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We present some essential results for the Hamiltonian of a particle in a box. We discuss the invariance of this
operator under time-reversal T', the possibility of choosing real eigenfunctions for it and the degeneracy of its
energy eigenvalues. Once these results have been presented, we introduce the usual nondegeneracy theorem and
discuss some issues surrounding it. We find that the nondegeneracy theorem is true if the boundary conditions

are T-invariant but “confining” (i.e.,

the particle is in a real impenetrable box). If the boundary conditions

are not T-invariant (belonging to a family of so-called “not confining” boundary conditions), the respective
eigenfunctions are strictly complex and there is no degeneracy. Consistently, we verify the validity of the
theorem also in this case. Finally, if the boundary conditions are also 7-invariant, but “not confining”, then
we can have degeneracy in the energy levels only if the respective eigenfunctions can be specifically written as
complex. We find that the nondegeneracy theorem fails in these cases. If the respective eigenfunctions can be
written as only real, then we do not have degeneracy and the nondegeneracy theorem is true.
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1. INTRODUCTION

Some time ago, Loudon [1], in studying the one-
dimensional model of a hydrogen atom (V(x) = —k/|x|),
found that all of the discrete energy levels turn out to be dou-
bly degenerate; that is, two different eigenfunctions have the
same energy. Likewise, Loudon himself pointed out that the
usual proof that forbids the degeneracy for a one-dimensional
system, which seemed to be independent of the shape of the
potential did not apply to the case he was treating. A later,
more carefully study, gave several arguments that seemed to
confirm that these discrete energy levels could not be degen-
erate [2]. More recently, Cohen and Kuharetz studied another
example of a one-dimensional system: An infinite square well
with a singular potential (actually proportional to the Dirac
delta) with adjustable strength at the center of the well [3].
The solution had doubly degenerate energy eigenvalues. It is
worth mentioning that the trouble with the degeneracy in this
system had already been mentioned by Oseguera [4]. These
aspects have also been considered in the context of super-
symmetric quantum mechanics [5]. All of these results ap-
parently prove that the so-called nondegeneracy theorem is
not necessarily valid for potentials that have a singular point.
In spite of this fact, the proof of this theorem in some books
makes no mention of this specific point [6]. We recently found
another reference in which the appearance of degeneracy in
the presence of certain singular potentials is explored in one-
dimensional quantum systems, although the authors of this
reference also showed cases of nondegeneracy in the presence
of singular potentials [7]. We have also seen a study that found
that bound states, degenerate in energy, may exist even if the
potential is unbounded from below at infinity [8].

However, there exists another one-dimensional system with
real and complex eigenfunctions that is much more simple
than any mentioned above and, depending on the boundary
conditions, it can present double degeneracy in its energy lev-
els. This is the well known problem of a particle in the closed

interval 0 < x < 7 with a potential of zero inside the box. (In-
cidentally, as the motion of the particle remains, in this case,
limited or restricted to [0,7], we consider the Hilbert space
L%(]0, 7)), where [0,7] C R. The quantum mechanical treat-
ment of the infinite square well potential with Hilbert space
L?>(R), with the functions in the respective domain of the
Hamiltonian vanishing if x < 0 and x > 7, is not equivalent
to the problem in L?([0,7]). In such a way that, the usual non-
degeneracy theorem does not always work for a particle in a
box and, for this reason, it is important to study all of the is-
sues surrounding this result carefully. This is one of the goals
of the present paper.

The ordinary differential equation (ODE) for the eigenval-
ues (and eigenfunctions) in our problem is Lu(x) 4+ Au(x) =
where L = d?/dx? is a self-adjoint (hermitian) operator with

u(x) satisfying some of the following boundary conditions [9-
13]. The Hamiltonian of the system is B = —L with energy
E = \; moreover 11> = 2m = 1:

u(m) —mu'(m) \ U u(m) +imu' (1) 0
u(0)+imu'(0) ) — = \ w(0) —imu'(0) )~
The primes denote differentiation with respect to x; the pa-

rameter M is inserted for dimensional reasons and the matrix
U, belonging to U(2), can be written, in this instance, as [12]:

—im3 —mp—1umj
U = exp(i9) < my —imy  mg+im3 ) ’ )
where ¢ € [0,7], and the quantities my € R (k =0,1,2,3.)
satisfy (mo)? + (m1)? + (mz)? + (m3)? = 1. This matrix is in-
dependent of the choice of the function u € D(H). Tt can be
shown that for every function u(x) that satisfies one boundary
condition included in (1), which is a critical part of the respec-
tive domain of the Hamiltonian D(H), the probability current

density is:
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The bars denote complex conjugation. This satisfies j(0) =
J(m), and this condition is equivalent to the self-adjointness of
the Hamiltonian. For some of these boundary conditions we
have j(0) = j(m) = 0 by necessity, which is the impenetra-
bility condition at the walls of the box (see, for example, [9]
and [10]). In fact, we found an expression for the probability
current density at the walls of the box:

0= jm) = |

1

mo—f-cos(q))} Re[(my + im; ))u(0)i(m)].
(3)

Notice that, by setting m; = mp = 0, we obtain j(0) =
Jj(m) = 0. (See, for example, [9] and [14] for other comments
about this fact, although we have a different parameterization
for the matrix U in equation (2)). The respective subfamily
of (“general” unmixed) confining boundary conditions, which
correspond to a particle in a real impenetrable box, can be

written (from (1) and (2)) as:

u(m) +mncot((¢—6)/2)u'(m) =0,
u(0) —mcot((0+8)/2)u’'(0) =0, @)

where 8 = tan~! (3 /my). Note that this subfamily of bound-
ary conditions is similar to that studied and termed “sepa-
rated” by Albeverio et al [15,16] for a free particle on a line
with a hole (i.e., a point interaction).

From (3) it is clear that if the eigenfunctions are real func-
tions with my = 0 and m; # 0, then we also have j(0) = j(1) =
0. Consistently, if the Hamiltonian operator A is invariant un-
der time-reversal 7', we have (T~'H Tu)(x) = (Hu)(x), so
that the operator 7' commutes with A, and the time-reversal
transformed function must satisfy (Tu)( ) € D(H). If we con-
sider a stationary state of definite energy (in this case, 7 is also
called the complex conjugation operator), this invariance im-
plies that u(x) and (i7) (x) = (T'u)(x) are two eigenfunctions of
H with the same eigenvalue, and that they both comply with
the same boundary condition. Thus, the matrix U must satisfy
U™ =U, which implies m; = 0 [12]. Therefore, the number of
the parameters in U is reduced to three, and the eigenfunctions
for these T-invariant Hamiltonians can be real functions. This
result has also been found for the problem of a particle on a
line with a hole; see [17] and references therein. Note that, all
of the boundary conditions included in the so-called confining
family (4) are automatically T-invariant as well. However, we
will prove specifically that they do not lead to degeneracy in
the energies. Therefore in this case, we necessarily obtain real
eigenfunctions with their respective zero probability currents.
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Thus, as u and & are (different) complex eigenfunctions
of A with the same eigenvalue (or Re(u) = (u+ i1)/2 and
Im(u) = (u+i)/2i belonging to RN), there is a double degener-
acy in the energy levels; therefore, the usual proof that forbids
the degeneracy for a one-dimensional system [6] must be re-
examined in light of the problem of a particle inside a box. A
necessary condition for the existence of degeneracy in the en-
ergies in this problem is that the corresponding Hamiltonian
be invariant under time-reversal. Hence, there must also exist
T-invariant boundary conditions which do not lead to degen-
eracy in the energies; i.e., as u and # differ only by a constant
factor and therefore represent the same state, Re(u) and Im(u)
must also represent the same state. In other words, there is
only one unique eigensolution for each eigenvalue of the en-
ergy, so we can always choose this eigensolution to be real. If
the (complex or real) eigenfunctions of the Hamiltonian A are
doubly degenerate, then the respective boundary condition is
T-symmetric. If the boundary condition is not T'-symmetric,
then the eigenfunctions must be necessarily complex and, in
addition, they cannot be degenerate.

When the probability current density is not null at the walls
of the box (see relation (3)), we can say that (physically) the
walls are transparent to the current. In some of these cases, the
underlying classical particle arrives at one wall and then ap-
pears at the other (see references in [18] for comments about
this point). We can therefore write a second family of bound-
ary conditions; this one may be called, say, “not confining”,
but only if the respective eigenfunctions are (written as) com-
plex functions and are therefore degenerate, if they are 7-
invariant; or not degenerate, if they are not T-invariant. Note
that the probability current is not zero only if the respective
functions are complex functions because real functions always
lead to zero probability current inside the box. Thus, if the
particle is not really confined to the box, the wave function
must be complex (we read a very slight comment about this
point in [19], page 2, after the equation (7)). Finally, this “not
confining” family, together with the family (4) (as well as the
general boundary condition (1)) compose the whole family
of boundary conditions for the self-adjoint Hamiltonian for a
particle in a box (see the article by V. Alonso et al, in [14]):

< e > M ( W > : 5)

where the matrix M is:

i <m3+sin(¢) —mo—cos(q’)). (6)

—mp +im; \ —Mo+ cos(¢) —msz —sin(¢)

In fact, this matrix can also be written as:
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M =exp (i(tan_1 (my/my) + (7‘/2)))

which confirms, due to the relation (m9)? 4 (m1)? + (m2)? +
(m3)? = 1, that M does belong to the group U (1) x SL(2,R).
Moreover, the elements in the matrix M can have only finite
values (that is, m| and my cannot be simultaneously null). By
the way, the subfamily of boundary conditions (5) is similar
to the “connected” subfamily of boundary conditions studied
by Albeverio et al [15,16] for a free particle on a line with a
point interaction. Lastly, note that all of the coefficients in the
matrix M are real for T-invariant boundary conditions (since
only my = 0).

For examples of boundary conditions included in (1), see
Table 1. Within the confining subfamily (4), we have, for ex-
ample: (a) The usual Dirichlet boundary condition, u(0) =
u(m) = 0; (b) the Neumann boundary condition, u'(0) =
() = 0; and the so-called mixed boundary conditions, (c)
u(0) = u/(n) = 0 and (d) «'(0) = u(x) = 0. These four 7-
invariant boundary conditions do not lead to degeneracy in
the energies (see Table 2) and satisfy m; = mp = 0. There-
fore, there is a valid place for the nondegeneracy theorem.

As examples of boundary conditions which are not 7'-
symmetric, we have: (e) one complex condition: u(0)
iu(m), u'(0) = iv' (n); (f) and another odd condition, nu'(0) =
—iu(m), N’ (1) = —iu(0). (See Table 1). Note that for this
pair of boundary conditions, one has my # 0; moreover, all
of the respective eigenfunctions are necessarily complex, and
none of them are degenerate (see Table 2). Thus, in all these
cases, the nondegeneracy is verified.

As examples of T-invariant boundary conditions included
within the four parameter family (1) and included in subfam-
ily (5) but not within subfamily (4) (see Table 1), which lead
to (real and complex) degenerate eigenfunctions, we have: (g)
The periodic condition, #(0) = u(m), u'(0) =’ (n); and (h) the
antiperiodic condition: u(0) = —u(xn), ' (0) = —u(w). With
the exception of the ground state eigenfunction of the periodic
boundary condition, all the eigenfunctions are doubly degen-
erate (see Table 2). Note that we have only my =0 and m; # 0
for these two boundary conditions, and there is no place, in
these two cases, for a valid nondegeneracy theorem. How-
ever, within subfamily (5) there also exist T-invariant bound-
ary conditions that do not lead to degeneracy in the energies.
Therefore, these cases always lead to real eigenfunctions and
unfortunately they do not represent a particle “not confined”
to the box. In fact, as an example we have, (i) the nontrivial
condition (the name is due to its nontrivial respective spec-
trum): N’ (0) = u(x), nu’(0) = —u(0) (see Tables 1 and 2).

The plan of this paper is as follows: we have presented in
the Introduction the principal results for the Hamiltonian for
the problem of a particle in a box, in certain cases confined to
the box and, in other cases, not restricted to the box, as well
as the invariance of this Hamiltonian under time-inversion (7°)
which determines whether the respective eigenfunctions can

1

(m1)? + (m2)?
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( m3+sin(¢p)  —mp —cos(9)
—mg+cos(¢) —ms3+sin(9)

).

be written as pure real (and degenerate in some cases). In
section 2, we derive the expected nondegeneracy theorem and
discuss some issues surrounding this result. Thus, the core
of this paper is comprises results about boundary conditions
which have consequences with regard to the possibility of hav-
ing, or not having, two different eigenfunctions with the same
energy. Some concluding remarks are given in section 3. Fi-
nally, in the Appendix, we discuss a point that is related with
the presence of degeneracy if the boundary condition is 7'-
invariant (this happens only in certain cases).

(

2. THE NONDEGENERACY THEOREM

As is well known, the Sturm-Liouville ODE is Lu(x) +
Aw(x)u(x) = 0, where the second order, real, and self-adjoint
differential operator L is written as:

. d? d d d
L = _— _— _ = —
ao(x) dx? +ai(x) dx ta dx dx

d
o) | o),
(N

The eigenvalue is A and w(x) is a weight function. Since the
operator L in (7) is in its self-adjoint form, we have a}(x)
aj(x). One assumes, as usual, that ap(x) > 0 and w(x) > 0
over the finite interval Q = [a,b] in which the ODE is to be
satisfied. If either vanishes, this will occur on the boundaries.
Additionally, a, ' (x),a2(x), and w(x) are integrable over all of
Q [20,21] (that is, we are considering the regular case here).
To obtain the corresponding ODE for the problem of a free
particle in the interval Q = [0, ] (see the paragraph above Eq.
(1)), we write w(x) =1, ap(x) =1 = a1(x) =0, —az(x) =
V(x) = 0 (the external potential), A = E (the energy) and H =
—L (the Hamiltonian).

Let u;(x) and ux(x) be eigenfunctions (real or complex) of
L (for a specific boundary condition) corresponding to the
eigenvalues A; and A (of the discrete spectrum). Then:

Loui(x) +Mw(x)ui(x) =0, L ug(x) + Mew(x)uy(x) = 0.
If we multiply the equation for u;(x) by uy(x), the equation for
uy(x) by u;(x) and then subtract, we obtain:

~ ~

e (X)L ui (x) — ui (%)L ug (x) = (M — M) w () ug (x)ui (x), (8)

Note that, there is no distinction from the beginning between
real or complex eigenfunctions, as is the procedure followed
by textbooks when the nondegeneracy theorem is introduced.
By substituting for L from (7) into this last expression and
using the condition A; = A;, we obtain:
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TABLE 1: Some boundary conditions (BC). Note that boundary conditions (a), (b), (c), (d), () and (f) are T-invariant (my =0).

BC|Name of boundary condition Boundary condition mo my |mp|imz| ¢

(a) Dirichlet u(0) =u(n) =0 1(-1)] 0 |0]O0 |=n0)
(b) Neumann W (0)=1u'(n)=0 1(-=1)] 0 |00 |0(x)
() Mixed u(0) =u'(n) =0 0 0 [0]1 |=/2
(d) Another mixed W' (0) =u(n)=0 0 0 |0]|-1|=n/2
(e) “Complex” u(0) = iu(n),u’' (0) = i/ (%) 0 0 [1]|0|=/2
() “Another complex” N’ (0) = —iu(n), N/ (n) = —iu(0)| 0 0 [1]|]0]| O

) Periodic u(0) = u(n),u' (0) = ' (x) 0 1 [0]|0|m/2
(h) Antiperiodic 0) = —u(m),u’ (0) = —i/(m) 0 -1 0|0 |=/2
Q) “Nontrivial” N (0) = u(m), il (m) = —u(0) | 0 |1(—1)] 0] 0 [r(0)

TABLE 2: Some boundary conditions (BC), their eigenfunctions and eigenvalues. The quantity # is a positive integer (n > 0), except where

otherwise indicated.

BC E, n ()
(a) (n41)? ~ sin((n+1)x)
(b) n? ~ cos(nx)
(©) (n+(1/2))? ~ sin((2n+ 1)x/2)
(d) (n+(1/2))? ~ cos((2n+1)x/2)
©) (n+(1/2))* ~ exp(i(=1)"*! (2n+ 1)x/2)
(0 |Eo = —(1/m)2, En = n?[uo(x) ~ exp(x/n) + 1t L exp(—x/m)
(n>1) un(x) ~ exp(inx) + % exp(—inx)
(n>1)
(2) (2n)? ~ exp(£i2nx)
~ sin(2nx),~ cos(2nx)
(h) (2n+1)? ~ exp(Fi(2n+1)x)
~sin((2n+1)x),~ cos((2n+ 1)x)
@) | sin(VEm) = 1221\]/22 ~MVEy, cos (vEux) +sin (vE, (x — )

Comments: Note the presence of a negative energy eigenvalue in BC (f). A more complete discussion about this somewhat surprising fact can
be seen in [25], and also in [12]. As we can see above for BC (i), the energy eigenvalues are obtained from a transcendental equation. If we
choose, for example, | = =, the first energy levels are Eg = 0.173, E; = 0.551, E; =4.393 and E3 = 8.592.

ao (x) [y (x)u (x) — up (x)u; (x)] = const, 9
which is valid for any x € Q. Note that by specializing to i = k
in (9), we automatically have a null constant; likewise, this ex-
pression can be written as ag (x)W [ug (x), u;(x)] = const, where
W is the Wronskian of the solutions uy(x) and u;(x). If we
want to obtain the usual nondegeneracy theorem from relation
(9), the constant on the right side of (9) must be zero; if the
constant in (9) vanishes at any point in Q (usually at the ends
of Q), then it vanishes everywhere. If this is so, then we have
u;(x) o< ug(x). In fact, with ap(x) = 1, we assume that the con-
stant in (9) is zero (const = 0), thus u (x)u(x) — ) (x)u;(x) =
0, and therefore u}(x)/u;(x) = up(x)/ux(x). Integration then
gives u;(x) o< ug(x), and this relation is valid where u;(x) and
uy(x) do not vanish. As we expect, there are several ways to
cancel that constant in (9): (a) if the (two) eigenfunctions u;(x)
and uy (x) are both zero at some point xg € Q (we usually have
xo = a and/or xy = b with ag(xg) # 0); (b) if their respective
derivatives u;(x) and u} (x) are both zero in xo as well; and (c)

If we have a condition at xy such as:

(10)

0
= = const,

where the constant is real. (Incidentally, this type of bound-
ary condition was mentioned in [3] and [22]) It is important to
notice that the subfamily of boundary conditions introduced
in (4) is precisely of the form given in (10) with xyp = 0 and
Xxo = T. Moreover, cases (a) and (b) (which were mentioned
above) are included in case (c). In principle, the constant in (9)
vanishes if the eigenfunctions u;(x) and u (x), or their deriva-
tives, vanish anywhere in xy € Q or (usually) at both ends or
only at one end. The point is that if the eigenfunctions are
written as real (i.e., the respective boundary condition is 7'-
invariant), then they always have zeros (i.e., nodes), except
for the ground state eigenfunction [23]. It is common to see
eigenfunctions with zeros at the ends but, in fact, there are a
lot of boundary conditions, for instance, those included in (5)
which lead to eigenfunctions with zeros only inside the box
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(i.e., their respectives nodes). In all of these cases, the con-
stant in (9) is essentially null because there is always a point
Xo € Q where the real eigenfunctions vanish, and these eigen-
functions lead to a probability current density that vanishes
inside the box.

Proposition 1: “Boundary conditions included within the
confining subfamily (4) verify the nondegeneracy theorem”.
Demostration: By evaluating (9) for x9 = 0, or x9p = &, or
anywhere else, we write uy (xo)u;(xo) — ) (xo)ui(xo) = const.
Depending on the chosen boundary condition, this constant
could be directly zero. We also have ap(xp) # 0, and by
using (10) or (4) we can write u}(xo) and wu;(xp) as func-
tions of u;(xo) and ug(xp), respectively. Finally, we obtain:
uy (x)ui(xo) — ur(xo)u;i(xo) = const = 0. Remarkably, note
that we did not need any eigenfunction to vanish at xy to ob-
tain this result. Consequently, uy(x)u}(x) — u (x)u;(x) = 0,
V x € [0,®], which implies u;(x) o< ug(x). Thus, in this case
neither of the boundary conditions included in (4) leads to de-
generate eigenfunctions, because the eigenfunctions that ver-
ify the confining boundary conditions automatically cancel
the constant, and the nondegeneracy theorem is verified. (The
examples (a)-(d) confirm precisely this conclusion.) As we al-
ready know, our subfamily (4) describes a real box, that is, a
genuine finite impenetrable region.

It is clear that relation (9) is valid for real and also for
complex eigenfunctions, and if there exist two pure complex
eigenfunctions verifying u;(x) o uy(x), then they will cause
the constant in (9) to vanish, even when these eigenfunctions
do not vanish at any point xp € Q. (We will see below how this
situation can occur.) Due to this last aspect (i.e., two complex
eigenfunctions, differing only by a scale factor, that are differ-
ent from zero at xp), we should have some boundary condition
not included in the 7-symmetric subfamily that also implies
that the respective eigenfunctions give a non-zero probability
current density. To be more precise, boundary conditions (e)
and (f) are not T-symmetric and they should not lead to de-
generacy.

(14(0) M (0)) M* ( _01 (1) ) M (
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On the other hand, (complex) eigenfuctions (that are de-
generate) that satisfy a 7-invariant boundary condition for a
free particle in a box but not really confined in the box, such
as the periodic (g) as well as the antiperiodic (h), could not
cancel that constant. Note that we can have real or complex
eigenfunctions for these two boundary conditions; neverthe-
less, only the complex ones correspond to a particle not gen-
uinely restricted to the box. If the eigenfunctions are chosen
to be real, then we have a zero probability density current ev-
erywhere. See equation 3.

Proposition 2: “Boundary conditions which are not 7-
invariant verify the nondegeneracy theorem”. Demonstration:
Note that relation (9) (with ag(x) = 1) can be written as:

(g (x) Mugg (x)) ( _01 (1)> (nu;/(éz) ) =const  (11)

(which is valid for any x € [0,7]), and by evaluating this rela-
tion, for example, at x = xo = T, we can write

(Mk(TC) ﬂufc(n)) < _01 (1) ) (nuliﬁ(g) ) = const (12)

We can now write the row matrix (u(%) Mu/(n)) and the

column matrix < u,-/(ﬂ',) > as functions of (ux(0) Mu;(0)) and

nu; (1)

( i /(8 ) > respectively, by using the family of boundary con-
ny;

ditions (5). Thus, by substituting these two expressions into

0 (1) ) M, we obtain

(12) and by making the product MT (

remarkably:

nu;(0) ) 4

_ ma+im , 0 1 u;(0) 7
= <—mz+lml> [(uk(o) M (0)) < 4 0) (nuﬁ(O) >] = const,

where MT is the transpose matrix of M. And now, by writing
relation (11), which is evaluated at x = 0:

(u(0) Muz (0)) ( 701 (l) ) (T]M;tf(?(z) > =const, (14)

we obtain the following result by comparing (13) with (14):

(

( my + imy (15)

" X const = const.
—my + 1my

All of the boundary conditions that are not 7-invariant sat-
isty mp # 0. Thus, from (15), we finally obtain const = 0,
which implies u;(x) o< ug(x); i.e., this kind of boundary condi-
tions does not lead to degenerate eigenfunctions and in partic-
ular the complex conditions (e) and (f), do not lead to degen-
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erate eigenfunctions. Besides, in these two examples, we have
my = 0 and therefore (—1) x const = const. The discussion
of the validity of the nondegeneracy theorem in this case (i.e.,
for boundary conditions which are not T—invariant), to the best
of our knowledge, seems not to have appeared previously as a
distinct issue in the physics literature.

Finally, not all 7-invariant boundary conditions (m; = 0)
included within subfamily (5) verify the nondegeneracy theo-
rem. In fact, some T-invariant boundary conditions with com-
plex eigenfunctions always lead to degenerate eigenfunctions
(for example, the periodic and antiperiodic boundary condi-
tions). Other boundary conditions could lead to a degener-
ate (non simple) spectrum, as it has been pointed out on page
24 of the second reference in [12]. See the Appendix for a
discussion about this. Note that one obtains from (15) that
const = const, and pure complex eigenfunctions do not give
zeros anywhere (that is, the constant in (9) is not null). There-
fore, the conventional proof of the nondegeneracy theorem
fails. However, for the pure real eigenfuctions (i.e., those that
we do not need to write as complex) arising from 7-invariant
boundary conditions, there always exists a point inside the box
where these eigenfunctions vanish (that is, the constant in (9)
is null). Thus, the nondegeneracy theorem is certainly true.
Until now, all of these particular aspects of the nondegener-
acy theorem had not been sufficiently discussed in the litera-
ture (as far as we know).

As a final comment, note that, if ¥ and i are different com-
plex eigenfunctions of A with the same eigenvalue, then the
real ones, Re(u) = (u+i)/2 and Im(u) = (u+ 1) /2i are also
eigenfunctions. Yet are they really physically eigenfunctions
corresponding to the given boundary condition? The answer
could be certainly not. For example, the real eigenfunctions
for the periodic boundary condition are not eigenfunctions of
the momentum operator. Moreover, one of them (~ sin(2nx))
verifies the Dirichlet boundary condition! However, the pe-
riodic boundary condition must describe a particle that is not
really confined to the box. These kind of problems and their
relation to the broken symmetry of certain operators have
been considered, particularly by considering the antiperiodic
boundary condition in [24].

3. CONCLUSIONS

The free particle inside a one-dimensional box (with Hilbert
space LZ(Q), where Q C R, as usual) is one of the simplest
model problems with bound states in quantum mechanics. As
is well known, there is an infinite number of boundary con-
ditions and the respective eigenfunctions can be complex and
nondegenerate, complex and degenerate, or real and both de-
generate or nondegenerate. It is precisely all of this unex-
pected and interesting variety which makes the problem worth
studying. For some of these boundary conditions, the prob-
ability current density in effect vanishes at the walls of the
box. The respective subfamily of boundary conditions (called
“confining”) can be obtained from (1) by setting m; = my = 0.
Another subfamily is obtained from (1) by setting only m; =0
and these boundary conditions are the invariant ones under
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time-reversal 7. As we showed, this last requirement is only
a necessary condition for the existence of degeneracy in the
energies; therefore, there also exist T-invariant boundary con-
ditions which do not lead to degeneracy. However, and this is
indeed one of the distinguished result of our paper, neither of
the boundary conditions included in the “confining subfam-
ily”” (which is part of the time-reversal subfamily) leads to de-
generate eigenfunctions that is, the nondegeneracy theorem is
true in this case. Likewise, we do not find degeneracy if the
boundary conditions belonging to subfamily (5) are not pure
T-invariant (i.e., pure complex eigenfunctions giving a non-
zero probability current density). We verified the validity of
the nondegeneracy theorem in this case as well. Finally, if the
boundary condition is 7-invariant but “not confining” (i.e., be-
longing to (5)), then we can have the following cases: (i) De-
generacy in the energy levels i.e., the nondegeneracy theorem
fails in all these cases, as it is in the periodic and antiperiodic
boundary conditions whose eigenfunctions can be written as
complex. See the final comments in the preceding section.
(i1) No degeneracy in the energies, that is, the nondegeneracy
theorem does not fail in the cases where the eigenfunctions
are inevitably only written as real (as is the case with the so
called “nontrivial” boundary condition). We believe that the
discussion here complements the standard discussion of the
nondegeneracy theorem that we find in some quantum me-
chanics textbooks and, for this reason, will surely be of inter-
est to physicists working on certain mathematical aspects of
quantum model problems.

4. APPENDIX

The ODE for the eigenvalues and eigenfunctions is: u”(x) +
Eu(x) = 0. By considering, for example, only the positive
spectra, the eigenfunctions of the Hamiltonian operator have
the common form:

u(x) = Aexp (i\/Ex) + Bexp ( i Ex), (16)

where A and B are arbitrary constants. Since we impose some
boundary condition on this solution (in this case, one of the T-
invariant boundary conditions included in (5)), the constants
A and B are related, in general, by two expressions that have
the form:

If we obtain fi(M,E)|specra = &1(M,E)|specra = O and
oM, E)|spectra = 82(M, E) [spectra = 0, for all of the values of
the energy spectrum (which can be obtained from the equa-
tions system (17): fZ(TIvE)gl (T]’E) —h (naE)gZ(nvE) =0,
then we have degenerate eigenfunctions. Therefore, we have
to set A = 0 (with B # 0), to obtain a first solution, and then
next B = 0 (with A # 0) to obtain a second solution. We
were able to check this simple procedure only for the periodic
and the antiperiodic boundary conditions, principally because
their respective doubly degenerate spectra are very simple. As
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it has been pointed out and commented on page 24 of the sec-
ond reference in [12], other boundary conditions could lead
to a degenerate spectrum which is not so simple. Generally,
in these cases, the spectra are obtained from transcendental
equations.
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