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Critical behavior of the delay-induced chaos transition in a nonlinear model for the immune
response
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In this paper we analyze a model for the dynamics of the immune system interacting with a target population.
The model consists in a set of two-dimensional delayed differential equations. The model is effectively infinite
dimensional due to the presence of the delay and chaotic regimes can be supported. We show that a delayed
response induces sustained oscillations and larger delay times implies in a series of bifurcations leading to chaos.
The characteristic exponent of the critical power law relaxation towards the stationary state is obtained as well
as the critical exponent governing the vanishing of the order parameter in the vicinity of the chaotic transition.
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1. INTRODUCTION

Mathematical models for the dynamics of the immune sys-
tem received considerable interest in physics literature [1].
The models are simplified versions that try to mimic the com-
plex behavior of real systems. In spite of this simplicity, such
models can provide insights on the real situation and help to
understand the intricate dynamics involved.

The more complicated models may display more accu-
rately the complex patterns observed in real data, but there are
difficulties concerning numerical estimations of the parame-
ters and the meaning of the many interaction terms that ap-
pear in such high dimensional models [2]. Alternatively one
may propose low dimensional models that present some of
the observed basic phenomena. The model of H. Mayer et al
proposed in [3] follows this approach. It models the interac-
tion of the immune system with a target population (e.g virus
or bacteria). A two dimensional set of differential equations
with nonlinear interactions between specific immune compo-
nents (the immune competence E measured by the concen-
tration of certain immune cells as, for example, cytotoxic T
lymphocytes cells (CTLs), killer T cells, etc) and the target
population T (e.g bacteria and viruses) is considered. The
model is as follows:

Ṫ = rT − kT E

Ė =
pT u

1+T ν +
sEn

1+En −E, u≤ ν. (1)

In the above system, r > 0 represents the reproduction rate
of the target population and k > 0 the elimination rate of the
targets by the immune cells. The first term in the dynam-
ics of E represents the speed of the processes triggered by
the targets T leading to their elimination by E. For example,
non-specific precursor cells or inactivated T-cells are trans-
formed into specific helper cells, CTL cells or plasma cells in
the presence of targets, producing certain antibodies. All the
constants (p,u,ν) are positive and u ≤ ν. The second term
represents the autocatalytic effect of immune responses. Fi-
nally, the term −E reflects the finite lifetime of E.

In the above model, the complex interactions of the im-
mune system with the foreign agents T are represented by
few measurable quantities. The nonlinearities in the dynam-
ics of E and T are the only source of complexity in the model.

Since it is a two-dimensional set of ODE’s, only regular tra-
jectories are observed. In many cases real time series data of
the immune state look rather irregular, suggesting chaotic be-
havior. See for example the data shown in [3] for the number
of killer cells versus tumor size during a metastatic process of
Fibrosarcoma.

In [5] and [6], the Mayer et. al. model was modified to
include time delays and the possibility of delay induced chaos
was explored. Here, we also consider variants of (1) with
delayed responses. We focus on a simple model given by:

Ṫ = rT −bT 2− kT E,

Ė =
pT (t− τ)

1+T (t− τ)2 +
sE2

1+E2 −E . (2)

If b 6= 0, we are admitting a competition for the limited
resources available to the target population. The sigmoid be-
havior of pT (t−τ)

1+T (t−τ)2 means that the immune system ignores the
T population if it is below a given threshold . Furthermore,
this term is bounded reflecting the fact that the precursor E
population is limited. Our motivation is to search in this sim-
ple model some patterns observed in real situations. In the
next section, we show that, as expected, the delayed response
may induce oscillations in T and E.

It is well known that the introduction of the delay makes
the model effectively infinite dimensional. Chaos can thus be
observed in one dimensional delayed systems [4].

In the next section we show that the delayed response in-
duces sustained oscillations and larger delay times imply in
a series of bifurcations leading to chaos. The characteristic
exponent of the critical power law relaxation towards the sta-
tionary state is obtained as well as the critical exponent gov-
erning the vanishing of the order parameter in the vicinity of
the chaos transition.

We compute the critical delay-time above which the sta-
tionary solution is unstable. The dynamics of the system
in the neighborhood of the critical point is characterized by
the dynamic critical exponent. We show that the bifurcations
evolve to a chaotic regime.

The rest of the paper is organized as follows. Next section
presents some numerical results concerning the behavior of
(2) and section 3 concludes.
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FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).
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FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).
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FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.
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FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.
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FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).
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2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2
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]
; (4)

FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).

2 ??????????????? et al.

300 350 400 450 500
t

0.2

0.3

0.4

0.5

0.6

T

FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).

0 0.3 0.6 0.9 1.2 1.5
τ

0

0.1

0.2

0.3

0.4

0.5

0.6

A
(E

)

FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).

10
-2

10
-1

τ−τ∗

10
-1

A
(T

)

FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.

10
2

10
3

t

10
-1

A
(t

;T
)

FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.

0 3 6 9 12 15 18 21 24 27 30
τ

0

0,5

1

1,5

2

E
_m

ax

FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).

The rest of the paper is organized as follows. Next section
presents some numerical results concerning the behavior of
(2) and section 3 concludes.

2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2

2sE∗
(1+E∗2)2 −1

]
; (4)

FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).

2 ??????????????? et al.

300 350 400 450 500
t

0.2

0.3

0.4

0.5

0.6

T

FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).

0 0.3 0.6 0.9 1.2 1.5
τ

0

0.1

0.2

0.3

0.4

0.5

0.6

A
(E

)

FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).

10
-2

10
-1

τ−τ∗

10
-1

A
(T

)

FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.

10
2

10
3

t

10
-1

A
(t

;T
)

FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.

0 3 6 9 12 15 18 21 24 27 30
τ

0

0,5

1

1,5

2

E
_m

ax

FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).

The rest of the paper is organized as follows. Next section
presents some numerical results concerning the behavior of
(2) and section 3 concludes.

2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2

2sE∗
(1+E∗2)2 −1

]
; (4)

FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.

2 ??????????????? et al.

300 350 400 450 500
t

0.2

0.3

0.4

0.5

0.6

T

FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).

0 0.3 0.6 0.9 1.2 1.5
τ

0

0.1

0.2

0.3

0.4

0.5

0.6

A
(E

)

FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).

10
-2

10
-1

τ−τ∗

10
-1

A
(T

)

FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.

10
2

10
3

t

10
-1

A
(t

;T
)

FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.

0 3 6 9 12 15 18 21 24 27 30
τ

0

0,5

1

1,5

2

E
_m

ax

FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).

The rest of the paper is organized as follows. Next section
presents some numerical results concerning the behavior of
(2) and section 3 concludes.

2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2

2sE∗
(1+E∗2)2 −1

]
; (4)

FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.

2 ??????????????? et al.

300 350 400 450 500
t

0.2

0.3

0.4

0.5

0.6

T

FIG. 1: Trajectories for the T population after the initial outbreak for τ > τ∗.
Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3).

0 0.3 0.6 0.9 1.2 1.5
τ

0

0.1

0.2

0.3

0.4

0.5

0.6

A
(E

)

FIG. 2: a) Amplitudes of oscillation of the E population. Parameters used
(r,k, p,s,b) = (3,2,2,1.25,0.3).

10
-2

10
-1

τ−τ∗

10
-1

A
(T

)

FIG. 3: A(T ) ∝ (τ− τ∗)β as τ → τ∗+. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). We estimate β = 0.5.

10
2

10
3

t

10
-1

A
(t

;T
)

FIG. 4: A(t;T ) ∝ t−φ. Parameters used (r,k, p,s,b) = (3,2,2,1.25,0.3). We
estimate φ = 0.5.

0 3 6 9 12 15 18 21 24 27 30
τ

0

0,5

1

1,5

2

E
_m

ax

FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).

The rest of the paper is organized as follows. Next section
presents some numerical results concerning the behavior of
(2) and section 3 concludes.

2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2

2sE∗
(1+E∗2)2 −1

]
; (4)

FIG. 5: Maximum E as a function of the delay time. A series of bifurcations
leading to chaos is observed in case b 6= 0.Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3).

2. SOME RESULTS

Let us consider (r,k, p,s,b) = (3,2,2,1.25,0.3) [3]. The
(real) fixed points of system (2) are:

(1) (T ∗1 ,E∗1 ) = (0,0) (3)
(2) (T ∗2 ,E∗2 ) = (0.3352282998,1.449715755)

The Jacobian matrix is given by:

J =

[
r−2bT ∗− kE∗ −kT ∗

e−λτ p(1−T ∗2)
(1+T ∗2)2

2sE∗
(1+E∗2)2 −1

]
; (4)

It is straightforward to show that the trivial stationary solu-
tion is unstable for all values of τ. For null delay, the interior
fixed point is stable. When τ 6= 0 the analysis is performed
with the help of the following theorem [7]:

Theorem 1:Consider the characteristic equation P(λ) +
Q(λ)e−λτ = 0 associated to a fixed point, where P(λ) and
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FIG. 6: Typical phase portraits. Parameters used (r,k, p,s,b) =
(3,2,2,1.25,0.3). a) τ = 1, b) τ = 9, c) τ = 17, d) τ = 28.
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Q(λ)e−λτ = 0 associated to a fixed point, where P(λ) and
Q(λ) are analytic functions in a right half-plane Reλ >
−δ,δ > 0 which satisfy:

i)P(λ),Q(λ) have no common imaginary zero,
ii) P(−Iy) = P(Iy),Q(−Iy) = Q(Iy),y ∈ ℜ where the bar
means conjugate;
iii)P(0)+Q(0) 6= 0;
iv)There are at most a finite number of roots of P(λ) +
Q(λ)e−λτ = 0 in the right half plane if τ = 0;
v) F(y) = |P(Iy)|2−|Q(Iy)|2 with y ∈ ℜ has at most a finite
number of real zeros.

Then the following statements are true:
a) Suppose F(y) = 0 has no positive real roots. Then if the
associated fixed point is stable (unstable) for τ = 0 it remains
stable (unstable) for all τ > 0.

b) Suppose F(y) = 0 has at least one positive root and that
each positive root is simple. As τ increases, stability switches
may occur. There exists τ∗ > 0 such that P(λ)+Q(λ)e−λτ = 0
is unstable for all τ > τ∗. As τ varies from 0 to τ∗ at most a
finite number of stability switches may occur.
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given by:

λ2 +Bλ+C +Qe−λτ (5)

with B = 2.534071424, C = 1.190945352, Q = 0.961886711.
Constructing F(y) as above, we find the following roots
for F(y) = 0: y = [±0.8837551400,±1.086095210I], which
means we are in case b) of the above theorem. In fact, the
critical value of the delay, say τ∗, above which the point loses
its stability, can be obtained as follows. Let λ = u + Iω, the
critical delay then occurs when u = 0. With this substitution
in (5) we obtain:

cos(ωτ∗) =
−ω−C

Q
(6)

sin(ωτ∗) =
Bω
Q

which can be solve numerically giving τ∗ ≈ 0.823.
From the discussion above, we conclude that if τ < τ∗ the

system presents damped oscillations toward the stable equi-
librium. A delay τ > τ∗ makes this fixed point unstable and,
after an initial outbreak in the T population, we expect to ob-
serve sustained oscillations in the concentrations of T and E.
Solving (2) with a modified Runge-Kutta method, we show in
figure 1 the behavior of T for τ > τ∗. Note that the minimum T
population is smaller than the equilibrium value of the station-
ary solution. As pointed out in [4], this may bring advantages
to the immune system because other strategies for the elimi-
nation of T may be more efficient when the T concentration
is lower than the equilibrium value.
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given by:
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with B = 2.534071424, C = 1.190945352, Q = 0.961886711.
Constructing F(y) as above, we find the following roots
for F(y) = 0: y = [±0.8837551400,±1.086095210I], which
means we are in case b) of the above theorem. In fact, the
critical value of the delay, say τ∗, above which the point loses
its stability, can be obtained as follows. Let λ = u + Iω, the
critical delay then occurs when u = 0. With this substitution
in (5) we obtain:

cos(ωτ∗) =
−ω−C

Q
(6)

sin(ωτ∗) =
Bω
Q

which can be solved numerically giving τ∗ ≈ 0.823.
From the discussion above, we conclude that if τ < τ∗ the

system presents damped oscillations toward the stable equi-
librium. A delay τ > τ∗ makes this fixed point unstable and,
after an initial outbreak in the T population, we expect to ob-
serve sustained oscillations in the concentrations of T and E.
Solving (2) with a modified Runge-Kutta method, we show
in figure 1 the behavior of T for τ > τ∗. Note that the min-
imum T population is smaller than the equilibrium value of
the stationary solution. As pointed out in [4], this may bring
advantages to the immune system because other strategies for
the elimination of T may be more efficient when the T con-
centration is lower than the equilibrium value.

We characterized the critical behavior at τ = τ∗, by com-
puting the amplitude of the E oscillations as a function of the
delay-time. In Figure 2, the amplitudes of oscillations (after
the transient) for the E population versus τ are shown. At the
critical delay τ = τ∗, the amplitude decays with a power-law.
In figure 3 we consider the amplitudes in the T population,
say A(T ). We have A(T ) ∝ (τ−τ∗)β as τ→ τ∗+, with β = 0.5
as seen in figure 3. The damped oscillations also become criti-
cal. Let A(t;T ) denote the time evolution of the damped oscil-
lations. We observed a power-law behavior A(t;T ) ∝ t−φ, see
figure 4. We estimate the critical exponent as being φ ≈ 0.5
(within the error bar).

In figure 5, we show the local maximum values of E as a
function of the delay-time. Increasing the delay time, we ob-
serve bifurcations in the delay induced oscillations. The bi-
furcations reflect the emergence of new oscillatory patterns.
Large delays induce a series of bifurcations to chaotic behav-
ior. The route to chaos can be seen in figure 5 where Emax is
plotted against τ. Windows of regular trajectories are present
within the chaotic regions.



434 Elder de Souza et al.

Figure 6 shows some typical phase portraits, where the
emergence of chaos can be observed. Figures 6 a) and b)
show typical oscillatory behavior for τ > τ∗. We illustrate the
series of bifurcations that appears as we increase the delay.
Figure 6 c) and d) shows typical chaotic trajectories.

3. CONCLUDING REMARKS

We analyzed a two-dimensional system with delay that
models the dynamics of the interaction of the immune com-
petence E with a target population T . Several different be-
haviors are present in this model due to the presence of non-
linear functions in the dynamics of E. The dynamics of the
delayed model is, in some aspects, richer than that of the orig-
inal model. For example, it allows the presence of chaos.

We showed that the delay induces bifurcations and the sta-
tionary solution becomes oscillatory above a critical delay.

The characteristic exponents of this bifurcation and the criti-
cal dynamics were obtained. Larger delay times induces bi-
furcations which ultimately lead to chaos, which is forbidden
in the original non-delayed model.

Low dimensional models have the advantage that several
phenomena may be viewed as the result of few basic mech-
anisms [3]. High dimensional models with many variables
may furnish better computational results, but our work rein-
forces the fact that simple models, based on a few number of
easily interpreted parameters, are able to simulate some phe-
nomena observed in real situations.
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