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The construction of θ-local superfield Lagrangian BRST quantization in non-Abelian hypergauges for generic
gauge theories based on the action principle is examined in the case of reducible local superfield models (LSM)
on the basis of embedding a gauge theory into a special θ-local superfield model with antisymplectic constraints
and a Grassmann-odd time parameter θ. We examine the problem of establishing a new correspondence be-
tween the odd-Lagrangian and odd-Hamiltonian formulations of a local LSM in the case of degeneracy of the
Lagrangian description with respect to derivatives over θ of generalized classical superfields A I(θ). We also
reveal the role of the nilpotent BRST–BFV charge for a formal dynamical system corresponding to the BV–BFV
dual description of an LSM.
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I. INTRODUCTION

Local superfield Lagrangian BRST quantization [1] was
originally proposed for irreducible gauge theories and Abelian
hypergauges [2], which introduce the gauge-fixing procedure
following the BV method [3], and then extended to arbitrary
gauge models in reducible non-Abelian hypergauges of finite
stage of reducibility [4]. The quantization rules [1] com-
bine, in terms of superfields, a generalization of the “first-
level” Batalin–Tyutin formalism [5] (the case of reducible hy-
pergauges is examined in [6]) and a geometric realization of
BRST transformations [7, 8] in the particular case of θ-local
superfield models (LSM) of Yang–Mills-type. The concept of
an LSM [1, 2, 4], which realizes a trivial relation between the
even t and odd θ components of the object χ = (t,θ) called
supertime [9], unlike the nontrivial interrelation realized by
the operator D = ∂θ +θ∂t in the Hamiltonian superfield N = 1
formalism [10] of the BFV quantization [11], provides the ba-
sis for the method of local quantization [1, 2, 4] and proves
to be fruitful in solving a number problems that restrict the
applicability of the functional superfield Lagrangian method
[12] to specific gauge theories. The idea of an LSM makes
it possible to obtain an odd-Lagrangian and odd-Hamiltonian
form of the classical master equation as a condition that pre-
serves a θ-local analogue of the energy by virtue of Noether’s
first theorem with respect to the evolution along the variable
θ, defined by superfield extensions of the extremals for an
initial gauge model, i.e., by odd-Lagrangian (LS) and odd-
Hamiltonian (HS) systems. The concept of an LSM provides
an inclusion of the dual BV–BFV description [13, 14] of a
reducible gauge theory in terms of a BRST charge for for-
mal topological dynamical systems (i.e., systems without a
definite time parameter) subject to first-class constraints of
higher-stage reducibility in the problem of embedding a gauge
algebra of a special reducible LSM into that of a general[25]
LSM. Finally, the idea of an LSM proves to be an adequate

extension of a usual gauge model in a superfield construction
of the quantum action as a superfield analogue of the Koszul–
Tate complex resolution [15, 16] in Lagrangian formalism on
the basis of interpreting the reducibility relations as special
gauge transformations of ghosts transformed into a unique θ-
integrable odd HS.

Along the lines of our previous works, we consider it an
interesting task to solve two of the problems mentioned in the
conclusion of the first paper of Ref. [1]. The first problem is
that of establishing a different (from the one given by a Legen-
dre transformation [1, 2, 4]) correspondence between the odd-
Lagrangian and odd-Hamiltonian formulations of an LSM in
the case of degeneracy of the Lagrangian description with re-
spect to derivatives over θ of generalized classical superfields
A I(θ), i.e.,

←−
∂ θA I(θ). The second problem is to reveal the

role of the nilpotent BRST–BFV charge for a formal dynami-
cal system corresponding to the BV–BFV dual description of
an LSM.

We devote this paper to the solution of the following prob-
lems:

1. A construction of an odd-Hamiltonian formulation for
an LSM starting from an odd Lagrangian in the case
of a degenerate Hessian supermatrix ‖(S′′L)IJ‖(θ) of
Refs. [1, 2, 4] as the supermatrix of second deriv-
atives of the Lagrangian classical action, SL(θ) =
SL(A(θ),∂θA(θ),θ), with respect to odd velocities(
∂θA I ,∂θAJ

)
(θ) on the basis of Dirac’s algorithm in

terms of a θ-local antibracket.

2. An application of the BFV method [11] to a construc-
tion of formal counterparts of the BFV–BRST charge,
gauge fermion and unitarizing Hamiltonian of a t-local
field theory in terms of a θ-local Dirac’s antibracket, re-
flecting, in view of general gauge invariance, the pres-
ence of a subsystem of second-class constraints among
all of the antisymplectic constraints.
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3. Establishing a correspondence between the resulting
odd-Hamiltonian formulation of an LSM with the BV
quantum action for the gauge model corresponding to
an LSM.

The paper is organized as follows. In Section 2, we ap-
ply Dirac’s algorithm [17] to realize an odd Hamiltoniza-
tion of a Lagrangian degenerate LSM, being an extension of
a usual model of classical fields Ai, i = 1, ...,n = n+ + n−,
on a configuration space Mcl, to a θ-local theory defined on
an odd tangent bundle ToddMCL ≡ ΠT MCL =

{
A I ,∂θA I

}
,

I = 1, . . . ,N = N+ + N−, (n+,n−) ≤ (N+,N−) with N+,(N−)
bosonic (fermionic) superfields. The generalized classical su-
perfields A I(θ), A I(θ) = AI +λIθ, parameterize the base MCL
(Mcl ⊂ MCL) of the bundle ΠT MCL and transform with re-
spect to a J-superfield representation T of the direct prod-
uct of supergroups J̄,P: J = J̄×P, P = exp(iµpθ) [1, 2, 4],
with J̄ chosen as a spacetime SUSY group[26], and µ, pθ
being the respective nilpotent parameter and generator of θ-
shifts. The non-Lorentz [18] character of superfields A I(θ)
defined on M =

{(
zM,θ

)}
=

{
zK

}
, zM ⊂ i ⊂ I, is reflected

by a possible inclusion in their spectrum of additional (be-
sides A i(θ)) superfields corresponding to the ghosts of the
minimal sector in the BV quantization scheme [3]. In Sec-
tion 3, following the BFV prescription, we construct θ-local
counterparts of the ghosts on the basis of a complete system
of antisymplectic constraints and a Hamiltonian action SH0(θ)
defined on ΠT ∗MCL =

{
A I ,A∗

I
}

, a bosonic BRST charge
SΩ(θ), a unitarizing Hamiltonian action SH (θ), and a gauge
fermion FΨ(θ). We specify to the case of a singular LSM a
derivation of Lagrangian and Hamiltonian master equations
from Noether’s first theorem [19] applied to θ-shifts, and es-
tablish a relation between the complete Hamiltonian action,
SH(θ) = SH (θ) + (SΩ(θ),FΨ(θ))θD, constructed via θ-local
Dirac’s antibracket, and the quantum action of the BV method
[3].

We mostly follow the conventions of Refs. [1, 4] based
on DeWitt’s condensed notation [20] and distinguish between
two types of superfield derivatives: the right (left) derivative←−
∂ F (θ)/∂Γp(θ)

(−→
∂ F (θ)/∂Γp(θ)

)
of a function F (θ) for a

fixed θ, and the right (left) variational derivative
←−
δ F/δΦA(θ)(−→

δ F/δΦA(θ)
)

of a functional F . In the same manner, su-
perfield right (left) covariant derivatives with respect to a
superfield Γp(θ) are denoted by

←−
∇ p(θ)F

(−→
∇ p(θ)F

)
for a

fixed θ, and variational derivatives are denoted by
←−
D p(θ)F

(−→
D p(θ)F

)
. Derivatives with respect to super(anti)fields and

their components are understood as acting from the right
(left), for instance, δ/δλ∗A or δ/δΦA(θ); in the opposite case
we use arrows “→” (“←”) for left (right) differentiation. For
right-hand derivatives with respect to A I(θ) for a fixed θ,
we use the notation F ,I (θ) ≡ ∂F (θ)/∂A I(θ). As in [1, 4],
following the definitions of Refs. [21, 22], a smooth super-
surface [27]Σ, is parameterized by local coordinates zi(θ),
and the rank of an even θ-local supermatrix ‖G(θ)‖ with Z2-
grading ε is characterized by a pair of numbers m = (m+,m−):
rank‖G(θ)‖= rank‖G(0)‖, dimΣ = dimΣ|θ=0 with Σ|θ=0 pa-
rameterized by zi(0). We characterize the property of a quan-
tity F to be bosonic or fermionic by a triplet of Z2-gradings,
~ε = (εP,εJ̄ ,ε), so that the basic Grassmann parity ε, according
to [1, 2, 4], is given by the sum, ε = εJ̄ + εP, of Z2-gradings
εJ̄ , εP, being the Grassmann parities of coordinates of the cor-
responding representation spaces of supergroups J̄, P.

II. CLASSICAL FORMULATION OF A DEGENERATE
θ-LOCAL SUPERFIELD MODEL

In order to provide an equivalent description of a general
LSM degenerate with respect to superfields (∂θA)I (θ) in odd-
Lagrangian and odd-Hamiltonian formulations, we consider a
procedure of the odd Hamiltonization of a Lagrangian LSM
that preserves J̄-covariance. Using these results, in the next
section we will apply the BFV–BRST approach in order to
construct from the odd Hamiltonian formulation of an LSM a
complete Hamiltonian action SH(θ) and extend the BV–BFV
dual description inherent in the θ-local approach to the case
of a degenerate LSM. We will also establish a relation with
the quantum action of the BV method for the physical gauge
model contained in an LSM.

2.1 Odd-Lagrangian Formulation

Let us recall that the Lagrangian formulation (based on the
variational principle) of an Lg-stage reducible LSM of gener-
alized classical superfields A I(θ),~ε(A I) = ((εP)I ,(εJ̄)I ,εI)≡
~εI , is defined by a Lagrangian action SL, ΠT MCL ×{θ} →
Λ1(θ;R), being a C∞(ΠT MCL)-function taking its values in
a real Grassmann algebra Λ1(θ;R), and (independently) by
a functional ZL[A ], whose θ-density is defined with accu-
racy up to an arbitrary~ε-bosonic function f ((A ,∂θA)(θ),θ)∈
ker{∂θ},

ZL[A ] = ∂θSL(θ), ~ε(ZL) =~ε(θ) = (1,0,1), ~ε(SL) =~0, (2.1)

invariant with respect to general gauge transformations, δgA I(θ) =
∫

dθ0R̂ I
A0

(θ;θ0)ξA0(θ0), ξA0 ∈C∞ (M ),~ε(ξA0) =~εA0 , A0 =
1, ..., M0 = M0+ +M0− :

∂θ

←−
δ ZL[A ]
δA I(θ)

R̂ I
A0

(θ;θ0) = 0, for rank
∥∥∥−→L J(θ)

[←−
L I(θ)SL(θ)

]∥∥∥←−
L KSL=0

= N−M−1, (2.2)
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with a superfield Euler–Lagrange derivative
←−
L I(θ) that determines LSM dynamics and (on the assumption of locality and J̄-

covariance) with functionally dependent generators R̂ I
A0

(θ;θ0)

←−
δ ZL[A ]
δA I(θ)

=

[
∂

∂A I(θ)
− (−1)εI

←−
∂ θ

←−
∂

∂(
←−
∂ θA I(θ))

]
SL(θ)≡←−L I(θ)SL(θ) = 0, (2.3)

R̂ I
A0

(θ;θ0)= ∑
k≥0

(
(∂θ)

kδ(θ−θ0)
)

R̂k
I
A0

((A ,∂θA)(θ),θ) for rank

∥∥∥∥∥∑
k≥0

R̂k
I
A0

(θ)(∂θ)
k

∥∥∥∥∥
LKSL=0

=M−1<M0. (2.4)

The dependence of R̂ I
A0

(θ;θ0) implies an existence (on solutions of the odd LS (2.3)) of proper zero-eigenvalue eigenvectors,

ẐA0
A1

(
A(θ0),∂θ0 A(θ0),θ0;θ1

)
, with a structure similar to R̂ I

A0
(θ;θ0) in (2.4), which exhaust the zero-modes of the generators

and are dependent in case rank
∥∥∥∑k Ẑk

A0
A1

(θ0)
(
∂θ0

)k
∥∥∥

Σ
= M0−M−1 < M1. Thus, a general Lg-reducible LSM is defined by the

reducibility relations, for s = 1, ...,Lg, As = 1, ..., Ms = Ms+ +Ms−,
∫

dθ′ẐAs−2
As−1

(θs−2;θ′)ẐAs−1
As

(θ′;θs) =
∫

dθ′
−→
L J(θ′)L

As−2J
As

(
(A ,∂θA)(θs−2),θs−2,θ′;θs

)
,

rank
∥∥∥∑k≥0 Ẑk

As−2
As−1

(θs−2)
(
∂θs−2

)k
∥∥∥

LKSL=0
=

s−1

∑
k=0

(−1)kMs−k−2 < Ms−1,

rank
∥∥∥∥∑k≥0 Ẑk

ALg−1
ALg

(θLg−1)
(

∂θLg−1

)k
∥∥∥∥

LKSL=0
=

Lg

∑
k=0

(−1)kMLg−k−1 = MLg ,

~ε(ẐAs−1
As

) =~εAs−1 +~εAs +(1,0,1), ẐA−1
A0

(θ−1;θ0)≡ R̂ I
A0

(θ−1;θ0),

LA−1J
A1

(θ−1,θ′;θ1)≡ KIJ
A1

(θ−1,θ′;θ1) =−(−1)(εI+1)(εJ+1)KJI
A1

(θ′,θ−1;θ1). (2.5)

For Lg = 0, the LSM is an irreducible general gauge theory.
Due to the J-scalar nature of ZL[A ] it is only SL(θ), among the objects SL(θ) and ZL[A ] invariant under the action of a

J-superfield representation T restricted to J̄, T |J̄ , that transforms nontrivially with respect to the total representation T under
A I(θ)→ A ′I(θ) = (T |J̄ A)I(θ−µ),

δSL(θ) = SL
(
A ′(θ),∂θA ′(θ),θ

)−SL(θ) =−µ
[−→

∂ /∂θ+P0(θ)(∂θU)(θ)
]

SL(θ). (2.6)

Eq. (2.6) is written [1, 2, 4] in terms of the nilpotent operator (∂θU)(θ) = ∂θA I(θ)
−→
∂ /∂A I(θ) = [∂θ,U(θ)]−, U(θ) =

P1A I(θ)
−→
∂ /∂A I(θ), by means of projectors onto C∞(ΠT (∗)MCL) × {θ}: {Pa(θ) = δa0(1− θ∂θ)+ δa1θ∂θ,a = 0,1}. The su-

perfield Euler–Lagrange equations (2.3) are equivalent (in view of ∂2
θA I(θ) ≡ 0) to an odd LS characterized by 2N formally

second-order differential equations in θ,

∂2
θAJ(θ)

−→
∂

∂(∂θA I(θ))

−→
∂ SL(θ)

∂(∂θAJ(θ))
≡ ∂2

θAJ(θ)(S′′L)IJ(θ) = 0, (2.7)

ΘI(θ)≡ (−1)εI

(
SL,I (θ)−

[−→
∂

∂θ

−→
∂ SL(θ)

∂(∂θA I(θ))
+(∂θU)(θ)

−→
∂ SL(θ)

∂(∂θA I(θ))

])
= 0, (2.8)

so that the subset of formal equations (2.7) does not af-
fect LSM dynamics, in particular, identities (2.2) and re-
lations (2.5); however, it determines, depending on the
(non)degeneracy of the supermatrix ‖(S′′L)IJ(θ)‖, a possibil-
ity of presenting LS (2.3) in the normal form. The Lagrangian
constraints (2.8), ΘI(θ) = ΘI((A ,∂θA)(θ),θ) are functionally
dependent as first-order equations in θ, restricting the setting
of the Cauchy problem for the LS, and thus determine the gen-
eral gauge algebra of an LSM by Eqs. (2.2)–(2.5).

For an LSM which enables one to represent SL(θ) in
the form of a natural system in usual classical mechan-
ics, SL(θ) = T (∂θA(θ))− S (A(θ),θ), the functions ΘI(θ),
ΘI(θ) ∈C∞ (MCL×{θ}) are given by the relations

ΘI(θ) =−S,I (A(θ),θ)(−1)εI = 0, (2.9)

being, for θ = 0, the extremals of the functional S0(A) =
S (A(0),0), S0(A) ∈ C∞ (MCL), MCL = MCL|θ=0. Relations
(2.2) and (2.5) assume the standard (in case θ = 0) form
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of the relations of a special gauge algebra with linearly de-
pendent generators R0

I
A0

(A(θ),θ) of special gauge transfor-

mations, δA I(θ) = R0
I
A0

(A(θ),θ)ξA0
0 (θ), that leave invariant

only S(θ), in contrast to T (θ),

S,I (A(θ),θ)R0
I
A0

(A(θ),θ) = 0, for rank‖S,IJ (A(θ),θ)‖S,I(θ)=0 = N−M−1, (2.10)

ZAs−2
As−1

(A(θ),θ)ZAs−1
As

(A(θ),θ) = S,J (θ)LAs−2J
As

(A(θ),θ), ~ε(ZAs−1
As

) =~εAs−1 +~εAs ,(
ZA−1

A0
,LA−1J

A1

)
≡

(
R0

I
A0

,KIJ
A1

)
, KIJ

A1
=−(−1)εIεJ KJI

A1
, (2.11)

in the rank conditions for the special zero-eigenvalue eigenvectors ZAs−1
As

(θ):

rank
∥∥∥ZAs−1

As

∥∥∥
S,I(θ)=0

=
s

∑
k=0

(−1)kMs−k−1 < Ms, s = 0, ...,Lg−1. (2.12)

In case rank
∥∥∥Z

ALg−1
ALg

∥∥∥
S,I(θ)=0

= ∑
Lg
k=0(−1)kMLg−k−1 = MLg , an LSM defined by relations (2.10), (2.11) is called a special gauge

theory of Lg-stage reducibility.
The special gauge algebra of this LSM is θ-locally embedded into the gauge algebra of a general gauge theory with the

functional ZL[A ] = (∂θT −S)(θ), which leads to a relation between the eigenvectors,

ẐAs−1
As

(A(θs−1),θs−1;θs) = δ(θs−θs−1)Z
As−1
As

(A(θs−1),θs−1), (2.13)

and to a possible parametric dependence of the structure func-
tions of a special gauge theory on ∂θA I (θ). As noted in [1, 4],
an extended (in comparison with {Pa (θ)}, a = 0,1) system
of projectors onto C∞(ΠT MCL × {θ}), {P0(θ),θ∂/∂θ,U(θ)},
selects in (2.10), (2.11) two kinds of gauge algebra: one is se-
lected by means of the subsystem {P0(θ),U(θ)}, with the cor-
responding structure equations and functions [S,ZAs−1

As
](A(θ))

not depending explicitly on θ, and another with the help of
P0(θ) with the standard (in case θ = 0, (εP)I = (εP)As = 0,
s = 1, ...,Lg) relations for the gauge algebra of a reducible
model with quantities [S0,Z

αs−1
αs ](A) under the assumption

of the completeness of reduced generators and eigenvectors
[R i

α0
,Zαs−1

αs ](A(θ)).

As shown in Refs. [1, 2, 4], a characteristic feature of the θ-
local extension of a usual field theory to an LSM is the appli-
cation of Noether’s first theorem [19] to provide the invariance
of the density dθSL(θ) under global θ-translations as symme-
try transformations of the superfields A I(θ) and coordinates
(zM,θ), (A I ,zM,θ)→ (A I ,zM,θ+µ). It is easy to see that the
function

SE ((A ,∂θA)(θ),θ)≡
←−
∂ SL(θ)

∂(
←−
∂ r

θA I(θ))

←−
∂ θA I(θ)−SL(θ)

(2.14)
is an LS integral of motion, namely, a quantity preserved by
θ-evolution, assuming the fulfillment of the generalized La-

grangian master equation
−→
∂

∂θ
SL(θ)+2(∂θU)(θ)SL(θ)

∣∣∣∣∣
LISL=0

= 0. (2.15)

Eq. (2.15) follows from the principle of dynamical symmetry
in contrast to the standard (Hamiltonian-like) master equation
in the minimal sector of the BV method [3] which is based on
differential-algebraic reasons as a generating equation encod-
ing the standard relations of the gauge algebra and the struc-
ture functions [S0,Z

αs−1
αs ](A). The function SE(θ) may also be

an LS integral in the case of an explicit dependence on θ, un-
like its analogue in a t-local field theory, the energy E(t), in
case SL(θ) admits the representation

SL ((A ,∂θA)(θ),θ) =

S0
L (A ,∂θA)(θ)−2θ(∂θU)(θ)S0

L(θ), ~ε(S0
L) =~0. (2.16)

If SL(θ) does not depend on θ explicitly, ∂
∂θ SL(θ) = 0,

Eq. (2.15) transforms into a Lagrangian master equation,
(∂θU)(θ)SL(θ)|LISL=0 = 0. As was announced in Ref. [2],
a sufficient condition for the existence of a proper solution
ŜL(θ) for the Lagrangian master equation is the presence of
an independent special Lagrangian constraints for a certain
division of the index I,

(
∂θAA1(θ),

−→
∂ SL(θ)/∂AA2(θ)

)
LISL=0

= 0, (A1tA2) = I.

(2.17)
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2.2 Odd Hamiltonization

A possibility of presenting the odd LS (2.3) in the normal
form (which, in a t-local field theory, provides a basis for the
generalized canonical quantization of a given dynamical sys-
tem) depends on the existence of an inverse for the superma-
trix ‖(S′′L)IJ(θ)‖ in (2.7).

2.2.1 Nondegenerate Case

In this case, the LSM is reformulated in the odd-
Hamiltonian description [1, 2, 4] on the odd phase
space ΠT ∗MCL = {ΓP

CL(θ) = (A I ,A∗
I )(θ)} in terms of

a Hamiltonian action being a C∞(ΠT ∗MCL)-function, SH:
ΠT ∗MCL×{θ}→Λ1(θ;R), constructed from the Lagrangian
formulation through a Legendre transformation of SL(θ) with
respect to

←−
∂ θA I(θ),

SH(ΓCL(θ),θ) = A∗
I (θ)

←−
∂ θA I(θ)−SL(θ), A∗

I (θ) =
←−
∂ SL(θ)

∂(
←−
∂ θA I(θ))

, ~ε(A∗
I ) =~εI +(1,0,1). (2.18)

The action SH(θ) coincides with SE(θ) in terms of the ΠT ∗MCL-coordinates.
An odd HS equivalent to the LS follows from (2.3) due to transformations (2.18) and is implied by the condition of the

existence of a critical superfield configuration for a fermionic functional ZH[ΓCL] identical to ZL[A ],

ZH[Γk] =
∫

dθ
[
VP(Γk(θ))

←−
∂ θΓP

k (θ)−SH(Γk(θ),θ)
]
, (2.19)

−→
δ ZH

δΓP
k (θ)

= ωk
PQ(Γk(θ))

[
∂θΓQ

k (θ)−
(

SH(θ),ΓQ
k (θ)

)
θ

]
= 0, k = CL; (2.20)

it is written in the square brackets in Eq. (2.20) with the help of a θ-local antibracket and an antisymplectic potential, VP(Γk(θ)) =
1/2(ΓQωk

QP)(θ), defined with respect to an odd Poisson bivector ωPQ
k (θ), ωPQ

k (θ)≡
(

ΓP
k (θ),ΓQ

k (θ)
)

θ
, and a flat antisymplectic

metric ωk
PQ(θ), ωPD

k (θ)ωk
DQ(θ) = δP

Q, [ωPQ
k ,ωk

PQ](θ) = antidiag[(−δI
J ,δI

J),(δI
J ,−δI

J)].
The equivalence of HS (2.20) and LS (2.7), (2.8) is provided by the fact that the Lagrangian constraints ΘI(θ) transformed

into the Hamiltonian constraints ΘH
I (θ) in terms of the ΠT ∗MCL-coordinates coincide with half of the HS equations due to

transformations (2.18) and their consequences:

ΘH
I (Γk(θ),θ) = ΘI(A(θ),∂θA(Γk(θ),θ),θ), ΘH

I (Γk(θ),θ) =−←−∂ θA∗
I (θ)−SH,I (θ)(−1)εI . (2.21)

The equivalence between the LS and HS is guaranteed by the corresponding [formal, in view of the degeneracy conditions (2.2)]
setting of the Cauchy problem (θ = 0, k = CL) for integral curves Â I(θ), Γ̂P

k (θ), modulo the continuous part of I,

(
Â I ,

−→
∂ θÂ I

)
(0) =

(
A I ,

−→
∂ θA I

)
, Γ̂P

k (0) =
(
A I ,A∗

I
)

: A∗
I = P0

[
∂SL(θ)

∂(∂θA I(θ))

](
A I ,

−→
∂ θA I

)
. (2.22)

The definition of a special gauge algebra (2.10), (2.11) remains the same in the Hamiltonian formulation, whereas the definition
(2.2), (2.3) of a general Lg-stage reducible LSM is transformed by the rule

ẐH
As−1
As

(Γk(θs−1),θs−1;θs) = ẐAs−1
As

(
A(θs−1),∂θs−1 A(Γk(θs−1),θs−1),θs−1;θs

)
, s = 0, ...,Lg, (2.23)

δZL[A ]
δA I(θ)

=
δZH[Γk]
δA I(θ)

,
∫

dθ
←−
δ ZH[Γk]
δA I(θ)

R̂H
I
A0

(Γk(θ),θ;θ0) = 0. (2.24)

The fulfillment of the generalized Lagrangian master equation (2.15) for SL(θ) implies, in view of definition (2.14), transforma-
tions (2.18) and their consequence, ∂

∂θ (SL +SH)(θ) = 0, that the Hamiltonian action is an HS integral of motion (i.e., a quantity
invariant under θ-shifts along arbitrary solutions Γ̂P

k (θ) by (εP,ε)-odd µ) due to a generalized Hamiltonian master equation,

Qcompl(θ)SH(θ)≡ [∂/∂θ− (SH(θ), )θ]SH(θ) = 0⇐⇒
(

δµSH(θ)
∣∣
Γ̂k(θ) = µQcompl(θ)SH(θ) = 0

)
. (2.25)

The equation Qcompl(θ)SH(θ) = 0, written in terms of an odd operator Qcompl(θ), holds true also in the case of an explicit
dependence of SH(θ) on θ, according to (2.16),

SH (Γk(θ),θ) = S0
H (Γk(θ))+θ

(
S0

H (Γk(θ)) ,S0
H (Γk(θ))

)
θ , (2.26)
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where S0
H(θ) is a Legendre transform of S0

L(θ), and (∂θU)(θ)SL(θ) = 1
2 (SH(θ),SH(θ))θ. If SH(θ) does not depend on θ explicitly,

(∂/∂θ)SH(θ) = 0; then Eq. (2.25) transforms into the Hamiltonian master equation (SH(θ),SH(θ))θ = 0. This imposes the
condition [3] for SH(θ) to be proper, which has no counterpart in a t-local field theory. Sufficient conditions of the solvability
of the latter equation is the presence of irreducible special Hamiltonian constraints ϕa(Γk(θ)) [2], equivalent to the constraints
(2.17), being of first-class with respect to the antibracket:

ϕa(θ) =

(
∂SH(θ)
∂A∗

A1
(θ)

,

−→
∂ SH(θ)

∂AA2(θ)

)
= 0, (ϕa(θ),ϕb(θ))θ = Cc

ab(Γk(θ))ϕc(θ),

rank

∥∥∥∥∥
←−
∂ ϕa(θ)
∂ΓP

k (θ)

∥∥∥∥∥
ϕa(θ)=0,Γ̂k

= Msp ≤ N +(N−,N+), Msp =
1
2

N. (2.27)

As a consequence, the θ-superfield integrability of HS (2.20) is guaranteed by the properties of the antibracket, including the
Jacobi identity

(
←−
∂ θ)2ΓP

k (θ) =
1
2

(
ΓP

k (θ),(SH(Γk(θ)),SH(Γk(θ)))θ
)

θ = 0 (2.28)

and the θ-translation formula written in terms of a nilpotent BRST-like generator šl(θ) of θ-shifts along an (εP,ε)-odd vector
field Q(θ)≡ adSH(θ) = (SH(θ), ·)θ, acting on C∞(ΠT ∗MCL×{θ}), namely,

δµF (θ)
∣∣
Γ̂k(θ) = µQcompl(θ)F (θ)≡ µšl(θ)F (θ). (2.29)

Following Refs. [1, 2, 4] and depending on the realization of additional properties of a gauge theory, we assume the fulfillment
of the equation

∆k(θ)SH(θ) = 0, ∆k(θ)≡ (−1)ε(ΓP)

2
ρ−1

−→
∂

∂ΓP
k (θ)

(ρωPQ
k )(Γk(θ))

−→
∂

∂ΓQ
k (θ)

=
(−1)ε(ΓQ)

2
ρ−1ωk

QP(θ)
(

ΓP
k (θ),ρ

(
ΓQ

k (θ), ·
)

θ

)
θ
, (2.30)

for a trivial (in the case of a flat odd phase-space) choice of the density function ρ(Γ(θ)), ρ = 1, which is equivalent to a vanishing
antisymplectic divergence of Q(θ),

(−→
∂ /∂ΓP

k (θ)
)

Q(θ) = 2∆k(θ)SH(θ) = 0.

2.2.2 Degenerate Case

The degeneracy of ‖(S′′L)IJ(θ)‖ implies the impossibility of applying the above procedure of odd Hamiltonization and requires
the use of an odd counterpart of Dirac’s algorithm in order to reduce the odd LS (2.3) to a normal form (with only J̄-covariance
preservation). Let the degree of degeneracy of ‖(S′′L)IJ(θ)‖ be given by the relation

rank
∥∥(S′′L)IJ(θ)

∥∥←−
L KSL=0 = ΠN−R−1, ΠN = (N−,N+) (2.31)

valid almost everywhere in ΠTCL. It means the impossibility to express each
−→
∂ θA I(θ) as a function of ΓP

k (θ) using equations

A∗
I (θ) = (∂SL(θ))/∂(

←−
∂ θA I(θ)) in (2.18), which is equivalent to a functional dependence among the antifields A∗

I (θ) in the
form of primary antisymplectic constraints,

Φ(1)
A0

(ΓP
k (θ),θ) = 0, A0 = 1, ...,R(0)

0 , ~ε(Φ(1)
A0

) =~εA0 , rank
∥∥∥
(

Φ(1)
A0

,ΓP
k (θ)

)
θ

ωk
PQ

∥∥∥
Φ(1)

A0
=0

= R−1 ≤ R(0)
0 . (2.32)

In view of the preservation of J̄-covariance, the constraints Φ(1)
A0

(θ) may be dependent for R−1 < R(0)
0 , and assuming the

existence of an analog of the regularity conditions [16], these constraints define a (2N−R−1)-dimensional submanifold smoothly
embedded in ΠT ∗CL. The above regularity conditions imply the existence of an open covering of the constraints surface, Φ(1)

A0
(θ) =

0, by open regions on each of which there exists a local separation of constraints:

Φ(1)
A0

(θ) =
(

Φ(1)
A′0

,Φ(1)
α′0

)
(θ) : rank

∥∥∥
(

Φ(1)
A′0

,ΓP
k (θ)

)
θ

ωk
PQ

∥∥∥
Φ(1)

A0
=0

= R−1, Φ(1)
α′0

(θ) = Φ(1)
A′0

(θ)C
A′0
α′0

(Γk(θ),θ), (2.33)

where A0 = (A′0,α
′
0) = (1, ...,R−1,1, ...,R(0)

0 −R−1).
For an LSM with primary constraints, there hold the following statements:
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Theorem 1 For any C∞(ΠT ∗MCL)-function F (ΓCL(θ),θ) vanishing on the constraint surface, F (θ)|Φ(1)
A0

=0
= 0, there exist

functions f A0(ΓCL(θ),θ) ∈C∞(ΠT ∗MCL) such that F (θ) is a linear combination of constraints: F (θ) = Φ(1)
A0

(θ) f A0(θ).

Theorem 2 Due to the solution of the equation ΛP(ΓCL(θ),θ)δΓP
CL(θ) = 0 for arbitrary variations δΓP

CL(θ), the functions

ΛP(Γk(θ),θ) = UA0(Γk(θ),θ)
(

Φ(1)
A0

(θ),ΓQ
k (θ)

)
θ

ωk
QP(θ), k = CL (2.34)

are tangent to the constraints surface.

A sketch of a proof: the validity of Theorem 1 follows from the partition of unity on ΠT ∗MCL and from the fact that
from the local validity of representation (2.33) follows the existence of an invertible change of variables, ΓP

k (θ) → Γ′Pk (θ) =(
Φ(1)

A′0
,XM0

)
(Γk(θ)), M0 = 1, ...,2N−R−1, so that Φ(1)

A0
(0,XM0) = 0. Therefore, in a regular coordinate system Γ′k one has

F (Γ′k(θ)) =
1∫

0

∂tF (tΦ(1)
A′0

,X)(θ)dt = Φ(1)
A′0

(θ)
1∫

0

−→
∂

∂(tΦ(1)
A′0

(θ))
F (tΦ(1)

A′0
,X)(θ)dt =

= Φ(1)
A′0

(θ) f A′0(Γ′(Γk(θ)),θ) =⇒ F (θ) = (Φ(1)
A0

f A0)(θ) with f α′0(θ) = 0.

The validity of Theorem 2 follows from the fact that the variations δΓP
k (θ) tangent to the surface Φ(1)

A0
(θ) = 0 at a certain point

form a (2N−R−1)–dimensional superspace so that there exist R−1 independent solutions of (ΛPδΓP
k )(θ) = 0. By virtue of the

regularity conditions (2.33), the above solutions may be chosen as a linear combination (2.34) of the antisymplectic gradients,[(
Φ(1)

A′0
,ΓP

k (θ)
)

θ
ωk

PQ

]
(θ), with functions Uα′0(θ) unambiguously defined for R(0)

0 > R−1.

The Hamiltonian action SH(Γk(θ),θ) in (2.18) is well-defined as a Legendre transformation of SL(θ) only on the surface
Φ(1)

A0
(θ) = 0. The definition of the Hamiltonian action by the rule (2.18) on the entire ΠT ∗Mk is possible due to an extension of

SH(θ) by the addition of linear combination of constraints:

S(1)
H ((Γk,Λ)(θ),θ) = SH(θ)+ΛA0(θ)Φ(1)

A0
(θ), ~ε(ΛA0) =~εA0 . (2.35)

Actually, Eqs. (2.18) implies the following equations under a variation on the constraints surface:

(SH,I (θ)+SL,I (θ))δA I(θ)+δA∗
I (θ)

( −→
∂ SH

∂A∗
I (θ)

−←−∂ θA I(θ)

)
= 0,

which, in accordance with Theorem 2, admit the solution
[←−

∂ θA I ;−SL,I

]
(θ) =

[
adSH(A I)+ΛA0 adΦ(1)

A0
(A I);SH,I +ΛA0adΦ(1)

A0
(A∗

I )
]
(θ). (2.36)

In the case of independent constraints, the unknown functions ΛA0(θ) can be uniquely obtained from the first equations for←−
∂ θA I in (2.36) as functions on ΠT MCL, ΛA0 = ΛA0(A ,∂θA) for A∗

I = A∗
I (A ,∂θA) in contrast to dependent Φ(1)

A0
(θ).

The invertible Legendre transformation, corresponding to Eqs. (2.36), of SL(θ) from ΠT MCL to the surface Φ(1)
A0

(θ) = 0 of
THE bundle NCL = ΠT ∗MCL⊕MΛ = {(ΓP

k ,ΛA0)} and its inverse are given by the relations

(
A I ,A∗

I ,ΛA0
)
(θ) =

(
A I ,

←−
∂ SL(θ)

∂(
←−
∂ θA I(θ))

,ΛA0(A ,∂θA)

)
(θ), (2.37)

(
A I ,

←−
∂ θA I ,Φ(1)

A0

)
(θ) =

(
A I ,adS(1)

H (A I),0
)

(θ). (2.38)

We assume that the local consideration of the Legendre transformation made in Eqs. (2.36)–(2.38) holds globally.
The corresponding odd HS equivalent to LS (2.3) is implied by relations (2.18), (2.35)–(2.38) following from the variational

principle for a fermionic functional Z(1)
H [Γk,Λ] extended, as compared with ZH[Γk] in (2.19), by means of linear combinations of

the constraints Φ(1)
A0

(θ) with superfields ΛA0(θ) as Lagrangian multipliers,

Z(1)
H [Γk,Λ] =

∫
dθ

[
V k

P(Γk(θ))
←−
∂ θA I(θ)−S(1)

H ((Γk,Λ)(θ),θ)
]
, (2.39)

( −→
δ Z(1)

H
δΓP

k (θ)
,

−→
δ Z(1)

H
δΛA0(θ)

)
=

(
ωk

PQ(Γk(θ))
[
∂θΓQ

k (θ)−
(

S(1)
H (θ),ΓQ

k (θ)
)

θ

]
,−Φ(1)

A0
(θ)

)
= 0. (2.40)
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A relation between the Cauchy problem (or the boundary
problem) for an LS and HS should be specified in view of
Φ(1)

A0
(θ), whereas the restriction of the action S(1)

H (θ)|Φ(1)
A0

=0

remains an expression of the function SE(θ) in terms of
ΠT ∗MCL-coordinates.

By the Legendre transformation, the consequence (2.37) is
a change of SH,I (θ) by S(1)

H ,I (θ) in expression (2.21) for the
Hamiltonian constraints ΘH

I ((Γk,Λ)(θ),θ) = Θ(1)H
I (θ), pre-

serving the equivalence of a generalized HS that consists of
the constraints Θ(1)H

I (θ) and HS (2.40) itself. In this case, the

definition of the gauge algebra (2.23) in case of a nondegen-
erate supermatrix ‖(S′′L)IJ(θ)‖ is not affected by the change
ZH[Γk]→ Z(1)

H [Γk,Λ] by virtue of the identities δZH/δA I(θ) =
δZ(1)

H /δA I(θ) implied by Eqs. (2.37).

Locally, having assumed that condition (2.31) is fulfilled in
a vicinity of the configurations (A I

0,∂θA I
0) = (0,0) the struc-

ture of the primary constraints Φ(1)
A0

can be specified. Now,
as the regularity conditions (2.33), one can assume, while ne-
glecting J̄-covariance, that there exists a separation of the su-
perfields (A I ,∂θA I ,A∗

I ) compatible with (2.31),

(
A I ,∂θA I ,A∗

I
)

=
(
(A I0 ,AA′0),(∂θA I0 ,∂θAA′0),(A∗

I0 ,A
∗
A′0

)
)

: rank
∥∥(S′′L)I0J0(θ)

∥∥←−
L KSL=0 = ΠN−R−1. (2.41)

In this case, the action SH((Γk)(θ),θ) ≡ SH((A ,A∗
I0)(θ),θ) depends neither on the antifields A∗

A′0
nor on the primary non-

expressible superfields ∂θAA′0 due to the direct Legendre transformation (2.37), in which, instead of ΛA0 , one writes ∂θAA′0 , and
due to the fact that the action SL(θ) is at most homogeneous of degree 1 with respect to ∂θAA′0 . The action S(1)

H ((Γk,Λ)(θ),θ)
has the form

S(1)
H (θ) =

(
SH +ΛA′0 Φ(1)

A′0

)
(θ), Φ(1)

A′0
(θ) = A∗

A′0
(θ)−

←−
∂ SL(θ)

∂(
←−
∂ θAA′0(θ)) ∣∣∣∂θA I0 =∂θA I0

(
A ,A∗

I0
,∂θAA′0

) , (2.42)

where the odd velocities ∂θA I0(θ) are resolved from the relations A∗
I0(θ) =

←−
∂ SL(θ)

∂(
←−
∂ θA I0 (θ))

. In turn, Eqs. (2.38) imply the coincidence

of the Lagrangian multipliers ΛA′0 and ∂θAA′0 .
Having obtained an equivalent description of the LSM in terms of the Hamiltonian action S(1)

H (θ), and following the θ-local
analog of Dirac’s algorithm, we need to check the compatibility of the odd HS in (2.40), being the preservation of the constraints
by the θ-evolution generated by the vector field Q(1)

compl(θ), Q(1)
compl(θ)≡

[
∂/∂θ− adS(1)

H (θ)
]

= Qcompl(θ)−ΛA0 adΦ(1)
A0

(θ),

∂θΦ(1)
A0

(θ) = Qcompl(θ)
(

Φ(1)
A0

(θ)
)
−ΛB0

(
Φ(1)

B0
(θ),Φ(1)

A0
(θ)

)
θ
= 0. (2.43)

Eqs. (2.43) may contain a subsystem with R′(1)
0 equations independent from ΛA0 with residual (R(0)

0 −R′(1)
0 ) equations permitting

to find a part of ΛA0 as functions of ΓP
k (θ) if

(
Φ(1)

A0
(θ),Φ(1)

B0
(θ)

)
θ
|Φ(1)=0

6= 0. In the former case, if a subsystem of R(1)
0 ≤ R′(1)

0

equations does not depend on Φ(1)
A0

(θ), i.e., if there exists a set {Φ(1)
A1

(θ)} of {Φ(1)
A0

(θ)} such that
(

Q(1)
complΦ

(1)
A1

)
(θ) =

(
QcomplΦ

(1)
A1

)
(θ) = UB0

A1
(Γk(θ),θ)Φ(1)

B0
(θ), A1 = 1, ...,R(1)

0 for UB0
A1

(θ) = 0.

The above expression defines dependent (in general) secondary antisymplectic constraints Φ(2)
A1

(θ) ∈C∞(ΠT ∗Mk),

Φ(2)
A1

(θ) =
(

QcomplΦ
(1)
A1

)
(θ) = 0. (2.44)

The constraints Φ(2)
A1

(θ), in contrast to Φ(1)
A0

(θ), are not valid identically in the entire ΠT ∗Mk, but only on solutions of the odd
HS (2.40).

The consistency conditions for the secondary constraints Φ(2)
A1

(θ) of the form (2.43),
(

Q(1)
complΦ

(2)
A1

)
(θ) = 0, lead to new

(generally dependent) secondary antisymplectic constraints, Φ(3)
A2

(θ) =
(

QcomplΦ
(2)
A2

)
(θ) = 0, A2 = 1, ...,R(2)

0 ,R(2)
0 ≤ R′(2)

0 =

R′(1)
0 −R(1)

0 among R′(2)
0 equations not containing ΛA0 in the relations for the subset {Φ(2)

A2
} ⊆ {Φ(1)

A2
},

(
Q(1)

complΦ
(2)
A2

)
(θ) =

(
QcomplΦ

(2)
A2

)
(θ) =

(
UB0

A2
Φ(1)

B0
+UB1

A2
Φ(2)

B1

)
(θ), for UB0

A2
(θ) = UB1

A2
(θ) = 0.
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The remaining part of (R′(1)
0 − R(1)

0 − R(2)
0 ) equations in

(
Q(1)

complΦ
(2)
A1

)
(θ) = 0 permits one to define, in the case of(

Φ(1)
A0

(θ),Φ(2)
B1

(θ)
)

θ
|Φ(1)=Φ(2)=0

6= 0, a part of the superfields ΛA0 as functions of ΓP
k (θ). A proof of consistency conditions

for the constraints Φ(3)
A2

(θ) permits one to obtain new secondary antisymplectic constraints Φ(4)
A3

(θ) and a part from ΛA0 , etc.
As a result of this algorithm, the complete set of R0 dependent antisymplectic constraints ΦI0(Γk(θ),θ) = 0 consisting of the

primary Φ(1)
A0

(θ) and the remaining Φ(2..)
A1..

(θ), called secondary ones, is defined as

ΦI0(θ) =
(

Φ(1)
A0

,Φ(2..)
A1..

)
(θ), Φ(2..)

A1..
=

(
Φ(2)

A1
,Φ(3)

A2
, ...

)
, I0 = 1, ...,R(0)

0 , ...,R0, ~ε(ΦI0) =~εI0 . (2.45)

From the nonhomogeneous linear equations with unknowns ΛA0(θ), whose number is R(1)
0 ,

∂θΦI0(θ) =
(

Q(1)
complΦI0

)
(θ) =

(
QcomplΦI0

)
(θ)−ΛA0

(
Φ(1)

A0
(θ),ΦI0(θ)

)
θ
≈ 0, (2.46)

with the symbol “≈” for a weak equality in view of Theorem 1, F (θ)≈ G(θ)⇔ (F −G)(θ) = CI0(Γk(θ))ΦI0(θ), the consis-
tency of Dirac’s algorithm implies the existence of a general solution in the form

ΛA0(θ)≈ ΛA0
part(Γk(θ),θ)+λa0

0 (θ)EA0
a0

(Γk(θ),θ), a0 = 1, ...,r0 ≤ R(0)
0 . (2.47)

Here, ΛA0
part(θ) is a particular solution of the nonhomogeneous equations and the functions EA0

a0 (θ) define linearly independent

solutions of homogeneous equations associated to (2.46), with
(
QcomplΦI0

)
(θ) ≈ 0 for rankεJ̄

∥∥∥
(

Φ(1)
A0

(θ),ΦI0(θ)
)

θ

∥∥∥
ΦI0 =0

=

const[28]. The coefficients λa0
0 (θ) in Eqs. (2.47) are arbitrary.

Relations (2.47) allow one to rewrite HS (2.40) in terms of a total Hamiltonian action ST
H ((Γk,λ)(θ),θ)),

∂θΓP
k (θ) =

(
ST

H(θ),ΓP
k (θ)

)
θ = adSH0(θ)(ΓP

k (θ))+λa0
0 (θ)adΦ(1)

a0 (θ)(ΓP
k (θ)) = 0, (2.48)

with SH0(Γk(θ),θ) =
(

SH +ΛA0
partΦ

(1)
A0

)
(θ) and linearly dependent constraints Φ(1)

a0 (θ) =
(

EA0
a0 Φ(1)

A0

)
(θ), and proper zero-

eigenvalue eigenvectors, Za0
a1 (Γk(θ),θ),a1 = 1, ...,r1 ≥ R(0)

0 −R′(1)
0 − r0 for a rigorous inequality being dependent as well.

Following Dirac’s terminology, the concept of (θ-local) quantities of first and second classes is defined by the fact that an
arbitrary C∞(ΠT ∗Mk)-function F (Γk(θ),θ) either obeys the relations

(ΦI0(θ),F (θ))θ ≈ 0⇐⇒ (ΦI0(θ),F (θ))θ = gJ0
I0

(θ)ΦJ0(θ) (2.49)

(and is said to be a first-class function) or is a second-class one if it does not obey Eqs. (2.49). Jacobi’s identity for the antibracket
(·, ·)θ implies that the set of first-class functions forms a Lie algebra GI with a multiplication with respect to the antibracket, i.e.,
for any F (θ),G(θ)∈GI, (F (θ),G(θ))θ ∈GI. By definition, it follows that the total action ST

H(θ) is the sum of certain quantities

SH0(θ) and (λa0
0 Φ(1)

a0 )(θ) in view of the non-uniqueness of the particular solution ΛA0
part of Eqs. (2.46) which are given by the

gauge algebra of reducible antisymplectic primary first-class constraints [SH0 ,Φ
(1)
a0 ](θ):

(
Φ(1)

a0 (θ),Φ(1)
a0 (θ)

)
θ
= Uc0

a0b0
(θ)Φ(1)

c0 (θ),
(

SH0(θ),Φ(1)
a0 (θ)

)
θ
= Vb0

a0
(θ)Φ(1)

b0
(θ),

(
Φ(1)

a0 Za0
a1

)
(θ) = 0, (2.50)

with~ε-odd quantities (U,V) and~ε-even Z.
The primary constraints Φ(1)

a0 (θ) may be related with the reducible antisymplectic gauge transformations, δasΓP
k (θ), in

C∞(ΠT ∗Mk) (different from general gauge transformations, δgA I(θ) =
∫

dθ0R̂H
I
A0

(θ;θ0)ξA0(θ0)) which correspond to the dif-
ference between the values of ΓP

k (θ) at θ and at (θ+µ) under two different choices of the Lagrangian multipliers λa0
0 (θ), λ̃a0

0 (θ):
δλa0

0 (θ) = (λa0
0 − λ̃a0

0 )µ≡ µa0(θ) with arbitrary functions µa0(θ) on M̃,

δasΓP
k (θ) = δλa0

0 (θ)
(

Φ(1)
a0 (θ),ΓP

k (θ)
)

θ
≡ µa0(θ)

(
Φ(1)

a0 (θ),ΓP
k (θ)

)
θ
, ~ε(µa0) =~εa0 +(1,0,1). (2.51)

For the choice µa0(θ) = (µa1 Za0
a1 )(θ) with arbitrary functions µa1(θ) on M̃, being the Grassmann parities~ε(µa1) =~εa1 +(1,0,1)

if~ε(Za0
a1 ) = (~εa0 +~εa1), the above transformations vanish on the constraint surface, δasΓP

k (θ)≈ 0.
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The functional ZT
H[Γk,λ], given by

ZT
H[Γk,λ] =

∫
dθ

[
VP(Γk(θ))

←−
∂ θΓP

k (θ)−ST
H((Γk,λ)(θ),θ)

]
,

is invariant not only with respect to the transformations δgA I(θ), in view of the relation ZH = Z(1)
H = ZT

H and Eqs. (2.23), but
also with respect to extended antisymplectic transformations in C∞ (ΠT ∗MCL⊕Mλ),

δΓP
k (θ) = −µa0(θ)

(
Φ(1)

a0 (θ),ΓP
k (θ)

)
θ
,

δλa0
0 (θ) = −µc0(θ)

(
δa0

c0
∂θ−Va0

c0
(θ)−λb0

0 Ua0
c0b0

(θ)(−1)
)
− (µa1 Za0

a1
)(θ), ~ε(µa1) =~εa1 . (2.52)

Following an analog of “Dirac’s conjecture” in the usual Hamiltonian treatment of a gauge model, one may suggest that the
structure of SL(θ) for an LSM be such that secondary first-class antisymplectic constraints are generators of antisymplectic
gauge transformations as well.

A characteristic feature of odd Hamiltonization is the possibility of an explicit identification of so-called antisymplectic gauge
freedom in comparison with the odd-Lagrangian formulation of an LSM which is related to the construction of an extended
Hamiltonian action SE

H(θ) and a functional ZE
H, including all the constraints ΦI0(θ),

ZE
H[Γk,Λ] =

∫
dθ

[
VP(Γk(θ))

←−
∂ θΓP

k (θ)−SE
H((Γk,Λ)(θ),θ)

]
, SE

H(θ) =
(
SH0 +ΛI0ΦI0

)
(θ). (2.53)

The variational principle for ZE
H encodes an HS, which is not entirely equivalent to LS (2.3),

∂θΓP
k (θ) =

(
SE

H(θ),ΓP
k (θ)

)
θ = 0, ΦI0(θ) = 0. (2.54)

The system of antisymplectic constraints {ΦI0(θ)} contains two subsystems {ΦI0} = {Θâ0 ,Ξτ0} of first-class Θâ0(θ) and
second-class Ξτ0(θ) constraints extracted from the initial system by means of certain quantities J I0

â0
(θ): Θâ0(θ) = (J I0

â0
ΦI0)(θ)

so that only the functions λâ0(θ) from the set of Lagrangian multipliers ΛI0(θ), ΛI0(θ) = (λâ0 J I0
â0

)(θ), remain completely unde-
termined by the evolution of HS (2.54).

By definition, we consider that an (Las
1 ,Las

2 )-stage reducible system of antisymplectic constraints ΦI0(θ) = (Θâ0 ,Ξτ0)(θ) is
divided to a subsystem of Las

1 -stage reducible first-class constraints {Θâ0(θ)} and that of Las
2 -stage reducible second-class ones

{Ξτ0)(θ)} for (Las
1 ,Las

2 ) ∈ N2
0 if

(Θâ0(θ),Θb̂0
(θ))θ =

[
U I ĉ0

â0b̂0
Θĉ0 +U IIτ0σ0

â0b̂0
Ξτ0Ξσ0

]
(θ), (SH0(θ),Θâ0(θ))θ =

[
V Ib̂0

â0
Θb̂0

+V IIτ0σ0
â0

Ξτ0 Ξσ0

]
(θ), (2.55)

(Ξτ0(θ),Ξσ0(θ))θ =
[
Eτ0σ0 +U IIρ0

τ0σ0Ξρ0

]
(θ), (SH0(θ),Ξτ0(θ))θ =

[
V IIσ0

τ0 Ξσ0

]
(θ), (2.56)

where ‖Eτ0σ0‖ΦI0 =0 6= ‖0τ0σ0‖, â0, b̂0, ĉ0 = 1, ...,rI
0 ≤ R0, τ0,σ0 = 1, ...,R0− rI

0 ≡ rII
0 and

rank
∥∥∥
(
Θâ0 ,Γ

P
k (θ)

)
θ ωk

PQ

∥∥∥ΦI0 =0
= rI < rI

0, rank
∥∥∥
(
Ξτ0(θ),ΓP

k (θ)
)

θ ωk
PQ

∥∥∥ΦI0 =0
= rII < rII

0 (2.57)

(
Θâ0ZIâ0

â1

)
(θ) = 0,

(
ZIâs−2

âs−1
ZIâs−1

âs

)
(θ) = Θb̂0

Lâs−2b̂0
âs

, s = 1, ...,Las
1 , âs = 1, ...,rI

s,

rank
∥∥∥ZIâs−2

âs−1
(θ)

∥∥∥
Θ=0

=
s−1

∑
k=0

(−1)krI
s−k−2 < rI

s−1, rank
∥∥∥∥ZI

âLas
1 −1

Las
1

(θ)
∥∥∥∥

Θ=0
=

Las
1 −1

∑
k=0

(−1)krI
Las

1 −k−1 = rI
Las

1
,

(~ε,gh)ZIâs−1
âs

= (~εâs−1 +~εâs ,−ghâs−1
+ghâs

)
(

ZIâ−1
â0

,Lâ−1b̂0
â1

,rI
−1

)
≡ (

Θâ0 ,0,rI) , (2.58)

where we have used the standard distribution [1, 3] of ghost number in ΠT ∗MCL.
A complete definition of the subsystem of second-class antisymplectic constraints {Ξτ0(θ)} may be obtained directly from

Eqs. (2.57) under the change
(

Θâ0 ,Z
Iâs−1
âs

,Lâs−2b̂0
âs

,rI
s,L

as
1

)
→ (

Ξτ0 ,Z
IIτs−1

τs ,Lτs−2σ0
τs ,rII

s ,Las
2

)
. For Las

1 = 0 (Las
2 = 0), the subsystem

{Θâ0(θ)} ({Ξτ0(θ)}), is referred to as irreducible first-class (second-class) antisymplectic constraints. The definitions in Eqs.
(2.55)–(2.58) generalize, to the case of reducible mixed antisymplectic constraints in the context of a dynamical LSM, the formal
definition [6, 23] of irreducible second-class antisymplectic constraints for θ = 0 .
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The presence of the reducible constraints {Ξτ0} permits one to construct a so-called weak Dirac’s antibracket possessing all
the properties of the odd Poisson bracket on the constraint surface Ξτ0 = 0 by means of a degenerate odd Poisson–Dirac bivector:

ωPQ
kD (θ) =

(
ΓP

k (θ),ΓQ
k (θ)

)
θD

= ωPS
k (θ)

(
ωk

ST (θ)−
−→
∂ Ξτ0(θ)
∂ΓS

k(θ)
Ẽτ0σ0(θ)

←−
∂ Ξσ0(θ)
∂ΓT

k (θ)

)
ωT Q

k (θ), (2.59)

with the quantities Ẽτ0σ0(Γk(θ)) determined on the surface Ξτ0 = 0, (A(Γk(θ)),Ξτ0(θ))θD ≈ 0, for any A(Γk(θ)) ∈C∞(ΠT ∗Mk),
characterizing the Dirac antibracket, by the equations

Ẽτ0σ0(θ)
(
Ξσ0(θ),Ξρ0(θ)

)
θ = δτ0 ρ0 −

(
ZIIτ0

τ1dτ1
σ0

)
(θ). (2.60)

The functions dτ1
σ0(Γk(θ)),~ε(dτ1

σ0) =~ετ1 +~εσ0 in (2.60) may be specified due to the consequence
(
Eτ0σ0 ZIIσ0

σ1

)
(θ)≈ 0 of relations

(2.56), (2.58), applied to the constraints Ξτ0(θ) in the form
(
ZIIτ0

τ1 dσ1
τ0

)
(θ)≈ δσ1

τ1 .
The fact that Dirac’s antibracket obeys the generalized Jacobi identity in the entire ΠT ∗Mk or on the surface Ξτ0(θ) = 0 can be

extended according to the construction of a weak even Dirac bracket for infinitely reducible second-class symplectic constraints
[24] used to quantize the N = 1 Brink–Schwarz superparticle and the N = 1,d = 9 massive superparticle with the Wess–Zumino
term.

As in the case of the initial antibracket, there exists an odd weak nilpotent (on Ξτ0(θ) = 0) Laplacian ∆k
D(θ), corresponding

to antibracket (·, ·)θD, such that Dirac’s antibracket weakly equals to the failure of ∆k
D(θ) to act as a derivative on the product of

two functions in C∞(ΠT ∗Mk),

∆k
D(θ) =

(−1)ε(ΓP)

2
ρ−1

D

−→
∂

∂ΓP
k (θ)

(ρDωPQ
kD )k(θ)

−→
∂

∂ΓQ
k (θ)

=
(−1)ε(ΓQ)

2
ρ−1

D ωk
QP(θ)

(
ΓP

k (θ),ρD

(
ΓQ

k (θ), ·
)

θD

)
θ
, (2.61)

with an~ε-even density function ρD(Γk(θ)). The operator ∆k
D(θ) generalizes the properties of its analogue for irreducible anti-

symplectic second-class constraints in Ref. [6], for U IIρ0
τ0σ0 = 0 in Eqs. (2.56).

From the definition of Dirac’s antibracket and relations (2.56)–(2.59), there follows, for any first-class C∞(ΠT ∗Mk)-functions
[F ,G ](θ) and arbitrary C∞(ΠT ∗Mk)-function R (θ), the validity of the weak equalities

(F (θ),G(θ))θD ≈ (F (θ),G(θ))θ ,
(
F (θ),(G(θ),R (θ))θD

)
θD ≈

(
F (θ),(G(θ),R (θ))θ

)
θ . (2.62)

By virtue of the fact that SE
H(θ) is a first-class quantity, the

Dirac antibracket generates the odd HS (2.54), where it is pos-
sible to change the antibracket (·, ·)θ by (·, ·)θD. In turn, the
definition of the first-class constraint subsystem (2.55), with
allowance for relations (ref2.61), may be rewritten in terms
of Dirac’s antibracket with a weak equality which means an
equality modulo Ξτ0(θ). Note that in view of the inequality
ZT

H 6= ZE
H, the functional ZE

H is not invariant under the general
gauge transformations δgA I(θ) due to the presence of the sec-
ondary constraints Φ2..

A1..
(θ).

III. ODD-LAGRANGIAN FORM OF BFV–BRST METHOD
APPLICATION
TO ODD-HAMILTONIAN LSM

Let us apply the BFV–BRST method [11] to an LSM in
the odd Hamiltonian formulation which has been made more

complex by the presence of the (Las
1 ,Las

2 )-reducible first- and
second-class antisymplectic constraints. The construction of
an analog SΩ(θ) of the BFV–BRST charge, encoding, in terms
of Dirac’s antibracket, the gauge algebra structure functions
of the antisymplectic first-class constraints Θâ0 and the eigen-
vectors ZIâs−1

âs
,s = 0, ...,Las

1 , as well as the enhanced antisym-
plectic gauge transformations, can be described by a super-
field algorithm similar to the construction of the superfield
BV action in Refs. [1, 4]. Let us consider the gauge transfor-
mations (2.52) restricted in the minimal sector of superfields
{ΓP

k (θ)}= ΠT ∗Mk for all first-class constraints Θâ0 ,

δasΓP
k (θ) =

(
ΓP

k (θ),Θâ0(θ)
)

θD µâ0(θ), (~ε,gh)µâ0 = (~εâ0 +(1,0,1),−1−ghâ0
), ghâ0

≡ gh(Θâ0), (3.1)
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which, due to the definition δasΓP
k (θ) = ΓP

k (θ+µ)−ΓP
k (θ) =

←−
∂ θΓP

k (θ)µ, (~ε,gh)µ = ((1,0,1),−1) and the substitution, instead
of arbitrary µâ0(θ), µâ0(θ) = dµ̃â0(θ), of the ghosts dµ̃â0(θ) = Câ0(θ)dθ, (~ε,gh)Câ0 =

(
~εâ0 ,−ghâ0

)
, are embedded into the odd

HS in ΠT ∗Mk with 2N equations (for µ = dθ)
←−
∂ θΓP

k (θ)≈ (
ΓP

k (θ),SΩ
0
1(θ)

)
θD , SΩ

0
1(θ) =

(
Θâ0C

â0
)
(θ), (~ε,gh)SΩ

0
1(θ) = (~0,0). (3.2)

In view of (2.58), the function SΩ
0
1(θ) is invariant, modulo Ξτ0(θ), with respect to antisymplectic gauge transformations of ghosts

Câ0(θ), with arbitrary functions µâ1(θ) ∈C∞M , (~ε,gh)µâ1 =
(
~εâ1 ,−ghâ1

)
,

δasCâ0(θ) =
(
Câ0(θ),Θâ1(θ)

)
θD µâ1(θ), Θâ1 = C∗â0

ZIâ0
â1

, (~ε,gh)C∗â0
=

(
~εâ0 +(1,0,1),ghâ0

−1
)
. (3.3)

Making the substitution µâ1(θ) = dµ̃â1(θ) = Câ1(θ)dθ and extending rI
0 first-order equations in θ with respect to unknown

Câ0(θ) in transformations (3.3) to an HS-like set of 2rI
0 equations with the even Hamiltonian SΩ

1
1(Γk,C∗0 ,C1) = (C∗â0

ZIâ0
â1

Câ1)(θ)

for unknown
←−
∂ θΓP0

0 (θ), ΓP0
0 =

(
Câ0 ,C∗â0

)
, we obtain a system of the form (3.2). An extension of the union of the latter HS with

Eqs. (3.2) is formally identical to the system (3.2) under the replacement

(ΓP0
0 ,SΩ

0
1(θ))→ (Γ

P[0]
[0] ,SΩ

1
[1]) :

{
Γ

P[0]
[0] = (ΓP

k ,ΓP0
0 ), Γp1

1 = (C α1 ,C ∗α1
), SΩ

1
[1] = SΩ

0
1 +SΩ

1
1

}
.

The iteration sequence related to a reformulation of the antisymplectic gauge transformations of ghost variables Câ0 , ...,Câs−2

obtained from relations (2.58), leads, for an Las
1 -stage reducible LSM at the s-th step, with 0 < s≤ L and ΓP

CL ≡ΓP−1
−1 , to invariance

transformations for SΩ
s−1
1 (θ), modulo the constraints Θâ0 , namely,

δasCâs−1(θ) =
(
Câs−1(θ),Θâs(θ)

)
θD µâs(θ),

[
Θâs ,SΩ

s−1
1

]
(θ) =

[
C∗âs−1

ZIâs−1
âs

(Γk),Θâs−1C
âs−1

]
(θ),

(~ε,gh) [µâs ,SΩ
s−1
1 ] = [(~εâs +(s−1)(1,0,1),−ghâs

+ s−1),(~0,0)]. (3.4)

The substitution µâs(θ) = dµ̃âs(θ) = Câs(θ)dθ transforms the antisymplectic gauge transformations (3.4) to rs−1 equations for
unknown Câs−1(θ), extended by the superantifields of odd momenta C∗âs−1

(θ), into an HS on ΠT ∗Ms−1 = {ΓPs−1
s−1 }:

←−
∂ θΓPs−1

s−1 (θ) =
(
ΓPs−1

s−1 (θ),SΩ
s
1(θ)

)
θD

, SΩ
s
1(θ) = (C∗âs−1

ZIâs−1
âs

(Γk)Câs)(θ), ΓPs−1
s−1 = (Câs−1 ,C∗âs−1

). (3.5)

Having combined the system (3.5) with an HS in ΠT ∗M[s−1] = {Γ
P[s−1]
[s−1] } of the same form with

←−
∂ θΓ

P[s−1]
[s−1] (θ) and the even

BFV–BRST charge (Hamiltonian) SΩ
s−1
[1] (θ) = ∑s−1

r=0 SΩ
r
[1](θ) and having expressed the result for 2(N +∑s

l=0 rl) equations with

SΩ
s−1
[1] (θ) = (SΩ

s−1
[1] +SΩ

s
1)(θ), we obtain, by induction, the following HS:

←−
∂ θΓ

P[Las
1 ]

[Las
1 ] (θ) =

(
Γ

P[Las
1 ]

[Las
1 ] (θ),SΩ

Las
1

[1] (θ)
)

θD
, SΩ

Las
1

[1] (θ) =

(
Θâ0Câ0 +

Las
1

∑
s=0

C∗âs−1
ZIâs−1

âs
(Γk)Câs

)
(θ). (3.6)

The even function SΩ
Las

1
[1] (θ) quadratic in the powers of Θâ0 , Γ

P[Las
1 ]

[Las
1 ] ≡ ΓPk

k (θ)=(ΦAk ,Φ∗
Ak

)(θ), Ak = 1, . . . ,N + ∑
Las

1
l=0 rl , k=MIN}

with vanishing ghost number provided by the (~ε,gh)-spectrum for ΠT ∗Mk-coordinates

(~ε,gh)Câs =
(
~εâs + s(1,0,1),−ghâs

+ s
)
, (~ε,gh)Φ∗

Ak
=

(
~ε(ΦAk)+(1,0,1),−1−gh(ΦAk)

)
,

is a solution of the classical master equation written in terms of Dirac’s antibracket trivially extended in ΠT ∗Mk={Γpk
k (θ) ,

k = MIN} with accuracy up to O(Câs), modulo ΦI0(θ),
(

SΩ
Las

1
[1] (θ),SΩ

Las
1

[1] (θ)
)

θD
≈ O(Câs). (3.7)

Additionally, the function SΩ
Las

1
[1] (θ) is subject to the BFV-like condition of properness in the sense that

rank

∥∥∥∥∥∥

−→
∂

∂ΓPk
k (θ)

←−
∂ SΩ

Las
1

[1] (θ)

∂ΓQk
k (θ)

∥∥∥∥∥∥
←−
∂ SΩ
∂Γ

Rk
k

=0
= 2∑

[
Las

1 +1
2

]

s=0 rI
2s−(Las

1 mod 2) = L1,

L1 =
1
2
(codim+ + codim−)ΠT ∗Σas

1 +
1
2 ∑Las

1
s=0(dim+ +dim−)ΠT ∗Ms, (3.8)
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where the codimension of the surface Σas
1 = {ΓP

CL(θ)|Θâ0(θ) = 0} is calculated with respect to ΠT ∗MCL. The integrability of

the HS in (3.8) is guaranteed by a double deformation of SΩ
Las

1
[1] (θ): first in the powers of Φ∗

Ak
(θ) and then in the powers of

Câs(θ), in the framework of the existence theorem [3] for the classical master equation in the minimal sector, in the case of a
purely topological theory (i.e., one without the potential term S0(A) = S (A(0),0) in Sec. 2.1 presenting the classical action of a
standard gauge model for (εP)I = (εP)I = (εP)âs = 0):

(SΩ;k(Γk(θ)),SΩ;k(Γk(θ)))θD ≈ 0, (~ε,gh)SΩ;k =
(
~0,0

)
, k = MIN. (3.9)

Theorem 3 : There exists a solution of equation (3.9), in ΠT ∗MMIN, as a power series in the ghost coordinates Φâ
gh(θ) =

{Câs(θ), s = 0, ...,Las
1 }, subject to the boundary conditions

[
SΩ;k(θ),

(
SΩ;k(θ),C∗â0

(θ)
)

θD ,
((

Câs−1(θ),SΩ;k(θ)
)

θD ,C∗âs(θ)
)

θD

]
Φâ

gh=0 =
[
0,Θâ0 ,Z

Iâs−1
âs

]
(θ), (3.10)

and to the condition of properness (3.8) written for SΩ;k(θ).

A sketch of a proof: the proof of Theorem 3 repeats the Koszul–Tate construction in Hamiltonian formalism [15] for the
antisymplectic case.

IV. CONCLUSION

Let us summarize the main results of the present work.
We have examined a θ-local description of an arbitrary de-

generate reducible superfield theory as a natural extension of a
usual gauge theory, defined on a configuration space Mcl

∣∣
θ=0

of classical fields Ai, to a local superfield model. Namely, we
apply Dirac’s algorithm to realize an odd Hamiltonization of
a Lagrangian degenerate local superfield model (LSM), being
an extension of a usual gauge model of classical fields Ai, i =
1, ...,n = n+ + n−, on a configuration space Mcl, to a θ-local
theory defined on an odd tangent bundle ToddMCL ≡ΠT MCL
=

{
A I ,∂θA I

}
, I = 1, . . . ,N = N+ + N−, (n+,n−)≤ (N+,N−)

with N+,(N−) bosonic (fermionic) superfields. The gener-
alized classical superfields A I(θ), A I(θ) = AI + λIθ, para-
meterize the base MCL (Mcl ⊂ MCL) of the bundle ΠT MCL
and transform with respect to a J-superfield representation
T of the direct product of supergroups J̄,P: J = J̄×P, P =
exp(iµpθ), with J̄ chosen as a spacetime SUSY group, and µ,
pθ being the respective nilpotent parameter and generator of
θ-shifts. The non-Lorentz character of superfields A I(θ) de-
fined on M =

{(
zM,θ

)}
=

{
zK

}
, zM ⊂ i ⊂ I, is reflected by

a possible inclusion in their spectrum of additional, besides
A i(θ), superfields corresponding to the ghosts of the minimal
sector in the BV quantization scheme. Following the BFV
prescription, we construct their θ-local counterparts on the ba-
sis of a complete system of antisymplectic constraints and a
Hamiltonian action SH0(θ) defined on ΠT ∗MCL =

{
A I ,A∗

I
}

,

a bosonic BRST charge SΩ(θ), a unitarizing Hamiltonian ac-
tion SH (θ), and a gauge fermion FΨ(θ). We specify to the
case of a singular LSM a derivation of Lagrangian and Hamil-
tonian master equations from Noether’s first theorem applied
to θ-shifts, and establish a relation between the complete
Hamiltonian action, SH(θ) = SH (θ)+(SΩ(θ),FΨ(θ))θD, con-
structed via θ-local Dirac’s antibracket, and the quantum ac-
tion of the BV method.

We have constructed an odd-Hamiltonian formulation for
an LSM starting from an odd Lagrangian in the case of a
degenerate Hessian supermatrix ‖(S′′L)IJ‖(θ) as the superma-
trix of second derivatives of the Lagrangian classical action,
SL(θ) = SL(A(θ),∂θA(θ),θ), with respect to odd velocities(
∂θA I ,∂θAJ

)
(θ) on the basis of Dirac’s algorithm in terms of

a θ-local antibracket. We apply the BFV method to a con-
struction of formal counterparts of the BFV–BRST charge,
gauge fermion and unitarizing Hamiltonian of a t-local field
theory in terms of a θ-local Dirac’s antibracket, reflecting, in
view of general gauge invariance, the presence of a subsystem
of second-class constraints among all of the antisymplectic
constraints. We present a plan of establishing a correspon-
dence between the resulting odd-Hamiltonian formulation of
an LSM with the BV quantum action for a gauge model cor-
responding to an LSM.

Acknowledgments D.M.G. thanks the foundations
FAPESP and CNPq for permanent support. P.Yu.M. is
grateful to CNPq.

[1] D.M. Gitman, P.Yu. Moshin, and A.A. Reshetnyak, J. Math.
Phys. 46, 072302 (2005); Phys. Lett. B 621, 295 (2005).

[2] A.A. Reshetnyak, Basic features of general superfield quan-
tization method for gauge theories in Lagrangian formalism,
Proceedings of the International Seminar on Supersymmetries
and Quantum Symmetries SQS 03, Dubna, Russia, July 24–29,

2003 (Eds. E. Ivanov and A. Pashnev, JINR, Dubna, 2004, 345);
hep-th/0312118.

[3] I.A. Batalin and G.A. Vilkovisky, Phys. Lett. B 102, 27 (1981);
Phys. Rev. D 28, 2567 (1983); J. Math. Phys. 26, 172 (1985).

[4] A.A. Reshetnyak, Russ. Phys. J. 47, 1008 (2004); hep-
th/0512327.



D.M. Gitman et al. 1259

[5] I.A. Batalin and I.V. Tyutin, Int. J. Mod. Phys. A 8, 2333 (1993).
[6] I.A. Batalin, K. Bering, and P.H. Damgaard, Nucl. Phys. B 739,

389 (2006); hep-th/0512131.
[7] J. Thierry–Mieg, J. Math. Phys. 21, 2834 (1980);

L. Bonora and M. Tonin, Phys. Lett. B 98, 48 (1981); L.
Bonora, P. Pasti, and M. Tonin, J. Math. Phys. 23, 839 (1982);
L. Baulieu, Phys. Rep. 129, 1 (1985).

[8] C.M. Hull, B. Spence, and J.L. Vazquez-Bello, Nucl. Phys. B
348, 108 (1991).

[9] V.N. Shander, Functional analysis and its applications, 14, No.
2 (1980) 91 (in Russian).

[10] I.A. Batalin, K. Bering, and P.H. Damgaard, Nucl. Phys. B 515,
455 (1998); Phys. Lett. B 446, 175 (1999).

[11] E.S. Fradkin and G.A. Vilkovisky, Phys. Lett. B 55, 224 (1975);
I.A. Batalin and G.A. Vilkovisky, Phys. Lett. B 69, 309 (1977);
E.S. Fradkin and T.E. Fradkina, Phys. Lett. B 72, 343 (1978);
I.A. Batalin and E.S. Fradkin, Phys. Lett. B 122, 157 (1983);
For a review see: M. Henneaux, Phys. Rept. 126, 1 (1985).

[12] P.M. Lavrov, P.Yu. Moshin, and A.A. Reshetnyak, Mod. Phys.
Lett. A 10, 2687 (1995); JETP Lett. 62, 780 (1995);
B. Geyer, P.M. Lavrov, and P.Yu. Moshin, Phys. Lett. B 463,
188 (1999);
P.M. Lavrov and P.Yu. Moshin, Theor. Math. Phys. 126, 101
(2001).

[13] M. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboron-
sky, Int. J. Mod. Phys. A 12, 1405 (1997).

[14] M. Grigoriev and P.H. Damgaard, Phys. Lett. B 474, 323
(2000).

[15] J.L. Koszul, Bull. Soc. Math. France 78, 5 (1950); A. Borel,
Ann. Math. 57, 115 (1953);
J. Tate, Illinois J. Math. 1, 14 (1957);
J. Stasheff, Deformation theory and the Batalin–Vilkovisky
master equation, Proceedings of the Conference on Deforma-
tion Theory (Ascona, Switzerland, 1996); q-alg/9702012;
J.M.L. Fisch and M. Henneaux, Comm. Math. Phys. 128, 627
(1990).

[16] M. Henneaux and C. Teitelboim, Quantization of Gauge Sys-
tems (Princeton U.P., NJ 1992).

[17] D.M. Gitman and I.V. Tyutin, Quantization of Fields with Con-
straints, (Berlin and Heidelberg, Springer–Verlag, 1990).

[18] I.L. Buchbinder and S.M. Kuzenko, Ideas and Methods of Su-
persymmetry and Supergravity (Institute of Physics Publishing,
Bristol & Philadelphia, 1995).

[19] E. Noether, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. II
(1918) 235;
M.A. Tavel, Transport Theory and Stat. Phys. 1, No. 3, 183
(1971).

[20] B.S. De Witt, Dynamical Theory of Groups and Fields (Gordon
& Breach, New York, 1965).

[21] F.A. Berezin, Introduction to Superanalysis (Eds. A.A. Kirillov
and D. Leites, Reidel, Dordrecht, 1987).

[22] B. De Witt, Supermanifolds (2nd Edition, Cambridge Univer-
sity Press, Cambridge, 1992).

[23] I.A. Batalin and I.V. Tyutin, Mod. Phys. Lett. A 8, 3673 (1993);
Int. J. Mod. Phys. A 9, 1707 (1994).

[24] A.A. Deriglazov, A.V. Galajinskii, and S.L. Lyachovich, Nucl.
Phys. B 177, 282 (1996).

[25] An LSM of a general type, unlike an LSM of a special type,
contains the operator ∂θ ≡ ∂l

θ = d/dθ in the structure functions
of the gauge algebra.

[26] In the case of a nontrivial relation between the t- and θ-
components of supertime χ by means of the operator D =
∂θ +θ∂t , [D,D]+ = 2∂t , as the generator of the supergroup J, an
adequate realization of J, whose quotient is the superspace M ,
is made possible in terms of (non(super)commutative with each
other) J̄ and Pntriv = exp(iµD) by analogy with the construction
of a simple SUSY group.

[27] In the infinite-dimensional case, the concept of dimension has
to be clarified; for a vector bundle N → M̃ , it is formally un-
derstood that dimN is the dimension of the fiber F N

p over an

arbitrary p ∈ M̃ .
[28] Here, the rank of a supermatrix is calculated with respect to the

Grassmann parity εJ̄


