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Thermodynamic Properties of Solid FCC C84 Based on
an Analytic Mean Field Approach
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The analytic mean field potential (AMFP) approach is applied to the poly-exponential model solid. The
analytic expressions for the Helmholtz free energy, internal energy and equation of state (EOS) are derived.
The formalism for the case of the double-exponential (DE) model is applied to fcc C84. One set of potential
parameters are determined by fitting the experimental compression data of C84 up to 9.24 GPa at ambient
temperature (297 K). The equilibrium distance and well depth for C60, C70 and C84 molecules are plotted. The
thermophysical properties including the isothermals, thermal expansion, isochoric heat capacity, Helmholtz free
energy and internal energy are calculated and analyzed. The theoretical results agree well with the experimental
data available of C84. Basing the results of our calculations, we may also predict the behaviors of C84 at extreme
conditions.
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1. INTRODUCTION

As is shown in many papers, the fullerene molecules Cn are
an intriguing family. C84 is the third most abundant member
of the family after C60 and C70 [1]. It has 24 structural isomers
obeying the isolated pentagon rule; The fullerite, however, is
mainly formed by only two of them, having symmetry D2(IV)
and D2d(II), respectively, in a mixture of 2:1 abundance [2].
Molecules of the two isomers have almost spherical shape
[2,3], and a recent experimental study has shown that solid
C84 maintains a fcc structure characterized by orientational
disorder over the range 5-295 K [4]. Margiolaki et al. [5]
have employed synchrotron X-ray powder diffraction to char-
acterize the structural properties of pristine C84 as a function
of pressure to 9.24 GPa at ambient temperature. Their con-
clusion is that C84 does not show any phase transition or ir-
reversible transformation, being stable up to the highest pres-
sure and its structure remaining strictly face-centered cubic.
In the research of thermodynamic properties of fullerene, the
pair-potential is used by many authors [6-11]. As far as C84
is concerned, the Grifalco potential [6] has been extensively
applied. Molecular dynamics simulations based on the Gir-
ifalco central two-body potential are performed by Micali et
al. [7]. Their results for C84 turn out to be qualitatively or
semi-quantitatively accurate up to 9 GPa. Zubov et al [8]
apply Girifalco potential to perform research on the equilib-
rium of C76 and C84 with their vapor. For the solid phase,
although Zubov et al [9-11] improved their unsymmetrized
self-consistent field (CUSF) approach and applied to C60 and
C70, this may not to be enough at higher temperature. The
reason may be that the CUSF approach cannot consider an-
harmonic effects soundly [12,13]. Thus, it is necessary to use
other approaches that can include anharmonic effect soundly
to study the thermodynamic properties of solid C84.
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It is well known that Wang et al proposed the analytic mean
field potential (AMFP) method [14-17], and they applied it to
many materials. Bhatt et al. [18,19] further applied the AMFP
method to lead and alkali metals, and concluded that in com-
parison with other theoretical models the AMFP method is
computationally simple, physically transparent and reliable in
the study of the thermodynamic properties at high pressures
and high temperatures. Recently, Sun et al. [20] proved that
the AMFP method is an analytic approximation of the free
volume theory (FVT). The FVT is a mean field approximation
to the thermal contribution of atoms to the Helmholtz free en-
ergy of crystalline phases. Many authors [20-23] have shown
that the FVT can soundly include anharmonic terms which are
important at high temperatures. It is more valuable to directly
use the strict FVT than the approximate AMFP, in the cases
that the analytic EOS can be derived based on the strict FVT.
Nevertheless, in some cases the mean field integral and the
EOS for the strict FVT are fairly complicated or cannot be
analytically derived. Then it is convenient to develop simple
analytic EOS through the AMFP, whereas the complete FVT
fails. Sun [13] has applied the AMFP method to solid C60 by
the aid of the Girifalco potential. The numerical results agree
well with the MD simulations and are superior to the CUSF
of Zubov et al [9,10]. This verifies that the AMFP method is a
convenient approach to consider the anharmonic effect at high
temperatures.

In this paper, we apply AMFP mentioned above to fcc C84
solid. Here we also just concern the intermolecular contri-
butions for the solid fcc C84 as having been done by Giri-
falco [6,24] for C60. Considering that the Girifalco potential
has been shown too hard and gives compression curve promi-
nently deviated from experiments at high pressure [25,26],
whereas the Morse potential [27] has been shown by many
authors that can well describe the thermophysical properties
of most materials within wide pressure ranges, we would uti-
lize the DE potential (an extended Morse potential) instead of
the Girifalco potential.

The rest of this work is organized as follows. In Sec. II we
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derive analytic EOS based on the AMFP approach. In Sec. III
the parameters of the DE potential are determined by fitting
experimental data of solid C84. And the numerical results are
presented and analyzed. At last, conclusive remarks are given
in Sec. IV.

2. ANALYTIC EQUATION OF STATE

The pair-potential ε(r) of fullerene C84 molecules can be
expressed as the form of poly-exponential potential

ε(r/r0) = ε0 ·
m

∑
j=1

C j exp
[
λ j

(
1− r

/
r0

)]
(1)

where r is the radial coordinate, r0 is the equilibrium distance
and ε0 the well depth. For the DE potential we have m = 2,
and

{
C1 = λ2

/
(λ1−λ2)

C2 =−λ1
/
(λ1−λ2)

(2)

The two parameters λ1 and λ2 describe the decay of the
potential versus the radial coordinate r. Then the expres-
sion of potential energy ε(r) involves both a repulsive term
( j = 1) and an attractive term ( j = 2). Our calculations show
that the DE potential with m = 2 can describe the thermody-
namic properties of solid fcc C84 well enough, even at high-
temperatures and pressures. Therefore, it is not necessary to
take more terms.

In terms of the FVT, the free energy can be expressed as
[6,18]

F
NkT

=−3
2

ln(2πµkT/h2)+
u(0)
2kT

− lnν f . (3)

where µ is the mass of the C84 molecule and h Planck’s con-
stant. u(0) is the potential energy of a molecule, as the lattice
is static, ν f is the free volume. The quantity u(0) can be ex-
pressed as follows:

u(0) = ∑
i 6=0

ziε
(

Ri

r0

)
= ∑

i 6=0
ziε

(
δi

a
r0

)
= ∑

i 6=0
ziε(δiy), (4)

where Ri = δia is the distance of molecules in the i-th shell
with the centre molecule at i = 0. a is the nearest-neighbor
distance. zi and δi are structural constants (the values for the
fcc structure have been given in [28], The quantity y is the
reduced volume, it is defined in equation (9). The quantity ν f
can be expressed as follows:

ν f = 4π
∫ rm

0
exp[−g(r,V )/kT ]r2dr. (5)

According to the AMFP method [14-17] and the cell the-
ory, the largest displacement rm of the centre molecule can be

approximately taken as the Wigner-Seitz radius (3a3/4πγ)1/3.
Then we have rm = (3a3/4πγ)1/3 in equation (5). Where γ is a
structure constant; for the fcc structure it is

√
2. g(r,V ) is the

potential energy of a molecule as it roams from the centre to
a distance r. In terms of the AMFP approach [14-17], g(r,V )
can be expressed by the static energy Ec(a) of a molecule:

g(r,V ) =
1
2

[(
1+

r
a

)
Ec(a+ r)+

(
1− r

a

)
Ec(a− r)−2Ec(a)

]
. (6)

Ec(a) =
1
2

u(0) =
1
2 ∑

i 6=0
ziε(δiy). (7)

The volume of a fcc solid is V = Na3/γ, (N is the quantity
of cell for a solid fcc C84). For simplicity, we introduce the
dimensionless reduced free volume ν̄ f , the reduced volume y,
and the reduced radial coordinate x as follows:

ν f = 4πa3ν̄ f = 4πγV ν̄ f /N . (8)

y = a/r0 = (V/V0)1/3, V0 = N(r0)3/γ . (9)

x = r/a , xm =
rm

a
= (3/4πγ)1/3 . (10)

The reduced free volume ν̄ f and its derivatives with respect
to temperature and reduced volume can be expressed as

ν̄ f =
∫ xm

0
exp[−g(x,y)/kT ]x2dx, (11)

ν̄ f a = T
∂

∂T
ν̄ f =

1
kT

∫ xm

0
exp[−g(x,y)/kT ].g(x,y)x2dx,

(12)

ν̄ f b =− ∂
∂y

ν̄ f =
1

kT

∫ xm

0
exp[−g(x,y)/kT ].

∂
∂y

g(x,y)x2dx,

(13)

ν̄ f c =
1
2

(
xm

y

)2

exp[−g(xm,y)/kT ]≈ 0 . (14)

Here g(x,y)≡ g(r,V ), combining (4),(7),(9),(10), we have

g(x,y)≡ g(r,V )≈ 1
4 ∑

i 6=0
zi[(1+ x)ε(δiy+δiyx)+

(1− x)ε(δiy−δiyx)−2ε(δiy)] (15)



Brazilian Journal of Physics, vol. 38, no. 4, December, 2008 565

∂
∂y

g(x,y)≈ 1
4 ∑

i 6=0
ziδi[(1+ x)2ε′(δiy+δiyx)+

(1− x)2ε′(δiy−δiyx)−2ε′(δiy)] (16)

ε′(r/r0) =−ε0.
m

∑
j=1

λ jC jeλ j(1−r/r0). (17)

The compressibility factor Z and internal energy U can be
derived as

Z =
PV

NkT
=− y

3
∂
∂y

F
NkT

=
PcV
NkT

+
PfV
NkT

, (18)

PcV
NkT

=− y
6kT

∂
∂y

u(0), (19)

∂
∂y

u(0) = ∑
i6=0

ziδiε′(δiy), (20)

PfV
NkT

= 1+
y

3ν̄ f

∂
∂y

ν̄ f = 1− y
3ν̄ f

(ν̄ f b− ν̄ f c)≈ 1− yν̄ f b

3ν̄ f
,

(21)

U
NkT

=−T
∂

∂T
F

NkT
=

3
2

+
u(0)
2kT

+
T
ν̄ f

∂ν̄ f

∂T
=

3
2

+
u(0)
2kT

+
ν̄ f a

ν̄ f
.

(22)

where Pc is the cold pressure and Pf the thermal pressure de-
duced from free volume.

By using the above equations, all other thermodynamic
quantities can be analytically derived. The derivations are
straightforward. However, the expressions for the thermal ex-
pansion coefficient α, compressibility coefficient β and iso-
choric heat capacity CV are redundant; we would calculate
these quantities by using numerical differentiation instead of
the analytic expressions. The compressibility factor Z can be
seen as a function of the variables y and T , Z = Z(y,T ). In
terms of the function, the formulas for the thermal expansion
coefficient α, compressibility coefficient β and isochoric heat
capacity CV can be reduced to the following form:

α =
1
V

(
∂V
∂T

)

P
=

3
y

(
∂y
∂T

)

P
=

[
Z
T

+
(

∂Z
∂T

)

y

][
Z−

( y
3

)(
∂Z
∂y

)

T

]−1

, (23)

β =− 1
V

(
∂V
∂P

)

T
=−3

y

(
∂y
∂P

)

T
=

(
Vdy3

NkT

)[
Z−

( y
3

)(
∂Z
∂y

)

T

]−1

, (24)

CV

Nk
=

1
Nk

(
∂U
∂T

)

V
=

U
NkT

+T
∂

∂T

(
U

NkT

)

y
. (25)

In our calculations it is found that following the steps of
the numerical differentiations in (23)-(25) can reach stable nu-
merical results, ∆T = 0.00001×T and ∆y = 0.00001× y.

3. NUMERICAL RESULTS AND DISCUSSION

In this section we apply the above formalism to fcc C84.
Considering the structure of the solid C84 is fcc over the range
5-295 K [4], we thus determined one set of parameters for
the DE potential by fitting the experimental compression data
of C84 up to 9.24 GPa at ambient temperature (here we have
T=297 K) [5]. The experimental data and smoothed fitting
curves are plotted in Fig. 1. The figure shows that the fitting

precision is satisfactory. The determined values of the param-
eters are as follows:

λ1 = 15.3, λ2 = 38.4, r0 = 1.1277nm, ε0 = 3850K
(26)

Margiolaki et al. [5] have used the Murnaghan EOS to an-
alyze their experimental data, and found that the bulk modu-
lus at atmospheric pressure and ambient temperature is 20(2)
GPa, which was in good agreement with the value 19.6 GPa
of solid C84 determined by us. However, Lundin et al. [29,30]
have adopted the same method to analyze their own experi-
mental data of C60 and C70, they found that the bulk mod-
ules at ambient pressure for C60 and C70 are 6.8 GPa and 7.6
GPa, respectively. This means the bulk modulus on compar-
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FIG. 1: Pressure as function of density for fcc C84 solid at 297 K
by using the parameters of (26). Comparison of the results of our
calculation (lines) with the experimental data (circles) [5].

0.9 1 1.1 1.2 1.3 1.4 1.5
-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

r (nm)

(r
)(

K
)

C
60

C
70

C
84

 (297 K)

FIG. 2: Comparison of the DE potential of the C60, C70 molecules
with the C84 molecules’ at 297 K.

ison with C60 and C70 solid shows that C84 solid is hardly
compressible. The potentials for C60, C70 and C84 molecules
are plotted in Fig. 2. We notice that the well depth of C60,
C70, C84 molecules is 3219 K, 3410 K and 3850 K, respec-
tively. It shows that the intermolecular interaction between the
C84 molecules is stronger than that between the C60 molecules
and C70 molecules, respectively. The conclusions are in good
agreement with the results of experiments. The difference of
tendency among the potentials for C60, C70 and C84 molecules
is fairly small at high-pressure, but at low pressure the differ-
ence become prominent, the attractive of the DE potential for
C84 is harder than those for C60 and C70.

The thermodynamic properties calculated at zero-pressure
and different temperatures by using the parameters of (26) are
listed In Table 1. The spinodal point Ts is the temperature sat-
isfying the condition BT (Ts) = 0. The system is unstable for
temperatures above Ts. From the table we know that Ts is 2807
K for the parameters of (26). At the same time, we noticed
that the Ts of C60 and C70 is 2440 K and 2635 K, respectively
[31,32]. Thus we can obtain the following sequence, Ts (C84)
> Ts (C70) > Ts(C60). This means that the fullerene solids
can keep stable at higher temperature for fullerene with heav-
ier molecules. The table 1 shows that the thermal expansion
coefficient and lattice constant are the increasing functions
of temperature, whereas the bulk modulus and the isochoric
heat capacity are decreasing function of temperature. And the
thermal expansion coefficient becomes divergent and the bulk
modulus tends zero near the spinodal temperature.
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FIG. 3: Isothermal curves at 297 K, 800 K, 1400 K, 2000 K calcu-
lated by using the parameters of (26).

In Figs. 3-8, we plotted the results of thermodynamic prop-
erties of fcc C84 solid calculated by using the DE potential.
The isothermal curves at 297 K, 800 K, 1400 K, 2000 K cal-
culated by using the parameters of (26) are plotted in Fig. 3.
The results suggest that the density of C84 increases with pres-
sure and decreases with temperature. The variations of bulk
modulus BT versus pressure P at the same temperatures are
plotted in Fig. 4. The BT is a linear increasing function of
pressure, but the slope is fairly large and the increase is fast.
This means the DE model solid for fcc C84 is difficult to be
compressed.

Fig. 5 and Fig. 6 give the variation of thermal expansion
coefficient and isochoric heat capacity CV versus pressure P at
297 K. Fig. 5 shows that α is a decreasing function of pressure
P, at low pressure the variation is fast, but at high pressure, the
variation slows down and shows some saturation effect. Fig. 6
shows that CV is an increasing function of pressure P, and the
variation is fast at low pressure and is slow at high pressure.
The calculated free energy F and internal energy U as function
of the density ρ for C84 at four temperatures (297 K, 800 K,
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TABLE I: Thermophysical properties of the fcc phase of C84 at zero-pressure calculated by using the parameters determined from the exper-
imental data [5] at 297 K: the lattice constants a in nm, linear thermal expansion coefficient α in 10−5K−1, the bulk modulus BT in GPa, the
heat capacity CV in kJ.mol−1.K−1.

T 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2807
a 1.5966 1.5986 1.6007 1.6029 1.6053 1.6079 1.6107 1.6139 1.6174 1.6214 1.6262 1.6322 1.6405 1.6634
α 0.6011 0.6359 0.6760 0.7226 0.7777 0.8437 0.9247 1.0269 1.1606 1.3449 1.6199 2.0894 3.1616 86.488
BT 19.074 17.613 16.177 14.765 13.374 12.0 10.641 9.2936 7.9526 6.6111 5.2572 3.8675 2.3805 0.0071
CV 24.616 24.304 23.986 23.662 23.331 22.989 22.633 22.259 21.859 21.424 20.937 20.368 19.639 17.930
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FIG. 4: Variations of bulk modulus BT versus pressure P at the same
temperatures in Fig. 3. The bulk modulus is in GPa.
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FIG. 5: (297 K) Variation of thermal expansion coefficient α versus
pressure P calculated in this work. The linear thermal expansion
coefficient in 10−5K−1.

1400 K, 2000 K) are plotted in Fig. 7 and Fig. 8, respectively.
The two figures show that both the free energy F and internal
energy U of C84 are increasing function of the density ρ and
the two physical quantities have the same variation tendency
as the density ρ increase at four different temperatures. The
variation at high density condition is faster than that at low
density condition. On the other hand, the two figures also
show that F and U are increasing functions of temperature
under the condition of the fixed density.
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FIG. 6: (297 K) Variation of isochoric heat capacity CV versus pres-
sure P calculated in this work. The heat capacity is in kJ.mol−1.K−1.
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FIG. 7: Variation of free energy F versus density ρ at 297 K, 800 K,
1400 K, 2000 K calculated by using the parameters of (26). Here the
contribution of ideal gas to free energy is neglected.
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FIG. 8: The same as for Fig. 7, but for internal energy U .
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4. CONCLUSION

In summary, the analytic expressions on equation of state
and internal energy for the poly-exponential solid have been
derived based on the AMFP method. The formalism devel-
oped is applied to the fcc C84 solid. One set of potential pa-
rameters are determined through fitting the experimental com-
pression data of C84 up to 9.24 GPa at ambient temperature.
The calculation results agree well with the available experi-
mental data and the other authors’ results calculated by using
different methods. These results presented in this paper verify
that the AMFP method is a useful approach to consider the

anharmonic effects at high temperature. In the present paper,
numerous reasonable predictions and the change trend of the
properties for C84 at extreme conditions have been given.
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