovacuum static counterrotating
dust disks were presented in [28]. Charged perfect fluid disks
were also studied by Vogt and Letelier [29], and charged per-
fect fluid disks as sources of static and Taub-NUT-type space-
times by Garcı́a-Reyes and González [30, 31].

In all the above cases, the disks are obtained by an “in-
verse problem” approach, called by Synge the “g-method”
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[32]. The method works as follows: a solution of the vac-
uum Einstein equations is taken, such that there is a discon-
tinuity in the derivatives of the metric tensor on the plane of
the disk, and the energy-momentum tensor is obtained from
the Einstein equations. The physical properties of the mat-
ter distribution are then studied by an analysis of the surface
energy-momentum tensor so obtained. Another approach to
generate disks is by solving the Einstein equations given a
source (energy-momentum tensor). Essentially, they are ob-
tained by solving a Riemann-Hilbert problem and are highly
nontrivial [33-39]. A review of this kind of disks solutions
to the Einstein-Maxwell equations was presented by Klein in
[40].

Now, when the inverse problem approach is used for sta-
tic electrovacuum spacetimes, the energy-momentum tensor
is diagonal and its analysis is direct and, except for the
dust disks, all the obtained disks have anisotropic sources
with azimuthal stress different from the radial stress. On
the other hand, when the considered spacetime is stationary,
the obtained energy-momentum tensor is non-diagonal and
the analysis of its physical content is more involved and, in
general, the obtained source is not only anisotropic but with
nonzero heat flow. Due to this fact, there are very few works
about of stationary electrovacuum disks and they are limited
to disks obtained with solutions that lead to disks without heat
flow [25, 31].

The necessary condition to obtain a thin disk without heat
flow is that the eigenvalues of the energy-momentum tensor
must be real quantities, which can be only for very few known
electrovacuum solutions. In [31] we consider a Taub-NUT
type solution such that the energy-momentum tensor can be
written as an upper right triangular matrix, so that the diag-
onalization is trivial and the eigenvalues are real quantities.
However, the obtained disks are not really rotating disks since
the spatial components of their velocity vectors are zero with
respect to the coordinates and so the disks are “locally sta-
tics”. The first true rotating electrovacuum thin disks were
obtained by Ledvinka, Bic̆ák, and Z̆ofka [25] by applying the
“displace, cut and reflect” method to the Kerr-Newman solu-
tion. The so obtained disks have no radial pressure and no
heat flow. However, the authors do not show if the eigenval-
ues of the momentum-energy tensor are real quantities for all
the values of the parameters, is that, if these disks can always
be interpreted as a matter distribution with currents and purely
azimuthal pressure, or if there are some case where can exist
nonzero heat flow (complex eigenvalues).

The above disks can also be interpreted as made of two
counterrotating streams of moving charged particles, as was
also indicated in [25]. Now, in order to do this interpretation,
the counterrotating tangential velocities of the two streams
must to satisfy a constraint, which in general is not satis-
fied for disks obtained from generic stationary electrovacuum
solutions. In [25] the authors take the two counterrotating
streams as circulating along electro-geodesics, but they do not
show if such decomposition can be done. In addition, as we
will show in this paper, in general the electro-geodesics mo-
tion do not agree with the above mentioned constraint and so
it is necessary to consider another possibility for the com-

plete determination of the counterrotating tangential veloci-
ties. Another possibility, also commonly assumed, is to take
the two counterrotating velocities as equal and opposites but,
as we will show, in general the counterrotating velocities are
not completely determined by the constraint, so that the corre-
sponding interpretation as two counterrotating streams is not
possible.

The above interpretation is obtained by means of the Coun-
terrotating Model (CRM) in which the energy-momentum ten-
sor of the source is expressed as the superposition of two
counterrotating perfect fluids. Now, even though this inter-
pretation can be seen as merely theoretical, there are observa-
tional evidence of disks made of streams of rotating and coun-
terrotating matter (see, for instance, [41–43]). These disks are
made of stars and gas so that they are disks with pressure.
Nevertheless, as is suggested in [42], the preexisting galax-
ies have a component originally constituted mainly by a gas
free stellar disk, i.e., collisionless matter or dust. A detailed
study of the CRM for generic relativistic static thin disks was
presented in [15] for the vacuum case, whereas the extension
for static electrovacuum disks was presented in [28, 30]. On
the other hand, the CRM for stationary thin disks has not been
completely developed, neither for the vacuum case, and only a
preliminary version of it was presented in [17] for the case of
stationary thin disks without heat flow and with positive radial
stress (pressure).

The purpose of the present paper is twofold. In first
instance, we present a detailed analysis of the energy-
momentum tensor and the surface current density for elec-
trovacuum stationary axially symmetric relativistic thin disks
of infinite extension without radial stress, in the case when the
energy-momentum tensor of the disks can be diagonalized,
so that there is not heat flow. And, in the second place, we
present the complete study of the Counterrotating Model for
these stationary thin disks. The paper is structured as follows.
In Sec. II we present a summary of the procedure to obtain
models of rotating thin disks with a purely azimuthal pressure
and currents, using the well-known “displace, cut and reflect”
method extended to solutions of Einstein-Maxwell equations,
in the case when the eigenvalues of the energy-momentum
tensor of the disk are real quantities. In particular, we obtain
expressions for the surface energy-momentum tensor and the
surface current density of the disks.

In Sec. III the disks are interpreted in terms of the counter-
rotating model (CRM). We find the general constraint over the
counterrotating tangential velocities needed to cast the surface
energy-momentum tensor of the disk as the superposition of
two counterrotating charged dust fluids. We then show that
this constraint can be satisfied if we take the two counterro-
tating tangential velocities as equal and opposite as well as
by taking the two counterrotating streams as circulating along
electro-geodesics. However, we show that, in general, it is not
possible to take the two counterrotating fluids as circulating
along electro-geodesics nor take the two counterrotating tan-
gential velocities as equal and opposite. We also find explicit
expressions for the energy densities, current densities and ve-
locities of the two counterrotating fluids.

In the following section, Sec. IV, we consider a family
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of models of counterrotating charged dust disks based on the
Kerr-Newman metric, perhaps the only simple electrovacuum
solution that lead to stationary thin disks without heat flow.
We show that for Kerr-Newman fields the eigenvalues of the
energy-momentum tensor of the disks are always real quan-
tities, for all the values of the parameters, and so they do
not present heat flow in any case. We also analyze the CRM
for these disks and study the tangential velocities, energy and
electric charge densities of both streams when the two fluids
move along electrogeodesics and when they move with equal
and opposite velocities. Also the stability against radial per-
turbation is analyzed in both of the cases. Finally, in Sec. V,
we summarize our main results.

II. ELECTROVACUUM ROTATING RELATIVISTIC THIN
DISKS

A sufficiently general metric for our purposes can be writ-
ten as the Weyl-Lewis-Papapetrou line element [1],

ds2 =− e2Ψ(dt +W dϕ)2 + e−2Ψ[r2dϕ2 + e2Λ(dr2 +dz2)],
(1)

where we use for the coordinates the notation (x0,x1,x2,x3) =
(t,ϕ,r,z), and Ψ, W , and Λ are functions of r and z only.
The vacuum Einstein-Maxwell equations, in geometric units
in which 8πG = c = µ0 = ε0 = 1, are given by

Gab = Tab, (2a)
Fab

;b = 0, (2b)

with

Tab = FacF c
b − 1

4
gabFcdFcd , (3a)

Fab = Ab,a−Aa,b, (3b)

where Aa = (At ,Aϕ,0,0) and the electromagnetic potentials At
and Aϕ are also functions of r and z only.

For the metric (1), the Einstein-Maxwell equations are
equivalent to the system [44]

∇ · [r−2 f (∇Aϕ−W ∇At ] = 0, (4a)

∇ · [ f−1∇At + r−2 f W (∇Aϕ−W ∇At ] = 0, (4b)

∇ · [r−2 f 2∇W −2r−2 f At(∇Aϕ−W ∇At)] = 0, (4c)

f ∇2 f = ∇ f ·∇ f − r−2 f 4∇W ·∇W + f ∇At ·∇At

+ r−2 f 3(∇Aϕ−W ∇At) · (∇Aϕ−W ∇At), (4d)

Λ,r = r(Ψ2
,r−Ψ2

,z)−
1
4r

(W 2
,r −W 2

,z)e
4Ψ− 1

2r
(r2e−2Ψ−W 2e2Ψ)(A2

t,r−A2
t,z)

+
1
2r

(A2
ϕ,r−A2

ϕ,z)e
2Ψ− 1

r
W (Aϕ,rAt,r−Aϕ,zAt,z)e2Ψ, (4e)

Λ,z = 2rΨ,rΨ,z− 1
2r

W,rW,ze4Ψ− 1
r
(r2e−2Ψ−W 2e2Ψ)At,rAt,z

+
1
r

Aϕ,rAϕ,ze2Ψ− 1
r

W (Aϕ,rAt,z +Aϕ,zAt,r)e2Ψ, (4f)

where ∇ is the standard differential operator in cylindrical co-
ordinates and f = e2Ψ.

In order to obtain a solution of (2a) - (2b) representing a thin
disk at z = 0, we assume that the components of the metric
tensor are continuous across the disk, but with first derivatives
discontinuous on the plane z = 0, with discontinuity functions

bab = gab,z|z=0+ − gab,z|z=0− = 2 gab,z|z=0+ . (5)

Thus, by using the distributional approach [46–48] or the
junction conditions on the extrinsic curvature of thin shells
[49–51], the Einstein-Maxwell equations yield an energy-
momentum tensor Tab = T elm

ab +T mat
ab , where T mat

ab = Qab δ(z),
and a current density Ja = jaδ(z) =−2e2(Ψ−Λ)Aa,zδ(z), where

δ(z) is the usual Dirac function with support on the disk. T elm
ab

is the electromagnetic tensor defined in Eq. (3a), ja is the
current density on the plane z = 0, and

Qa
b =

1
2
{bazδz

b−bzzδa
b +gazbz

b−gzzba
b +bc

c(g
zzδa

b−gazδz
b)}

is the distributional energy-momentum tensor. The “true” sur-
face energy-momentum tensor (SEMT) of the disk, Sab, and
the “true” surface current density, ja, can be obtained through
the relations

Sab =
∫

T mat
ab dsn = eΛ−Ψ Qab , (6a)

ja =
∫

Ja dsn = eΛ−Ψ ja , (6b)
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where dsn =
√

gzz dz is the “physical measure” of length in
the direction normal to the disk.

For the metric (1), the nonzero components of Sb
a are

S0
0 =

eΨ−Λ

r2

[
2r2(Λ,z− 2Ψ,z )− e4ΨW W ,z

]
, (7a)

S0
1 = −eΨ−Λ

r2

[
4r2W Ψ,z + (r2 + W 2e4Ψ)W ,z

]
, (7b)

S1
0 =

eΨ−Λ

r2

[
e4ΨW ,z

]
, (7c)

S1
1 =

eΨ−Λ

r2

[
2r2Λ,z + e4ΨW W ,z

]
, (7d)

and the nonzero components of the surface current density ja
are

jt = −2eΨ−ΛAt,z, (8a)

jϕ = −2eΨ−ΛAϕ,z, (8b)

where all the quantities are evaluated at z = 0+.
These disks are essentially of infinite extension. Finite

disks can be obtained introducing oblate spheroidal coordi-
nates, which are naturally adapted to a disk source, and impos-
ing appropriate boundary conditions. These solutions, in the
vacuum and static case, correspond to the Morgan and Morgan
solutions [3]. A more general class of solutions representating
finite thin disks can be constructed using a method based on
the use of conformal transformations and solving a boundary-
value problem [4–6, 15, 30, 31].

Now, in order to analyze the matter content of the disks
is necessary to compute the eigenvalues and eigenvectors of
the energy-momentum tensor. The eigenvalue problem for the
SEMT (7a) - (7d)

Sa
b ξb = λ ξa, (9)

has the solutions

λ± =
1
2

(
T ±

√
D

)
, (10)

where

T = S0
0 + S1

1 , D = (S1
1−S0

0)
2 +4 S0

1 S1
0, (11)

and λr = λz = 0. For the metric (1)

D = 4
e2(Ψ−Λ)

r2 (4r2Ψ2
,z−W 2

,z e4Ψ) = A2−B2, (12a)

T = 4eΨ−Λ(Λ,z−Ψ,z), (12b)

where

A = 4Ψ,zeΨ−Λ, B =
2
r

W,ze3Ψ−Λ. (13)

The corresponding eigenvectors are

ξa± = ( ξ0±, ξ1±, 0, 0),

Xa = eU−Λ(0,0,1,0),

Y a = eU−Λ(0,0,0,1),

(14)

with

g(ξ±,ξ±) = 2N±e2Ψ

(
ξ0±

S0
0−S1

1±
√

D

)2

, (15)

where

N± =
√

D(−
√

D±A). (16)

We only consider the case when D ≥ 0, so that the two
eigenvalues λ± are real and different and the two eigenvec-
tors are orthogonal, in such a way that one of them is timelike
and the other is spacelike. Since |A| ≥ √D, from (16) follows
that when A > 0 the negative sign corresponds to the timelike
eigenvector while the positive sign to the spacelike eigenvec-
tor. When A < 0 we have the opposite case. So the function
Ψ,z determines the sign of the norm.

Let V a be the timelike eigenvector, VaV a =−1, and W a the
spacelike eigenvector, WaW a = 1. In terms of the orthonor-
mal tetrad or comoving observer eâ

b = {V b,W b,Xb,Y b}, the
SEMT and the surface electric current density may be decom-
posed as

Sab = εVaVb + pϕWaWb, (17a)

ja = j0̂Va + j1̂Wa, (17b)

where

ε = −λ±, pϕ = λ∓, (18)

are, respectively, the surface energy density, the azimuthal
pressure, and

j0̂ =−V aja, j1̂ = W aja, (19)

are the surface electric charge density and the azimuthal cur-
rent density of the disk measured by this observer. In (18) the
sign is chosen according to which is the timelike eigenvec-
tor and which is the spacelike eigenvector. However, in order
to satisfy the strong energy condition ρ = ε + pϕ ≥ 0, where
ρ is the effective Newtonian density, we must choose ξ− as
the timelike eigenvector and ξ+ as the spacelike eigenvector.
These condition characterizes a disk made of matter with the
usual gravitational attractive property. Consequently Ψ,z must
be taken positive. So we have

ε = −λ−, pϕ = λ+, (20)

and

V 0 =
νe−Ψ
√−2N−

(S0
0−S1

1−
√

D), (21a)

V 1 =
2νe−Ψ
√−2N−

S1
0, (21b)

where ν = ± so that the sign is chosen according to the
causal character of the timelike eigenvector (observer’s four-
velocity),

W 0 =
2√
2M

S0
1, (22a)

W 1 =
1√
2M

(S1
1−S0

0 +
√

D), (22b)
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where

M =
√

D
{

g11
√

D+2rW B+(r2e−2Ψ +W 2e2Ψ)A
}

. (23)

III. COUNTERROTATING CHARGED DUST DISKS

We now consider, based on Refs. [15] and [30], the pos-
sibility that the SEMT Sab and the current density ja can be
written as the superposition of two counterrotating charged
fluids that circulate in opposite directions; that is, we assume

Sab = Sab
+ + Sab

− , (24a)
ja = ja+ + ja−, (24b)

where the quantities on the right-hand side are, respectively,
the SEMT and the current density of the prograde and retro-
grade counterrotating fluids.

Let Ua± = (U0±,U1±,0,0) = U0±(1,ω±,0,0) be the velocity
vectors of the two counterrotating fluids, where ω± = U1±/U0±
are the angular velocities of each stream. In order to do the
decomposition (24a) and (24b) we project the velocity vectors
onto the tetrad eâ

b, using the relations [52]

U â
± = eâ

bUb
±, Ua

± = eb̂
aU b̂

±. (25)

In terms of the tetrad (14) we can write

Ua
± =

V a + v±W a
√

1− v2±
, (26)

so that

V a =

√
1− v2−v+Ua−−

√
1− v2

+v−Ua
+

v+− v−
, (27a)

W a =

√
1− v2

+Ua
+−

√
1− v2−Ua−

v+− v−
, (27b)

where v± =U 1̂±/U 0̂± are the tangential velocities of the streams
with respect to the tetrad.

Another quantity related with the counterrotating motion
is the specific angular momentum of a particle rotating at a
radius r, defined as h± = gϕaUa±. This quantity can be used to
analyze the stability of circular orbits of test particles against
radial perturbations. The condition of stability,

d(h2)
dr

> 0, (28)

is an extension of Rayleigh criteria of stability of a fluid in rest
in a gravitational field [53]. For an analysis of the stability of
a rotating fluid taking into account the collective behavior of
the particles see for example Refs. [19, 54].

Substituting (27a) and (27b) in (17a) we obtain

Sab =
F(v−,v−)(1− v2

+) Ua
+Ub

+

(v+− v−)2

+
F(v+,v+)(1− v2−) Ua−Ub−

(v+− v−)2

− F(v+,v−)(1− v2
+)

1
2 (1− v2−)

1
2 (Ua

+Ub−+Ua−Ub
+)

(v+− v−)2

where

F(v1,v2) = εv1v2 + pϕ. (29)

Clearly, in order to cast the SEMT in the form (24a), the mixed
term must be absent and therefore the counterrotating tangen-
tial velocities must satisfy the following constraint

F(v+,v−) = εv+v−+ pϕ = 0, (30)

where we assume that |v±| 6= 1.
Then, assuming a given choice for the tangential velocities

in agreement with the above relation, we can write the SEMT
as (24a) with

Sab
± = ε± Ua

±Ub
±, (31)

so that we have two counterrotating dust fluids with surface
energy densities, measured in the coordinates frames, given
by

ε± =
[

1− v2±
v∓− v±

]
εv∓, (32)

Thus the SEMT Sab can be written as the superposition of two
counterrotating dust fluids if, and only if, the constraint (30)
admits a solution such that v+ 6= v−.

Similarly, substituting (27a) and (27b) in (17b) we can write
the current density as (24b) with

ja± = σ±Ua
± (33)

where σ± are the surface electric charge densities, measured
in the coordinates frames,

σ± =




√
1− v2±

v±− v∓


(j1̂− j0̂v∓). (34)

Thus, we have a disk makes of two counterrotating charged
dust fluids with surface energy densities given by (32), and
surface electric charge densities given by (34).

As we can see from Eqs. (26), (32) and (34), all the main
physical quantities associated with the CRM depend on the
counterrotating tangential velocities v±. However, the con-
straint (30) does not determine v± uniquely so that we need
to impose some additional requirement in order to obtain a
complete determination of the tangential velocities leading to
a well defined CRM.
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A possibility, commonly assumed [25, 38], is to take the
two counterrotating streams as circulating along electrogeo-
desics. Now, if the electrogeodesic equation admits solutions
corresponding to circular orbits, we can write this equation as

1
2

ε±gab,rUa
±Ub

± =−σ±FraUa
±. (35)

In terms of ω± we obtain

1
2

ε±(U0
±)2(g11,rω2

±+2g01,rω±+g00,r)=−σ±U0
±(At,r +Aϕ,rω±).

(36)

From (24a), (24b), (31), and (33) we have

σ±U0
± =

j1−ω∓j0

ω±−ω∓
, (37a)

ε±(U0
±)2 =

S01−ω∓S00

ω±−ω∓
, (37b)

ω∓ =
S11−ω±S01

S01−ω±S00 , (37c)

and substituting (37a) and (37b) in (36) we find

1
2
(S01−ω∓S00)(g11,rω2

±+2g01,rω±+g00,r) =−(j1−ω∓j0)(At,r +Aϕ,rω±), (38)

and using (37c) we obtain

1
2
[(S01)2−S00S11](g11,rω2

±+2g01,rω±+g00,r) =−[S01j1−S11j0 +ω±(S01j0−S00j1)](At,r +Aϕ,rω±). (39)

Therefore we conclude that

ω± =
−T2±

√
T 2

2 −T1T3

T1
(40)

with

T1 = g11,r +2Aϕ,r
j0S01− j1S00

S01S01−S00S11 , (41a)

T2 = g01,r +At,r
j0S01− j1S00

S01S01−S00S11 +Aϕ,r
j1S01− j0S11

S01S01−S00S11 , (41b)

T3 = g00,r +2At,r
j1S01− j0S11

S01S01−S00S11 . (41c)

On the other hand, in terms of ω± we get

v± =−
[

W0 +W1ω±
V0 +V1ω±

]
, (42)

and so, by using (40), we have that

v+v− =
T1W 2

0 −2T2W0W1 +T3W 2
1

T1V 2
0 −2T2V0V1 +T3V 2

1
, (43)

so that, using (17a), we get

F(v+,v−) =
32e4(Ψ−Λ)Λ2

,z(r
2Λ,z

√
D+4r2Λ,zΨ,zeΨ−Λ−W 2

,z e5Ψ−Λ)

r3(A+
√

D)pϕ(S01S01−S00S11)(T1V 2
0 −2T2V0V1 +T3V 2

1 )

×
[

Λ,z−2rΨ,rΨ,z +
1
2r

W,rW,ze4Ψ +
1
r
(r2e−2Ψ−W 2e2Ψ)At,rAt,z

−1
r

Aϕ,rAϕ,ze2Ψ +
1
r

W (Aϕ,rAt,z +Aϕ,zAt,r)e2Ψ
]
. (44)

Finally, using the Einstein-Maxwell equation (4f) follows im- mediately that F(v+,v−) vanishes and therefore the electro-
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geodesic velocities satisfy the constraint (30) and so, if the
electrogeodesic equation admits solutions corresponding to
circular orbits, we have a well defined CRM.

Another possibility is to take the two counterrotating flu-
ids not circulating along electrogeodesics but with equal and
opposite tangential velocities,

v± =±v =±
√

pϕ/ε. (45)

This choice, that imply the existence of additional interactions
between the two streams (e.g. collisions), leads to a complete
determination of the velocity vectors. However, this can be
made only when 0≤ |pϕ/ε| ≤ 1. In the general case, the two
counterrotating streams circulate with different velocities and
we can write (30) as

v+v− =− pϕ

ε
. (46)

However, this relation does not determine completely the tan-
gential velocities, and therefore the CRM is undetermined.

In summary, the counterrotating tangential velocities can
be explicitly determined only if we assume some additional
relationship between them, like the equal and opposite condi-
tion or the electro-geodesic condition. Now, can happen that
the obtained solutions do not satisfy any of these two condi-
tions. That is, the counterrotating velocities are, in general,
not completely determined by the constraint (30). Thus, the

CRM is in general undetermined since the counterrotaing en-
ergy densities and pressures can not be explicitly written with-
out a knowledge of the counterrotating tangential velocities.

IV. DISKS FROM A KERR-NEWMAN SOLUTION

As an example of the above presented formalism, we con-
sider the thin disk models obtained by means of the “dis-
place, cut and reflect” method applied to the well known Kerr-
Newman solution, which can be written as

Ψ =
1
2

ln
[

a2x2 +b2y2− c2

(ax+ c2)2 +b2y2

]
, (47a)

Λ =
1
2

ln
[

a2x2 +b2y2− c2

a2(x2− y2)

]
, (47b)

W =
c2kb(1− y2)(2ax+1+ c2)

a(a2x2 +b2y2− c2)
, (47c)

At =
c
√

2(c2−1)(ax+ c2)
(ax+ c2)2 +b2y2 , (47d)

Aϕ = −k
b
a
(1− y2)At , (47e)

where a2 +b2 = c2 ≥ 1, with

a =
k

m(1−qq∗) , b =
L

m(1−qq∗) , c =
1√

1−qq∗ , k =
√

m2−L2− e2, |q|= e
m

, (48)

where m, L and e are the mass, angular momentum and electric charge parameters of the Kerr-Newman black hole, respectively.
Note that c is the parameter that controls the electromagnetic field. The prolate spheroidal coordinates, x and y, are related with
the Weyl coordinates by

r2 = k2(x2−1)(1− y2), z+ z0 = kxy, (49)

where 1 ≤ x ≤ ∞, 0 ≤ y ≤ 1, and k is an arbitrary constant. Note that we have displaced the origin of the z axis in z0. This
solution can be generated, in these coordinates, using the well-known complex potential formalism proposed by Ernst [44] from
the Kerr vacuum solution [1]. When c = 1 this solution reduces to the Kerr vacuum solution.

Let be D̃ = k2D, T̃ = kT , and j̃t = kjt , therefore

T̃ =
4c2aȳ{2x̄(1− ȳ2)(x̄2 +2ax̄+ c2)− (x̄2− ȳ2)[a(x̄2 +1)+ x̄(1+ c2)]}

(x̄2− ȳ2)3/2[(ax̄+ c2)2 +b2ȳ2]3/2 , (50a)

D̃ =
16c4a2ȳ2{[a(x̄2 +1)+ x̄(1+ c2)]2−b2r̃2}

(x̄2− ȳ2)[(ax̄+ c2)2 +b2ȳ2]3
, (50b)

j̃t =
2c

√
2(c2−1)aȳ{−b2ȳ2(3ax̄2 +2x̄c2−a)+(ax̄+ c2)(a2x̄3 +ac2x̄2

(x̄2− ȳ2)1/2[(ax̄+ c2)2 +b2ȳ2]5/2

−a2x̄+2b2x̄−ac2)}, (50c)

jϕ = −2c
√

2(c2−1)bȳ(1− ȳ2){−ab2ȳ2(x̄2−1)+(ax̄+ c2)(3a2x̄3

(x̄2− ȳ2)1/2[(ax̄+ c2)2 +b2ȳ2]5/2

+5ac2x̄2−a2x̄+2b2x̄+2c4x̄−ac2)}. (50d)
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In the above expressions x̄ and ȳ are given by

2x̄ =
√

r̃2 +(α+1)2 +
√

r̃2 +(α−1)2, (51a)

2ȳ =
√

r̃2 +(α+1)2−
√

r̃2 +(α−1)2, (51b)

where r̃ = r/k and α = z0/k, with α > 1.

Now, in order to analyze the behavior of D, is enough to
consider the expression

D̃0 = [a(x̄2 +1)+ x̄(1+ c2)]2−b2r̃2, (52)

that can be written as

D̃0 = a(1+ c2)R+[α(α−1)+2+ r̃]+a(1+ c2)R−[α(α+1)+2+ r̃]

+ 1
2 R+R−[(c2 +1)2 +a2(r̃2 +α2 +3)]+ 1

2 [(c2 +1)2 +5a2]

+ 1
2 r̃2[c4 +1+a2(r̃2 +2α2 +6)]+ 1

2 α2[(c2 +1)2 +a2(α2 +2)],

(53)

where R± =
√

r̃2 +(α±1)2. Since α(α∓ 1) + 2 > 0 for
any α, from (53) follows that D always is a positive quantity
for Kerr-Newman fields and therefore the eigenvalues of the
energy-momentum tensor are always real quantities. So we
conclude that these disks can be interpreted, for all the val-
ues of parameters, as a matter distribution with currents and
purely azimuthal pressure and without heat flow.

We can see also that for the vacuum case, when c = 1, D
is everywhere positive. These disks, obtained from the Kerr
vacum solution, were previously considered by González and
Letelier in the reference [17]. In this previous work, due to
a mistake in the computation of the expressions for T̃ and
D̃, was concluded that the energy-momentum tensor could
present complex eigenvalues for some values of the parame-
ters. As we can see from the expressions presented here, this
is not correct and, in all the cases, we have a matter distribu-
tions with purely azimuthal pressure and without heat flow for
all the values of parameters.

In order to study the behavior of the main physical quanti-
ties associated with the disks, we perform a graphical analysis
of them for disks with α = 2, b = 0.2 and c = 1.0, 1.5, 2.0, 2.5,
and 3.5, as functions of r̃. For these values of the parameters
we find that Ψ,z is a positive quantity in agreement with the
strong energy condition. Therefore, ε = −λ− and pϕ = λ+.
However, one also finds values of the parameter for which Ψ,z
takes negative values. Furthermore, we take ν = −1 in order
to V a be a future-oriented timelike vector.

In Fig. 1 we show the surface energy density ε̃ and the az-
imuthal pressure p̃ϕ. We see that the energy density presents
a maximum at r̃ = 0 and then decreases rapidly with r̃, be-
ing always a positive quantity in agreement with the weak en-
ergy condition. We also see that the presence of electromag-
netic field decreases the energy density at the central region of
the disk and later increases it. We can observe that the pres-
sure increases rapidly as one moves away from the disk cen-
ter, reaches a maximum and later decreases rapidly. We also
observe that the electromagnetic field decreases the pressure
everywhere on the disk.

The electric charge density j̃t and the azimuthal current den-
sity jϕ, measured in the coordinates frame, are represented

in Fig. 2, whereas the electric charge density j̃0̂ and the az-

imuthal current density j̃1̂, measured by the comoving ob-
server, are represented in Fig. 3. We observe that the electric
charge density has a similar behavior to the energy and that the
current density have a similar behavior to the pressure which
is consistent with the fact that the mass is more concentrated
in the disks center. We also computed this functions for other
values of the parameters and, in all the cases, we found the
same behavior.

We now consider the CRM for the same values of the pa-
rameters. We first consider the two counterrotating streams
circulating along electrogeodesics. In Fig. 4 we plot the tan-
gential velocity curves, v+ and v−. We see that these velocities
are always less than the light velocity. We also see that the in-
clusion of the electromagnetic field make less relativistic these
disks. In Fig. 5 we have drawn the specific angular momenta
h2

+ and h2− for the same values of the parameters. We see that
the presence of electromagnetic field can make unstable these
orbits against radial perturbations. Thus the CRM cannot ap-
ply for c = 6 (bottom curve). In Fig. 6 we have plotted the
surface energy densities ε̃+ and ε̃−. We see that these quan-
tities have a similar behavior to the energy density ε̃. In Fig.
7, we plotted the surface electric charge densities σ̃+ and σ̃−.
We find that these quantities have also a similar behavior to
ε̃±.

The Figs. 4 - 7 show that the two fluids are continuous in r
which implies to have two particles in counterrotating move-
ment in the same point in spacetime. So this model could be
possible when the distance between streams (or between the
counterrotating particles) were very small in comparing with
the length r so that we can consider, in principle, the fluids
continuous like is the case of counterrotating gas disks present
in disk galaxies.

Finally, in the case when the two fluids move with equal
and opposite tangential velocities (non-electrogeodesic mo-
tion) we find that the physical quantities have a similar be-
havior to the previous one.
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FIG. 1: (a) The surface energy density ε̃ and (b) the azimuthal pressure p̃ϕ for Kerr-Newman disks with α = 2, b = 0.2 and c = 1.0 (curves
with crosses), 1.5, 2.0, 2.5, 3.0, and 3.5 (bottom curves), as functions of r̃.
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FIG. 2: (a) The surface electric charge density j̃t and (b) the azimuthal current density jϕ for Kerr-Newman disks with α = 2, b = 0.2 and
c = 1.0 (axis r̃), 1.5 (top curves), 2.0, 2.5, 3.0, and 3.5 (bottom curves), as functions of r̃.

V. DISCUSSION

We presented a detailed analysis of the energy-momentum
tensor and the surface current density for electrovacuum sta-
tionary axially symmetric relativistic thin disks of infinite ex-
tension without radial stress, in the case when the energy-
momentum tensor of the disks can be diagonalized, so that
there is not heat flow. The surface energy-momentum tensor
and the surface current density were expressed in terms of the
comoving tetrad and explicit expressions were obtained for
the kinematical and dynamical variables that characterize the
disks. That is, we obtained expressions for the velocity vector
of the disks, as well for the energy density, azimuthal pressure,
electric charge density and azimuthal current density.

We also presented in this paper the stationary generaliza-
tion of the Counterrotating Model (CRM) for electrovacuum
thin disks previously analyzed for the static case in [28, 30].
Thus then, we were able to obtain explicit expressions for all
the quantities involved in the CRM that are fulfilled when do
not exists heat flow and when we do not have radial pressure.
We considered both counter rotation with equal and opposite
velocities and counter rotation along electrogeodesics and, in
both of the cases, we found the necessary conditions for the
existence of a well defined CRM.

A general constraint over the counterrotating tangential
velocities was obtained, needed to cast the surface energy-
momentum tensor of the disk in such a way that can be inter-
preted as the superposition of two counterrotating dust fluids.
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FIG. 3: For Kerr-Newman disks we plot, as function of r̃, (a) j̃0̂ with α = 2, b = 0.2, and c = 1.0 (axis r̃), 1.5 (bottom curve, away from the
center of disk), 2.0, 2.5, 3.0, and 3.5 (top curve, away from the center of disk), and (b) j1̂ also with α = 2, b = 0.2, and c = 1.0 (axis r̃), 1.5
(top curve), 2.0, 2.5, 3.0, and 3.5 (bottom curve).
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FIG. 4: The tangential velocities (a) v+ and (b) v− for electrogeodesic Kerr-Newman disks with α = 2, b = 0.2 and c = 1.0 (curves with
crosses), 1.5, 2.0, 2.5, 3.0, and 3.5 (bottom curves), as functions of r̃.

The constraint obtained is the generalization of the obtained
for the vacuum case in [17], for disks without radial pressure
or heat flow, where we only consider counterrotating fluids
circulating along geodesics. We also found that, in general,
there is not possible to take the two counterrotating tangential
velocities as equal and opposite neither take the two counter-
rotating fluids as circulating along geodesics.

A simple family of models of counterrotating charged disks
based on the Kerr-Newman solution were considered where
we obtain some disks with a CRM well behaved. We also find
that the disks constructed from the Kerr-Newman solution can
be interpreted, for all the values of parameters, as a matter

distribution with currents and purely azimuthal pressure and
without heat flow. We obtain, for all the values of parame-
ters, counterrotating Kerr-Newman disks that are in agreement
with all the energy conditions. Finally, the generalization of
these models to the case of electrovacuum stationary axially
symmetric solutions where the energy-momentum tensor of
the disk can to present complex eigenvalues for some values
of the parameters, the stability of counterrotating fluids tak-
ing into account the collective behavior of the particles, and
a thermodynamic analysis of the disks, will be considered in
future works.
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FIG. 5: The specific angular momenta (a) h2
+ and (b) h2− for electrogeodesic Kerr-Newman disks with α = 2, b = 0.2 and c = 1.0 (curves with

crosses), 1.5, 2.0, 2.5, 3.0, 3.5, and 6.0 (bottom curves), as functions of r̃.
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FIG. 6: The surface energy densities (a) ε̃+ and (b) ε̃− for electrogeodesic Kerr-Newman disks with α = 2, b = 0.2 and c = 1.0 (curves with
crosses), 1.5, 2.0, 2.5, 3.0, and 3.5 (bottom curves), as functions of r̃.
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179 (1968)
[47] A. Lichnerowicz, C. R. Acad. Sci. 273, 528 (1971)
[48] A. H. Taub, J. Math. Phys. 21, 1423 (1980)
[49] E. Israel, Nuovo Cimento B 44, 1 (1966)
[50] E. Israel, Nuovo Cimento B 48, 463 (1967)
[51] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-

Hole Mechanics. (Cambridge University Press, 2004)
[52] S. Chandrasekar, The Mathematical Theory of Black Holes.

(Oxford University Press, 1992).
[53] L. D. Landau and E. M. Lifshitz, Fluid Mechanics(Addison-

Wesley, Reading, MA, 1989).
[54] F. H. Seguin, Astrophys. J. 197, 745 (1975).


