
Brazilian Journal of Physics, vol. 38, no. 2, June, 2008 237

The Matrix Product Ansatz for Integrable U(1)N Models in Lunin-Maldacena Backgrounds
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We obtain through a Matrix Product Ansatz (MPA) the exact solution of the most general N-state spin chain
with U(1)N symmetry and nearest neighbour interaction. In the case N = 6 this model contain as a special case
the integrable SO(6) spin chain related to the one loop mixing matrix for anomalous dimensions in N = 4 SYM,
dual to type IIB string theory in the generalised Lunin-Maldacena backgrounds. This MPA is construct by a
map between scalar fields and abstract operators that satisfy an appropriate associative algebra. We analyses
the Yang-Baxter equation in the N = 3 sector and the consistence of the algebraic relations among the matrices
defining the MPA and find a new class of exactly integrable model unknown up to now.
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I. INTRODUCTION
Since the discovery of the relation between the planar di-

latation operator of the N = 4 Super Yang-Mills with an inte-
grable so(6) quantum spin chains [1], integrability has played
a prominent role in the exploration of the Maldacena’s cor-
respondence between the N = 4 Super Yang-Mills with IIB
string theory in AdS5 × S5 spaces [2–4]. The study of the
planar dilatation operator’s integrability is very important be-
cause it not only enable us to test the Maldacena’s correspon-
dence as it is an generator of nontrivial integrable models. Ex-
actly solvable models are of interest in both physics and math-
ematics since the pioneering work of Hans Bethe [5]. The
Bethe ansatz and its generalisations emerged over the years
as a quite efficient and powerful tool for the exact solution of
the eigenspectrum of a great variety of one dimensional quan-
tum chains and two-dimensional transfer matrices (see, e.g.,
[6–9] for reviews). According to this ansatz the amplitudes of
the eigenfunction are expressed by a nonlinear combination
of properly defined plane waves. On the other hand, in the
last two decades several different ansatz were introduced in
the literature under the general name of matrix product ansatz
(MPA). The first formulation was done for the description of
the ground-state eigenfunction of some special non-integrable
quantum chains, the so called valence-bond solid models [10–
13]. The MPA becomes also a successful tool for the exact
calculation of the stationary probability distribution of some
stochastic one dimensional systems [14–16]. An extension
of this last MPA, called dynamical MPA was introduced in
[17, 18] and extended in [19]. This last ansatz gives the time-
dependent probability distribution for some exact integrable
systems. The MPA we are going to use in this paper, in or-
der to solve the U(1)N quantum spin chain, was introduced in
[20–23]. This ansatz was applied with success in the evalua-
tion of the spectra of several integrable quantum Hamiltonians
[20–22], transfer matrices [24–26] and the time-evolution op-
erator of stochastic systems [23]. According to this ansatz,
the amplitudes of the eigenfunctions are given in terms of a
product of matrices where the matrices obey appropriated al-
gebraic relations. In the case of the Bethe ansatz the spectral

parameters and the amplitudes of the plane waves are fixed,
apart from a normalisation constant, by the eigenvalue equa-
tion of the Hamiltonian or transfer matrix. On the other hand,
in the MPA the eigenvalue equation fixes the commutation re-
lations of the matrices defining the ansatz. In such case the
spectrum of the Hamiltonian or transfer matrix, and the cor-
responding eigenfunctions, can be computed in a purely alge-
braic way.

In the present paper we study the most general quantum
spin chain with U(1)N symmetry with nearest neighbour in-
teraction thought a MPA in the generalised Lunin-Maldacena
backgrounds (in this case we are only interested in zero mo-
mentum eigenstates, the more general case, including all mo-
mentum states, will be presented in [27]). This model contains
as a special case the integrable so(6) spin chain related to the
one loop planar dilatation operator of the N = 4 Super Yang-
Mills [1]. We analyse the Yang-Baxter equation in the N = 3
sector and the consistence of the algebraic relations among the
matrices defining the ansatz and find that the solutions are sep-
arated in two class. In the first (class A) we obtain the models
presented in [28–31], in the context of one loop dilatation op-
erator, as well as in condensed matter physics and stochastic
models [19, 21, 23, 32–34]. In the second class (class B) we
obtain the model presented in [19] for the stochastic problem
of fully asymmetric diffusion of two kinds of particles. In
this last sector we also find a new type of integrable model
unknown up to now. Our solution generalises the previous re-
sults obtained in (14) through the coordinate Bethe ansatz for
U(1)N quantum spin chains. The analyses of the model for the
full sector with U(1)N symmetry will be presented elsewhere
[27].

II. THE U(1)N SPIN CHAIN IN THE GENERALISED
LUNIN-MALDACENA BACKGROUNDS

The AdS/CFT conjecture relates operators, states, correla-
tion functions and dynamics between the N = 4 Super Yang-
Mills with IIB string theory in AdS5× S5 spaces. One of the
most important results of this conjecture predicts that the spec-
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trum of scaling dimension D of gauge invariant operators, in
the conformal field theory, should coincide with the spectrum
of energies E of string states. Furthermore, this correspon-
dence relates the weak coupling constant regime, in the gauge
theory, with the strong coupling constant ones, in the string
theory. Currently it is only possible to test the Maldacena’s
conjecture for a limited class of operators, and only in the case
of large λ values of the ’t Hooft coupling constant. Operators
where this conjecture can be tested are called BMN (Beren-
stein, Maldacena e Nastase) operators [35]. These operators
are local primary operators in S5 with large J charge, in the
planar limit (large λ). These operator are given by the trace of
a product of a large number the six scalar fields of the theory.
The most general operator O in this class is given by

O(Ψ,N) = Ψα1...αL
N Tr(Φα1 · · ·ΦαL), (1)

where α j = 1, ...,N, with N = 6 and j = 1, ...L, and L >> 1
is the number of fields. Instead of restrict our study to the
case N = 6, we will consider in this work N general. The
planar dilatation operator D, that is one of the generators of
the conformal algebra and it give us the scaling dimensions of
local operators, and consequently give us the energies of the
string’s states, is given by:

D(g) = L+g2H +O
(

1
N

)
, (2)

where g = g2
Y MN
8π2 , and the operator L counts the number of

scalar fields on the operators O (1). The operator H is the one
loop planar dilatation operator. This operator H was identified
[1] with an exactly integrable uni dimensional SO(6) quantum
spin chain Hamiltonian. By this expansion in loops (2) it can
perturbativelly compare the string theory in the BMN limit to
the field theory. On the other hand, this equivalence between
the dilatation operator with integrable spin chain makes pos-
sible to use the powerful Bethe ansatz to diagonalise the one-
loop dilatation operator [1]. By diagonalising this operator
through the Bethe ansatz, it is obtained the scaling dimensions
of any state of local operators in the conformal field theory in
a purely algebraic way. The integrability also guarantees that
these scaling dimensions can be exactly obtained for all gauge
group, and in particular, for the U(N) group [36]. On the side
of string theory, the integrable structures was discovered by
the observation that Green Schwartz superstrings in AdS5×S5

has an infinite set of conserved non-local charges [37]. These
results have made possible the comparison between gauge the-
ories and string theories in the plane wave limit [38], further-
more, the integrability enable us to make very precise tests for
the correspondence AdS/CFT.

The most general one-loop dilatation operator is related
with an integrable spin model with long-range couplings [39].
In the particular case of only two types of scalar fields on the
BMN operators (2) (case N = 2), this integrable Hamiltonian
reduces to the famous XXX model [1]. On the other hand,
the case of N = 3 was studied by Frolov e Tseytlin [40] and
it corresponds to a spin-1 spin chain. The most general spin-1
model in condensed matter physics [21] was obtained by us in

a recent work, but it is not studied with the objective of clas-
sifying all possible solutions. In the context of the one-loop
dilatation operator the solution, on class A presented here, was
obtained in [28].

We consider here the most general N-state spin chain with
nearest neighbour interaction, periodic boundary condition,
zero momentum eigenstates [46], and U(1)N symmetry. The
N possible states configurations of a given site is related to the
N different types of scalar fields in (1). The U(1)N symmetry
imply that the Hamiltonian describing the time evolution of
this spin chain conserves the number of states of each type. By
denoting the basis of states at a given site as |α〉 (α = 1, ...,N),
the Hamiltonian in a periodic lattice with L sites takes the form

H =
L

∑
j=1

(
N

∑
α6=β=1

Γα β
β αEβ α

j Eα β
j+1 +

N

∑
α,β=1

Γα β
α βEα α

j Eβ β
j+1

)
, (3)

where Eα β are N×N Wyel matrices with elements
(
Eα β)

i, j =
δα,iδβ, j (α,β = 1, ...,N). While the first term in the right hand
side of (3) acts over neighbour sites exchanging its configura-
tion |α〉⊗ |β〉 → |β〉⊗ |α〉 with rate Γα β

β α, the second one is a

diagonal operator with weight Γα β
α β. The eigenfunction for (3)

can be construct as

|O(Ψ,N)〉=
∗
∑

α1,...,αL

Ψα1...αL
N |α1, ...,αL〉 (α j = 1, ...,N), (4)

where the amplitudes Ψα1...αL
N are related to the amplitudes in

(1), for the operator O, and the symbol (∗) in the sum denotes
the restriction to the sets {α1, ...,αL} with the same number
nα of spins in configuration α.

III. THE MPA

In order to formulate a MPA for the Hamiltonian (3), we
make a one-to-one correspondence between configurations of
spins (or scalar fields in the SYM) and products of abstract
matrices. This matrix product is construct by making a corre-
spondence between sites with spin configuration α = 1, ...,N
and a matrix A(α). Our MPA asserts that the components of
the amplitude of the eigenfunction Ψα1...αL

N in (4) are obtained
by associating them to a products of these matrices A(α). Ac-
tually A(α) (α = 1, ...,N) are abstract operators with an as-
sociative product. A well defined eigenfunction is obtained,
apart from a normalisation factor, if all the amplitudes are re-
lated uniquely. Equivalently, in the subset of words (prod-
ucts of matrices) in the algebra containing nα matrices A(α)

(α = 1, ...,N, n1 + · · ·nN = L) there exists only a single in-
dependent word. The relation between any two words gives
the ratio between the corresponding amplitudes of the com-
ponents of the eigenfunction |O(Ψ,N)〉. To formulated the
ansatz we can choose any uniform operation on the matrix
products that gives a non-zero scalar. For a quantum chains
with periodic boundary conditions the trace operation is a
convenient chose to produce this scalar [47]. The amplitudes
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Ψα1...αL
N in (4) takes the form:

Ψα1...αL
N = Tr(A(α1)A(α2) · · ·A(αL)) (α j = 1, ...,N). (5)

It is obvious that the N states |α...α〉 (α = 1, ...,N) are
all eigenstates of the Hamiltonian (3). In the following we

shall choose |1...1〉 as our reference state. The Hamiltonian
(3) when applied to the components of the eigenfunction (4)
where we do not have spins configurations |α〉 (α = 2, ...,N)
at nearest neighbour sites give us the constraints, for the am-
plitudes Ψα1...αL

N (5),

εnTr(Ax1−1A(α1)Ax2−x1−1 · · ·A(α j−1)Ax j−x j−1−1A(α j)Ax j+1−x j−1A(α j+1) · · ·A(αn)AL−xn)

=
n

∑
j=1

[
Γα j 1

1 α j
Tr(Ax1−1A(α1)Ax2−x1−1 · · ·A(α j−1)Ax j−x j−1−2A(α j)Ax j+1−x j A(α j+1) · · ·A(αn)AL−xn)

+ Γ1 α j
α j 1 Tr(Ax1−1A(α1)Ex2−x1−1 · · ·A(α j−1)Ax j−x j−1A(α j)Ax j+1−x j−2A(α j+1) · · ·A(αn)AL−xn)

]

+[(L−2n)Γ1 1
1 1 +

n

∑
l=1

(
Γαl 1

αl 1 +Γ1 αl
1 αl

)
]Tr(Ax1−1A(α1)Ax2−x1−1 · · ·A(αn)AL−xn) (α j = 2, ...,N), (6)

where εn is the energy of the eigenfunction (4), A≡ A(1), n = n2 +n3 + · · ·+nN , and x1, ...,xn are the position in the spin chain
where we have a state configuration |α 6= 1〉. A convenient solution of this last equation is obtained by identifying the matrices
A(α) (α = 2, ...,N) as composed by spectral-parameter-dependent matrices [20–22]. The distinguibility of states configurations
allows two types of solutions. The standard solution (class A) is obtained if each of the matrices A(α) (α = 2, ...,N) is composed
of n = n2 + n3 + · · ·+ nN spectral parameter dependent matrices [21, 23]. The second class of solutions (class B) is obtained if
matrices A(α) (α = 2, ...,N) with different α value are composed of by distinct sets of spectral parameters matrices [21].

Solutions of class A
In this case, the matrices A(α) (α = 2, ...,N) can be written in terms of the matrix A and n = n2 + n3 + · · ·+ nN spectral

parameter dependent matrices A(α)
k j

[48]:

A(α) =
n

∑
j=1

A(α)
k j

A, (α = 2, ...,N), (7)

where the matrices A(α)
k j

(α = 2, ...,N) satisfy the following commutation relations with the matrix A:

A(α)
k j

A = g(α)eik j AA(α)
k j

, (α = 2, ...,N), ( j = 1, ...,n), (8)

the parameters k j ( j = 1, ...,n) are in general complex numbers unknown a priori, and g(α) is a constant. The energy εn is
obtained by inserting (7) in (6), by using (8) and imposing that εn is a symmetric function on the spectral parameters:

εn =
n

∑
j=1

(
Γ2 1

1 2eik j +Γ1 2
2 1e−ik j

)
+

N

∑
α=2

nα
(
Γ1 α

1 α +Γα 1
α 1

)
+(L−2n)Γ1 1

1 1, (9)

where we need to impose

g(α) =
Γ2 1

1 2

Γα 1
1 α

=
Γ1 α

α 1

Γ1 2
2 1

(g(2) = 1, α = 3, ...,N). (10)

The relations coming from the eigenvalue equation for configurations where we have two spins configurations |α〉 (α =
2, ...,N) at nearest neighbour sites are given by

n

∑
j,l=2

[
Γ1 2

2 1 +Γ2 1
1 2ei(k j+kl) +(Γα 1

α 1 +Γ1 α
1 α−Γ1 1

1 1−Γα α
α α)eik j

]
A(α)

k j
A(α)

kl
= 0, (11)

n

∑
j,l=2

[
Γ1 2

2 1 +Γ2 1
1 2ei(k j+kl) +(Γα 1

α 1 +Γ1 β
1 β−Γ1 1

1 1−Γα β
α β)e

ik j
]

A(α)
k j

A(β)
kl

=
n

∑
j,l=2

g(β)
g(α)

Γβ α
α βeikl A(β)

k j
A(α)

kl
(α 6= β),
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where we have used (5), (7)-(10). The relations (11) fix the algebraic relations among the matrices A(α)
k j

(α = 2, ...,N):

A(α)
k j

A(β)
kl

=
N

∑
α′,β′=2

Sα β
β′ α′(k j,kl)A

(α′)
kl

A(β′)
k j

, A(α)
k j

A(β)
k j

= 0 (l 6= j = 1, ...,n), (12)

where the nonzero structural constants Sα β
β′ α′(k j,kl) are given by:

Sα α
α α(k j,kl) =−Γ1 2

2 1 +Γ2 1
1 2ei(k j+kl) +(Γα 1

α 1 +Γ1 α
1 α−Γ1 1

1 1−Γα α
α α)eikl

Γ1 2
2 1 +Γ2 1

1 2ei(k j+kl) +(Γα 1
α 1 +Γ1 α

1 α−Γ1 1
1 1−Γα α

α α)eik j
,

Sα β
β α(k j,kl) =−

Cα,β(kl ,k j)Cβ,α(k j,kl)−Γβ α
α βΓα β

β αei(k j+kl)

Cα,β(k j,kl)Cβ,α(k j,kl)−Γβ α
α βΓα β

β αe2ik j
, (α 6= β = 2, ...,N) (13)

Sα β
α β(k j,kl) =− g(β)

g(α)

Γβ α
α β(Cβ,α(kl ,k j)eik j −Cβ,α(k j,kl)eikl )

Cα,β(k j,kl)Cβ,α(k j,kl)−Γβ α
α βΓα β

β αe2ik j
,

Cα,β(k j,kl) = Γ1 2
2 1 +Γ2 1

1 2ei(k j+kl) +(Γα 1
α 1 +Γ1 β

1 β−Γ1 1
1 1−Γα β

α β)e
ik j .

Relations (8) and (12) define completely the algebra whose
structural constants are the S-matrix given by (13). It is im-
portant to mention that in the sector N = 2 (only two types
of scalar fields φ1 and φ2, for example) the Hamiltonian (3)
reduces to the well known asymmetric XXZ model [41]. In
this particular case the S-matrix is a diagonal matrix were
S2 2

2 2(k j,kl) in (13) is the only nonzero element. As a conse-
quence, the algebra defined by (12) is associative for N = 2.
For N general the S-matrix is not diagonal and the algebra (12)
is not associative for arbitrary values of Γα β

β α and Γα β
α β. For ar-

bitrary amplitudes we have in our matrix product ansatz (5) a
product of n matrices A(α)

k j
. Our ansatz will be valid only if the

relations (12) provide a unique relation among these products,
otherwise the eigenfunction (4) is not properly defined. This
means, for example, that the products · · ·A(α)

k1
A(β)

k2
A(γ)

k3
· · · and

· · ·A(γ)
k3

A(β)
k2

A(α)
k1
· · · should be uniquely related. Since we can

relate then either by performing the commutations in the order
αβγ→ βαγ→ βγα→ γβα or αβγ→ αγβ→ γαβ→ γβα, the
structure constants Sα α′

γ γ′ of the algebraic relations (12) should
satisfy

N

∑
γ,γ′,γ′′=2

Sα α′
γ γ′ (k1,k2)S

γ α′′
β γ′′ (k1,k3)S

γ′ γ′′
β′ β′′(k2,k3) =

N

∑
γ,γ′,γ′′=2

Sα′ α′′
γ′ γ′′ (k2,k3)S

α γ′′
γ β′′ (k1,k3)S

γ γ′
β β′(k1,k2), (14)

for α,α′,α′′,β,β′,β′′ = 2, ...,6. This last constraint is just the
Yang-Baxter relation [6, 42] of the S-matrix defined in (13).
Actually the condition (14) is enough to ensure that any matrix
product of spectral matrices {A(α)

k j
} is uniquely related and it

implies the associativity of the algebra of the matrices {A(α)
k j
}

. In this case the relations coming from the eigenvalue equa-
tion for configurations where we have more than two spins
configurations |α〉 (α = 2, ...,N) at nearest neighbour sites are
automatically satisfied by the algebraic relations (8) and (12)
among the matrices defining the ansatz, no new constraints
appear from these relations. On the other hand, the Yang-
Baxter relation (14) produces strong constraints in the allowed
couplings Γα β

β α and Γα β
α β of the Hamiltonian (3). In the sector

N = 3 (tree types of scalar fields φ1, φ2 and φ3, for example)
the Hamiltonian (3) reduces to an asymmetric spin-1 quantum
Hamiltonian with U(1)3 symmetry. The spin-1 model with
g(2) = g(3) = 1 in (10) and U(1)3 symmetry was obtained by
us in a recent work [21] in the context of condensed matter
physics, but it is not studied with the objective of classifying
all possible solutions of the Yang-Baxter equation (14). In
the generalised Lunin-Maldacena backgrounds, the solutions
of (14) was classified in [28] for hermitian Hamiltonians (3).
In the present paper we obtain the most general solution of
(14). These solutions generalises the previous results obtained
in [21, 28] and can be obtained by a systematic investigation
with the aid of Maple by purely analytical means. We find the
following types of solutions:
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(A.1) Γ1 α
α 1Γα 1

1 α = Γ1 β
β 1Γβ 1

1 β = Γβ α
α βΓα β

β α = tαβ1tβα1, tαα1 = tββ1 = 0,

(A.2) Γ1 α
α 1Γα 1

1 α = Γ1 β
β 1Γβ 1

1 β = Γβ α
α βΓα β

β α = tαβ1tβα1, tαα1 = tααβ = 0,

(A.3) Γ1 α
α 1Γα 1

1 α = Γ1 β
β 1Γβ 1

1 β = Γβ α
α βΓα β

β α = tαβ1tβα1, t1βα = tα1β = tβα1,

(A.4) Γ1 α
α 1Γα 1

1 α = Γ1 β
β 1Γβ 1

1 β, Γβ α
α β = Γα β

β α = 0, tαβ1 = tβα1 = tββ1 = tαα1,

(A.5) Γα 1
1 α = gΓβ 1

1 β, Γ1 α
α 1 = Γ1 β

β 1 = 0, Γα β
β α = 0, tαβ1 = tαα1,

(A.6) Γα 1
1 α = gΓβ 1

1 β, Γ1 α
α 1 = Γ1 β

β 1 = 0, Γα β
β α = 0, tβα1 = tαα1,

(A.7) Γ1 α
α 1 = gΓ1 β

β 1, Γα 1
1 α = Γβ 1

1 β = 0, Γα β
β α = 0, tαβ1 = tββ1,

(A.8) Γ1 α
α 1 = gΓ1 β

β 1, Γα 1
1 α = Γβ 1

1 β = 0, Γα β
β α = 0, tβα1 = tββ1,

(A.9) Γ1 α
α 1 = Γα 1

1 α = Γ1 β
β 1 = Γβ 1

1 β = 0.

(15)

where α,β = 2,3 with α 6= β and tα′β′γ = Γα′ β′
α′ β′ + Γγ γ

γ γ−Γα′ γ
α′ γ−Γγ β′

γ β′ (α′,β′,γ = 1,2,3). The first four models A.1-A.4 and A.9
contain as a special case (for hermitian hamiltonians (3)) the solutions obtained in [28–31], in the context of one loop dilatation
operator, as well as in condensed matter physics and stochastic models [19, 21, 23, 32–34]. The models A.5-A.8 generalises the
model presented in [19] for the stochastic problem of fully asymmetric diffusion of two kinds of particles.

In order to complete our solutions through the MPA (5) we should fix the spectral parameters, or momenta, k1, . . . ,kn. Using
the algebraic relations (7) and (8) an arbitrary amplitude is proportional to Tr

[
A(α1)

k1
· · ·A(αn)

kn
AL

]
. The cyclic property of the trace

and the commutation relations (8) and (12) give us

Tr
[
A(α1)

k1
· · ·A(αn)

kn
AL

]
= eik jL

N

∑
α′1,...,α′n=2

〈α1, . . . ,αn|T (n)|α′1, . . . ,α′n〉Tr
[
A

(α′1)
k1

· · ·α(α′n)
kn

EL
]
, (16)

where we have used the identity (see (13))

∑
α′′j ,α′′j+1

S
α j α′′j+1
α′j α′′j

(k j,k j) =−1, (17)

and

〈α1, . . . ,αn|T (n)|α′1, . . . ,α′n〉= ∑
α′′1 ,...,α′′n

{
S

α1 α′′2
α′1 α′′1

(k1,k j) · · ·S
α j α′′j+1
α′j α′′j

(k j,k j) · · ·Sαn α′′1
α′n α′′n

(kn,k j)φ(α′′1)
}

(18)

where φ(α′′1) = g(α′′1)
L, is a (N−1)n× (N−1)n-dimensional

transfer matrix of an inhomogeneous vertex model (inhomo-
geneities {kl}) with Boltzmann weights given by (13). The
model is defined on a cylinder of perimeter n with a seam
along its axis producing the twisted boundary condition

S
αn α′′n+1
α′n α′′n

(kn,k j) = S
αn α′′1
α′n α′′n

(kn,k j)φ(α′′1). (19)

Finally relation (16) with (19) give us the constraints for the
spectral parameters:

e−ik jL = Λ(n)(k j,{kl}) ( j = 1, . . . ,n), (20)

where Λ(n)(k j,{kl}) are the eigenvalues of the transfer matrix
(18). The condition (20) leads to the problem of evaluation the
eigenvalues of the inhomogeneous transfer matrix (18). This

can be done through the algebraic Bethe ansatz [43] or the
coordinate Bethe ansatz (see [44] and [45] for example).

Solutions of class B

In this case, the matrices A(α) (α = 2, ...,N) with different α
value are composed of by distinct sets of spectral parameters
matrices. For simplicity we are going to consider that there
are two sets of spectral parameters. For a given δ = 2, ...,N,
we have na = n2 + · · ·+ nδ parameters k(a)

j ( j = 1, ...,na) and

nb = nδ+1 + · · ·+ nN parameters k(b)
j ( j = 1, ...,nb). In this

case the matrices A(α) can be written as:

A(α) =
na

∑
j=1

A(α)

k(a)
j

A,(α = 2, ...,δ),
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A(α) =
nb

∑
j=1

A(α)

k(b)
j

A, (α = δ+1, ...,N), (21)

where the matrices A(α)
k j

(α = 2, ...,N) satisfy the following
commutation relations with the matrix A:

A(α)

k(α)
j

A = g(α)eik(α)
j AA(α)

k(α)
j

, (α = 2, ...,N), (22)

with k(α)
j = k(a)

j for α ≤ δ and k(α)
j = k(b)

j for α > δ. The
energy εn is obtained by inserting (21) in (6), by using (22)
and imposing that εn is a symmetric function on each sets of
spectral parameters:

εn =
na

∑
j=1

(
Γ2 1

1 2eik(a)
j +Γ1 2

2 1e−ik(a)
j

)
+

nb

∑
j=1

(
Γδ+1 1

1 δ+1eik(b)
j +Γ1 δ+1

δ+1 1e−ik(b)
j

)
+

N

∑
α=2

nα
(
Γ1 α

1 α +Γα 1
α 1

)
+(L−2n)Γ1 1

1 1, (23)

where we need to impose

g(α) =
Γ2 1

1 2

Γα 1
1 α

=
Γ1 α

α 1

Γ1 2
2 1

(g(2) = 1, α = 3, ...,δ), g(α) =
Γδ+1 1

1 δ+1

Γα 1
1 α

=
Γ1 α

α 1

Γ1 δ+1
δ+1 1

(g(δ+1) = 1, α = δ+2, ...,N). (24)

As in case A, the algebraic relations among the matrices A(α)
k j

(α = 2, ...,N) are fixed by the eigenvalue equation for the
Hamiltonian (3) when applied to the components of the eigenfunction (4) where we have two spins configurations |α〉 (α =
2, ...,N) at nearest neighbour sites, but now we have two situations. When we have spins configuration α,β ≤ δ or α,β > δ
located at closest positions, and when we have α≤ δ (β≤ δ) and β > δ (α > δ). In this last case, in order to satisfy the equation
(4) we need to impose the following constraints:

(B.1) Γ1 α
α 1 = Γβ 1

1 β = 0, Γβ α
α β = 0, tαβ1 = 0

(B.2) Γ1 β
β 1 = Γβ 1

1 β = 0, Γβ α
α βΓα β

β α = Γ1 α
α 1Γα 1

1 α, tαβ1 = tβα1 = tββ1 = 0,
(25)

where α≤ δ (β≤ δ) and β > δ (α > δ), we also obtain the structural constants:

(B.1) Sα β
α β(k(α)

j ,k(β)
l ) =

1

Sβ α
β α(k(β)

l ,k(α)
j )

=
g(β)
g(α)

Γβ α
α βeik(α)

j

Γ1 2
2 1 +Γδ+1 1

1 δ+1ei(k(α)
j +k(β)

l ) +(Γα 1
α 1 +Γ1 β

1 β−Γ1 1
1 1−Γα β

α β)e
ik(α)

j

,

(B.2) Sα β
α β(k(α)

j ,k(β)
l ) =

1

Sβ α
β α(k(β)

l ,k(α)
j )

=
g(β)
g(α)

Γβ α
α β

Γ1 2
2 1

eik(β)
j ,

(26)

where we have written for simplicity only the case α≤ δ and
β > δ. On the other hand, when α,β≤ δ or α,β > δ, we have
a similar situation as that considered in the case A and we
obtain algebraic relations with Sα β

β′ α′(k
(α)
j ,k(α)

l ) as in (12) and
coupling constants given by (25). The only difference occur
when we have α = β > δ where

(B.2) Sβ β
β β(k(b)

j ,k(b)
l ) = 1. (27)

In the sector N = 3 the model B.1 generalises the stochastic
problem of fully asymmetric diffusion of two kinds of parti-
cles, whose exact integrability was obtained in [19] through
the dynamical matrix product ansatz. The case B.2 is a new
type of integrable model unknown up to now. It is important
to mention the B.2 type models can be made hermitian and it
is related to the A.4 model by an interchange of labels 1 and α,

however since its exactly solutions describe different sectors
of spin configurations, they are different physical system.

Finally, as in case A, the momenta k(a)
j ( j = 1, ...,na) and

k(b)
j ( j = 1, ...,nb) are fixed by the cyclic property of the trace

in (5). We have for both B.1 and B.2:

e−ik(a)
j L = Λ(na)(k(a)

j ,{k(a)
l })

and

e−ik(b)
j L = Λ(nb)(k(b)

j ,{k(b)
l }), (28)

where Λ(na)(k(a)
j ,{k(a)

l }) and Λ(nb)(k(b)
j ,{k(b)

l }) are
the eigenvalue of the transfer matrix defined in
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(18) with φ(α′′1) = g(α′′1)
L ∏nb

l=1 S
α′′1 βl
α′′1 βl

(k(a)
j ,k(b)

l ) and

φ(β′′1) = g(β′′1)
L ∏na

l=1 S
β′′1 αl
β′′1 αl

(k(b)
j ,k(a)

l ), respectively, and

where Sα′ β′
β′′ α′′(k

(α′)
j ,k(β′)

l ) is given by (13), (26) and (27) with
(25).

IV. DISCUSSION AND CONCLUSIONS

We solve through a MPA the most general N-state spin
chain with U(1)N symmetry and nearest neighbour interaction
in Lunin-Maldacena backgrounds. According to this ansatz,
the amplitudes of the eigenfunctions are given in terms of
a product of matrices where the matrices obey appropriated
algebraic relations. This MPA is constructed by making a
one-to-one correspondence between configurations of spins
(or scalar fields in the SYM) and products of abstract ma-
trices. Although in Lunin-Maldacena backgrounds all eigen-
states have zero momentum, we can generalise the MPA in-
cluding all momentum states [27]. We analyses the Yang-
Baxter equation in the N = 3 sector and the consistence of
the algebraic relations among the matrices defining the MPA

and find a new class of exactly integrable model unknown up
to now (model B.2). This new model is a consequence of
the distinguibility of states configurations due to the U(1)N

symmetry. The study of this new model can be of interest in
the context of both AdS/CFT and stochastic process. MPA.
On the other hand, it will be interesting to see if it is pos-
sible to formulate a MPA for the most general one-loop di-
latation operator related with an integrable spin model with
long-range couplings [39]. Another quite interesting prob-
lem for the future concerns the formulation of the MPA for
the case where we have open boundary conditions, as well
as for quantum chains with no global conservation law such
as the XYZ model, the 8-vertex model or the case where the
quantum chains are defined on open lattices with non-diagonal
boundary fields.
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