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Confronting Color Dipole and Intrinsic kT Approaches in D–Y Dilepton Production
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We study the Drell-Yan dilepton production in proton-nucleus collisions at RHIC energies. We use two
different approaches: the usual intrinsic transverse momentum approach at NLO in the infinitum momentum
frame; and the color dipole in the target rest frame. We compare both formalisms at backward rapidities (proton
as a target). At forward rapidities, we use earlier results considering the nucleus in a Color Glass Condensate
phase. We show qualitative agreement between the two formalisms through the nuclear modification ratio as
a function of both rapidity and transverse momentum and that low-mass dileptons are relevant observables to
probe nuclear effects.
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In a recent work[1], Drell-Yan dilepton production at back-
ward rapidities in hadrons collisions was studied in the rest
frame of the target, i. e., in the color dipole approach. In this
work, we compare these previous results with results obtained
used well know intrinsic kT approach in the infinitum momen-
tum frame [2, 3]. In this frame, the process is understood as
the combination of two partons to create a virtual boson that
subsequently splits in the dilepton. For dilepton mass M much
smaller than the Z mass, the dominant process includes only
the photon as the virtual boson. The dilepton production is of
particular interest since dileptons do not interact strongly and
therefore carry information about initial state effects.

The kinematics used here are described now. Partons and
hadrons are taken as massless, the momenta of hadrons A and
B are PA and PB, and the momenta of partons are pA = xAPA
and pB = xBPB (for now, partons are collinear to hadrons).
The virtual photon momentum is q and q2 = M2 is the squared
dilepton mass. The Mandelstam variables are given by: s =
2PA · PB, t = (q− PA)2, and u = (q− PB)2. We also define
x1 = 2PB · q/s, x2 = 2PA · q/s, and the photon rapidity y =
1
2 ln(x1/x2). It can be showed that:

x1,2 =

√
M2 + p2

T
s

e±y, (1)

in which pT is the photon (also dilepton) transverse momen-
tum.

In IMF collinear approximation, partons are considered
collinear to hadrons, without intrinsic transverse momentum.
Using this framework at leading order, experimental results
of transverse momentum distribution cannot be reproduced:
although valid for large pT , collinear NLO pT distribution di-

verges at pT = 0 and is not in agreement with experiments for
small pT . We consider then partonic intrinsic transverse mo-
mentum, i. e., partons are not collinear to hadrons [2, 3]. The
partonic distributions are change as the following prescrip-
tion:

f (x)dx→ f (x)h(~kT )dxd2kT . (2)

In this paper, we consider h(~kT ) = 1
2πb2 exp

(
k2

T
2b2

)
. Therefore,

the cross section is given by[4, 5]:

σS(s,M2,y, pT ) = h′(p2
T )

dσ
dM2dy

(3)

+
∫

d2qT σP(s,M2,q2
T )[h′((~pT −~qT )2)−h′(p2

T )].

In the above expression, it is included the NLO collinear dou-
ble differential cross section:

dσ
dM2dy

=
σ̂0

s

∫ 1

0
dxAdxBdzδ(xAxBz− τ)δ

(
y− 1

2
ln

xA

xB

)

×
{

Pqq̄(xA,xB,M2)
[

δ(1− z)+
αs(M2)

2π
Dq(z)

]

+ Pqg+gq(xA,xB,M2)
[

αs(M2)
2π

Dg(z)
]}

.

Using the modified minimal subtraction scheme (MS), Dq(z)
and Dg(z) are given e.g. in Ref. [6] (CF = 4/3, TR = 1/2).

The second term in the right hand side of equation 3 is cal-
culated only from annihilation and Compton diagrams and is
written as[5]:



Marcos André Betemps et al. 527

σP(s,M2, p2
T ) =

1
π2

α2αs

M2ŝ2

∫ 1

xAmin

dxA
xBxA

xA− x1

{
Pqq̄(xA,xB,M2)

8
27

2M2ŝ+ û2 + t̂2

t̂ û

+Pqg(xA,xB,M2)
1
9

2M2û+ ŝ2 + t̂2

−ŝt̂
+Pgq(xA,xB,M2)

1
9

2M2t̂ + ŝ2 + û2

−ŝû

}

in which xAmin is given by (x1 − τ)/(1− x2), xB = (xAx2 −
τ)/(xa− x1), and

Pqq̄(xA,xB) = ∑
q

e2
q ( fq(xA) fq̄(xB)+ q̄↔ q) (4)

Pqg(xA,xB) = ∑
q

e2
q ( fq(xA)+ fq̄(xA)) fg(xB) (5)

Pgq(xA,xB) = ∑
q

e2
q fg(xA)( fq(xB)+ fq̄(xB)) . (6)
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2 using EKS and nDS parameterizations.

In the color dipole approach, Drell–Yan dilepton production
is studied in the rest frame of the target. Diagrams considered
now look like projectile quark bremsstrahlung on the target
color field. So, the projectile emits a quark (or antiquark), this
parton fluctuates in a state of quark–photon and interacts with
the color field of the target, and the photon is freed to split in
a dilepton. The color dipole cross section arises as interfer-
ence of the diagram in which the quark first interacts with the
target with the diagram in which the quark first fluctuates in
the quark–photon state. This result was first stated in [7] and
derived in detail in [4].

In [1], the color dipole approach was used to study dileptons
produced at backward rapidities, so the proton was considered
as the target and the nucleus as the projectile. In this case, the
color dipole approach is phenomenologically valid for small
x1[4] – very backward rapidities. The cross section is written
as:

dσDY

dM2dyd2 pT
=

α2
em

6π3M2

∫ ∞

0
dρW (x2,ρ, pT )σdip(x1,ρ), (7)

in which ρ is the dipole transverse size. In this case, x2 is the
projectile momentum fraction carried by the virtual photon.

The weight function W (x2,ρ, pT ) contains the nu-
clear structure function FA

2 (x2/α,M2) = ∑q e2
q[x f A

q (x,M2) +
x f A

q̄ (x,M2)]:

W (x2,ρ, pT ) =
∫ 1

x2

dα
α2 FA

2 (
x2

α
,M2)

{
[m2

qα4 +2M2(1−α)2]
[

1
p2

T +η2
T1(ρ)− 1

4η
T2(ρ)

]

+ [1+(1−α)2]
[

ηpT

p2
T +η2

T3(ρ)− 1
2

T1(ρ)+
η
4

T2(ρ)
]}

,

in which η2 = (1−α)M2 + α2m2
q and mq = 0,2 GeV is the

quark mass. The functions Ti are given by:

T1(ρ) =
ρ
α

J0

( pT ρ
α

)
K0

(ηρ
α

)
(8)

T2(ρ) =
ρ2

α2 J0

( pT ρ
α

)
K1

(ηρ
α

)
(9)

T3(ρ) =
ρ
α

J1

( pT ρ
α

)
K1

(ηρ
α

)
, (10)

in which Jn(x) is the Bessel function of first kind and Kn(x) is
the modified Bessel function of second kind.

We use the model introduced by Golec-Biernat e Wüsthoff
(GBW)[8] for the dipole cross section:

σdip(x,r) = σ0

[
1− exp

(
− r2Q2

0

4(x/x0)λ

)]
, (11)

in which Q2
0 = 1 GeV2 and there are three fitted parameters:

σ0 = 23,03 mb (59,14 GeV−2), x0 = 3,04× 10−4, and λ =
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FIG. 2: Factor RpA at RHIC energies as a function of rapidity and transverse momentum.

0,288. It is important to highlight that the present dipole cross
section includes saturation effects, not included in the IMF
approach.

We use GRV98[9, 10] as the parton distribution function
(PDF) of free protons. Two parameterizations of the nuclear
PDFs are used: EKS[11–13] and nDS[14]. EKS parameter-
ization gives the nPDF as the free proton PDF multiplied by
a factor: f A

q (x,Q) = RA
q (x,Q) f p

q (x,Q), while nDS gives the
nPDF as a convolution of the free proton PDF and a weight
function:

f A
q (x,Q) =

∫ A

x

dy
y

Wq(y,A) f p
q

(
x
y
,Q

)
. (12)

EKS parameterization is available only at leading order, while
nDS is also at NLO. In Fig. 1, both parameterizations are
compared at leading order calculating RA

F2
= FA

2 /F p
2 . We

would like to stress that nDS parameterization presents lower
ratio for most values of x studied, in particular for EMC

(0.3 < x < 0.8) and shadowing (x < 0.1) effects – other re-
gions correspond to anti-shadowing (0.1 < x < 0.3) and Fermi
motion (0.8 < x) effects.

We use dilepton mass of M = 6.5 GeV, RHIC energies
(
√

s = 200 GeV), gold nucleus (A = 196.97), and intrinsic
kT standard deviation of b = 0.48 GeV. In Fig. 2, the nuclear
modification factor:

RpA =
dσ(pA)

d p2
T dydM

/
A

dσ(pp)
d p2

T dydM
(13)

is calculated using both formalisms described earlier in the
region of backward rapidity. EKS and nDS parameteriza-
tions give qualitatively similar results, showing that both ap-
proaches roughly give the same dependence of RpA on the nu-
clear effects. The main difference is a step near pT = 2.5 GeV
in the IMF distributions, caused by the different ways that the
two terms in Eq. 3 take into account nuclear effects, since each
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FIG. 3: Factor RpA calculated using three different approaches: infi-
nite momentum frame, color dipole at backward rapidities, and color
dipole at forward rapidities considering the nucleus as a CGC [15].

is dominant in one region of pT . This result shows that sat-
uration effects included in the dipole approach are not very
effective in changing the nuclear modification ratio.

The behavior of RpA is mainly explained by the inclusion

of anti-shadowing effects with decreasing x2 approximately
from 0.64 (y = −2.6, pT = 7) to 0.09 (y = −1.0, pT = 0).
Anti-shadowing effects are characterized by an increase in the
nuclear cross section, exactly what is seen in Fig. 2. EKS
parameterization predicts a smaller RpA than nDS parameter-
ization in both approaches and nDS parameterization shows
more sensibility to the approach change, as it is expect, since
nDS parameterization is different whether LO or NLO is con-
sidered.

In Fig. 3, we combine color dipole results obtained here at
backward rapidities, color dipole results obtained in Ref. [15]
at forward rapidities considering the nucleus as a CGC phase,
and IMF results. EKS parameterization was used when a nu-
clear PDF was required. Overall, we see a qualitative agree-
ment among the approaches and that the ratio RpA dependence
on pT is consistently obtained: if y < 0 (y > 0), RpA decreases
(increases) with a increase of pT , thanks to the anti-shadowing
(shadowing) effect.

In conclusion, we saw that low-mass dileptons are relevant
in probing nuclear effects at RHIC energies. Either at back-
ward or forward rapidities, results obtained showed strong de-
pendence on the nuclear effects and in the choice of the pa-
rameterization. Among the approaches, qualitative agreement
was obtained in the nuclear modification factor, showing that
saturation effects (considered in the color dipole formalism
and in the CGC) do not play a key role in this factor. However,
the nuclear modification factor proved to be very sensitive to
the introduction of a intrinsic transverse momentum, given the
step seen in the pT distribution.
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