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Nonlocal effects on the thermal behavior of non-crystalline solids
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We argue that nonlocal effects represented by fractionary terms in the kinetic energy can be relevant to achieve
a satisfactory phenomenological description of the thermal behavior of the specific heat of non-crystalline solids
at very low temperature. We propose a simple model formed by the direct sum of two Hamiltonians, one of
which is obtained by incorporating fractional derivatives in the kinetic energy of a conventional Hamiltonian,
and the other one accounts for the presence of phonons in the system. Some experimental data are used to
support the proposed description.
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1. INTRODUCTION

In the crystalline order, the atoms forming the solid sup-
press their individual displacements in favor of collective
movements whose quantum manifestations are the phonons.
In a crystal system, this order is enough to describe its thermal
behavior at very low temperature. If the system is metallic,
another contribution, coming from the Exclusion Principle,
has to be taken into account, but the global picture is found
from the collective movements of the system. The case of
a non-crystalline solid is surely more complicated, because,
since the pioneer work of Zeller and Pohl, it is well known
that the thermal properties of these materials are very differ-
ent from the crystalline ones [1]. In fact, after several decades
of research on the problem, two features of the specific heat
and of the thermal conductivity in these materials have been
considered as universal: An approximated linear dependence
on the temperature below 1K and the presence of a boson
peak above this temperature for the specific heat; a quadratic
dependence on the temperature, below 1K, and a plateau (in
correspondence to the boson peak) for the thermal conductiv-
ity [2, 3]. Although the two-level or tunnelling states model
has been very successful in accounting for the thermal be-
havior of the specific heat (see e.g., Ref. [2] for a review), a
satisfactory microscopic description of these phenomena, in
terms of a simple applicable model, is still to be achieved.
For that reason, it is highly desirable to have a unified (and
hopefully simple) point of view to analyze the data on the
specific heat of glassy samples in the low-temperature region.
Along these lines, some efforts have been made in the past in
order to establish the physical nature of the elementary exci-
tations present in these systems. By following an analogy to
what happens in the physics of superfluid helium, Takeno and
Goda [4, 5], and in a similar way Tanttila [6–8], proposed a
new contribution to the specific heat of a glassy system from
the extra density of state produced by rotonlike excitations.
In particular, Tanttila [6] has proposed that all liquids and
glasses possess a new fundamental excitation. This excita-
tion is a localized region of somewhat lower or higher density
than the host matrix. These localized regions have the prop-
erty that they are free to propagate throughout the crystal. In
this manner, the glassy system should be composed of a “gas”
of excitations. These excitations are supposed to explain most
of the properties of the liquids and glasses.

Despite these important contributions, a complete expla-
nation starting from the elementary excitations for the spe-
cific heat data in the low temperature region is still lacking.
To explore in more details this analogy with the physics of
superfluid helium, the possibility to build a simple, but gen-
eral framework to understand the temperature behavior of the
specific heat at very low temperatures has been recently dis-
cussed [9]. The starting point was Landau’s fundamental idea
to consider the quantum liquid at low temperature as a gas
of elementary excitations, or quasi-particles. To check the
possible validity of a similar strategy for glassy systems, we
assume that the low temperature specific heat of a glassy sam-
ple is formed by two terms: the first term corresponds to the
temperature dependence of the specific heat of an ideal Bose
gas, whereas the second one corresponds to a Debye contri-
bution, i.e., coming from a phonon gas. Therefore our hy-
pothesis is that the low temperature spectrum of elementary
excitations is composed of two gases of quasiparticles: the
phonon gas and an ideal gas of quasiparticles coming from a
specific Hamiltonian. In this framework, we show that it is
possible to obtain a temperature dependence for the specific
heat in good agreement with some well known experimental
data.

2. NONLOCAL EFFECTS AND GREEN FUNCTION

To investigate a possible source for these quasiparticles, we
assume that the system is described by a Hamiltonian that can
be written in the form

Ĥ = ĤF⊕ ĤD, (1)

where ĤF is a conventional Hamiltonian incorporating frac-
tional derivatives in the kinetic energy term (as we discuss
below) and ĤD is related to the presence of phonons in the
system, also incorporating an excess term, typical of glasses.
The form (1) can be justified if we admit the existence of two
kinds of decoupled elementary excitations governing the be-
havior of the system at very low temperature, as discussed
above. In this manner, the partition function factorizes and
the specific heat is shown to be a sum of two contributions:
C (T,V,N) = CF(T,V,N)+CD(T,V,N).
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For the fractionary part we can consider the following ef-
fective Hamiltonian

ĤF =
1

2mα

∫
drψ†(r, t)

(
−~2∇2)α/2 ψ(r, t)

+
1
2

∫
dr
∫

dr′ψ†(r, t)ψ†(r′, t)V (|r− r′|)ψ(r, t)ψ(r′, t),

(2)

where ψ†(r, t) and ψ(r, t) are second quantized operators, mα
is an effective constant, the last term is the interaction be-
tween the components of the system, and

(
−~2∇2)α/2 ψ(r, t)≡

∫ dp
(2π~)3 eip/~·r|p|αψ(p, t)

is the quantum Reiz operator [10], which introduces a nonlo-
cal character in the kinetic energy term. A remarkable charac-
teristic of this procedure is that the solutions of the equation
of motion (see below) remind us the Lévy distribution form
instead of the Gaussian one. Another direct consequence, via
Heisenberg equation for ψ(r, t), verified from Eq. (2) con-
cerns the dynamical equation for ψ(r, t), which is actually
given by

i~
∂
∂t

ψ(r, t) =
1

2mα

(
−~2∇2)α/2 ψ(r, t)

+
∫

dr′V (|r− r′|)ψ†(r′, t)ψ(r′, t)ψ(r, t). (3)

Equation (3) is a Schrödinger-like equation with fractional
derivatives applied on the spatial variable, instead of the usual
ones. This equation, without the interaction term but incor-
porating an external potential, was analyzed in several sce-
narios, in a first quantized perspective [10–12]. In fact, it has
been applied to analyze the energy spectra of a hydrogenlike
atom, a fractional oscillator in the semiclassical approxima-
tion, the parity conservation law [11], quark−antiquark qq
bound states treated within the on-relativistic potential pic-
ture [12] and the quantum scattering problem [10]. In partic-
ular, in this context for the free case (i.e., absence of interac-
tion) with ψ(r,0) = δ(r), the solution of Eq.(3) is a Lévy-like
distribution, i.e., it is given by

ψ(r, t) =
∫ dp

(2π~)3 eip·r/~e−i|p|α/(2mα~)t . (4)

The quantum statistics which emerges from the above sce-
nario by using the thermal Green function approach may be
related to the dynamical aspects of the ψ(r, t). In fact, follow-
ing [13], we define the one-particle Green function as

G(1,1′) =
1
i
〈T(ψ(1)ψ†(1′))〉 (5)

where the thermodynamic averages, 〈· · · 〉, are evaluated by
taking the grand canonical ensemble into account, T is the
Dyson time-ordering operator and 1 and 1′ correspond to the
variables r1, t1 and r1′ , t1′ , respectively. From this equation,
we can define the correlation functions

G>(1,1′) =
1
i
〈ψ(1)ψ†(1′)〉 ,

G<(1,1′) = ±1
i
〈ψ†(1′)ψ(1)〉 , (6)

where > and < represent the Green function to t1 > t1′ ,
G = G> and t1 < t1′ , G = G<. The upper (lower) sign cor-
responds to the bosonic (fermionic) case and from Eq. (2)
and Eq. (6) it is possible to show that G<(1,1′)|t1=0 =
±eβµG>(1,1′)|t1=−iβ, by using the cyclic invariance of the
trace (Tr(ÂB̂) = Tr(B̂Â)). This result shows that the above
Green function satisfies the same periodic boundary condi-
tion of the usual one [13], in contrast to the one [14] for-
mulated within the Tsallis formalism [15]. Similar to what
is done in the usual case, we may introduce the spectral func-
tion, A(p,ω), defined as A(p,ω) = G>(p,ω)∓G<(p,ω) and
express G< and G> as follows:

G>(p,ω) = (1± f (ω))A(p,ω),
G<(p,ω) = f (ω)A(p,ω), (7)

i.e., in terms of the spectral function, with f (ω) =
1/(e(ω−µ) ± 1). Using these green functions, we may ob-
tain thermodynamics quantities such as the average of parti-
cle density with momentum p and energy ω, i.e., 〈n(p,ω)〉=
G<(p,ω), the pressure P(β,µ) =

∫ µ
−∞ dµ′〈n(p,ω)〉 and the av-

erage of energy

〈H〉= V
2

∫ ∞

−∞

dω
2π

∫ d3p
(2π~)3

(
ω+
|p|α
2mα

)
G<(p,ω) . (8)

The details of the formalism presented above can be found in
Ref. [16].

From the phenomenological point of view, the nonlocal-
ity, represented by the fractional derivative present in kinetic
term, may be useful to take nonusual aspects of the spec-
trum of the elementary excitation into account, e.g., non-
conventional density of states, which emerge due to the struc-
ture of the glass material and are manifested by the thermo-
dynamic quantities at low temperature as the specific heat. In
fact, the specific heat is generally fitted at low temperature by
the expression C = AT n + BT 3 which is expected to arise
from the phenomenological model investigated here, in con-
trast, e.g., to the tunnelling states [17]. In order to check its
potentiality, we investigate the specific heat obtained from the
Hamiltonian (1) and its agreement to the experimental data.

3. THERMAL BEHAVIOR

As highlighted above, the specific heat can be written as
a sum of two independent contributions which after some
calculations, by considering the previous formalism with Ĥ
given by Eq. (1) and low temperature limit, may be written in
the simplified form

C = AT 3/α +BT 3. (9)

The first contribution comes from the kinetic term present in
Eq. (2). It is reduced to the contribution of an ideal Bose
gas when the kinetic energy term is the usual one, i.e., for
α = 2. The second term is the usual Debye contribution.
In Fig. 1, the specific heat behavior of three non-crystalline
samples is shown for very low temperatures. The agreement
between the predictions of our model is very good for SiO2
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FIG. 1: Specific heat for three non-crystalline samples vs T . The val-
ues of parameters A , B and α for SiO2 are 1.40 10−6 [J/(g K1+3/α)],
1.70 10−6[J/(g K4)] and 2.60, respectively. For GeO2, we have
that A = 1.74 10−6[J/(g K1+3/α)], B = 4.63 10−6[J/(g K4)] and
α = 3.05. Finally, for Teflon [18], we have A = 6.45 10−7[J/(g
K1+3/α)], B = 5.50 10−5[J/(g K4)] and α = 4.5.

by Eq. (1) and low temperature limit, may be written in the
simplified form

C = AT 3/α +BT 3. (9)

The first contribution comes from the kinetic term present in
Eq. (2). It is reduced to the contribution of an ideal Bose
gas when the kinetic energy term is the usual one, i.e., for
α = 2. The second term is the usual Debye contribution.
In Fig. 1, the specific heat behavior of three non-crystalline
samples is shown for very low temperatures. The agreement
between the predictions of our model is very good for SiO2
(CF ≈ T n,n≈ 1.15) and GeO2 (CF ≈ T n,n≈ 0.98), and quite
satisfactory for Teflon. The same good agreement is found
with the measured values for ethanol, shown in Fig. 2. In this
case, the contribution coming from the fractionary Hamilto-
nian is of the form CF ≈ T 1.1. Except for the ethanol, the
exponents lies between 1.0 and 1.5, approximately, i.e., the
temperature behavior of the specific heat is not linear at all.

For what concerns ĤD one can use an effective Hamilto-
nian [19]

ĤD(r, p,T ) = p2 +ar2−b
√

T r3 e−c
√

T r, (10)

where p and r are the re-scaled momentum and position vari-
ables, respectively; a, b, and c are constantes and T is the
absolute temperature. Notice that Eq. (10) has an anharmonic
term and was used to investigate the boson peak which can
be related to the transverse phonons [20]. In terms of these
re-scaled variables, it was shown that the specific heat for
Eq. (10) can be written as

C =E0T 3
∫ r∗

0
dr
∫ p∗

0
d p

(
prĤD(r, p,T )

eĤD(r,p,T )−1

)2

eĤD(r,p,T ), (11)

where E0 = (4πk2
B)2(2m/~2)3/2, r∗ = r0/

√
kBT , and p∗ =

p0/
√

2mkBT , with r0 and p0 being the cut-off values for the
variables. Written in the form (10), it is evident that the anhar-
monic contribution may be negligible for very low tempera-
ture and consequently the specific heat obtained from Eq. (11)
at low temperature is C ∼ T 3.

4. CONCLUSIONS

The complete scenario could be then as follows. At very
low temperature, the dynamics of the glassy system is gov-
erned by a Hamiltonian in the form (1), with ĤF given by the
kinetic term of (2), and ĤD having a form similar to (10). At
low temperature, i.e., near the temperature of the boson peak
(between 5 and 50K), the dynamics is still governed by (1),
but the contribution coming from (2) being negligible, and the
term represented by ĤD, with its anharmonic part, playing the
dominant role. In this framework, the specific heat of the sys-
tem can be well described by a Hamiltonian written in the gen-
eral form (1), with each term contributing more significantly
or not according to the ranges of temperatures considered. To
put this approach on a more firm ground, it is necessary to
justify the assumption of a decoupling between the different
elementary excitation, that permits us to assume the form (1)
and to justify also the physical basis of a fractionary kinetic
energy term. The gain with this kind of approach lies on the
nonlocal character of the low temperature Hamiltonian, rep-
resented by fractionary terms in the kinetic energy. This new
element can be the source of a very rich spectral distribution of
energies and can indicate a possible mechanism to explain the
non-conventional thermal behavior of glasses. If this picture
holds true, each glass system will find the more appropriated
value of α to express the importance of non-local effects on
its dynamics.
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FIG. 1: Specific heat for three non-crystalline samples vs T . The val-
ues of parameters A , B and α for SiO2 are 1.40 10−6 [J/(g K1+3/α)],
1.70 10−6[J/(g K4)] and 2.60, respectively. For GeO2, we have
that A = 1.74 10−6[J/(g K1+3/α)], B = 4.63 10−6[J/(g K4)] and
α = 3.05. Finally, for Teflon [18], we have A = 6.45 10−7[J/(g
K1+3/α)], B = 5.50 10−5[J/(g K4)] and α = 4.5.

(CF ≈ T n,n≈ 1.15) and GeO2 (CF ≈ T n,n≈ 0.98), and quite
satisfactory for Teflon. The same good agreement is found
with the measured values for ethanol, shown in Fig. 2. In this
case, the contribution coming from the fractionary Hamilto-
nian is of the form CF ≈ T 1.1. Except for the ethanol, the
exponents lies between 1.0 and 1.5, approximately, i.e., the
temperature behavior of the specific heat is not linear at all.

For what concerns ĤD one can use an effective Hamilto-
nian [19]

ĤD(r, p,T ) = p2 +ar2−b
√
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√

T r, (10)

where p and r are the re-scaled momentum and position vari-
ables, respectively; a, b, and c are constantes and T is the
absolute temperature. Notice that Eq. (10) has an anharmonic
term and was used to investigate the boson peak which can
be related to the transverse phonons [20]. In terms of these
re-scaled variables, it was shown that the specific heat for
Eq. (10) can be written as
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variables. Written in the form (10), it is evident that the anhar-
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FIG. 2: Specific heat of the ethanol [3] vs T . The values of pa-
rameters A0, B0 and α for SiO2 are 1.05 10−3 [J/(mol K1+3/α)],
1.89 10−3[J/(mol K4)] and 2.70, respectively.
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ture and consequently the specific heat obtained from Eq. (11)
at low temperature is C ∼ T 3.

4. CONCLUSIONS

The complete scenario could be, then, as follows. At very
low temperature, the dynamics of the glassy system is gov-
erned by a Hamiltonian in the form (1), with ĤF given by the
kinetic term of (2), and ĤD having a form similar to (10). At
low temperature, i.e., near the temperature of the boson peak
(between 5 and 50K), the dynamics is still governed by (1),
but the contribution coming from (2) being negligible, and
the term represented by ĤD, with its anharmonic part, play-
ing the dominant role. In this framework, the specific heat
of the system can be well described by a Hamiltonian writ-
ten in the general form (1), with each term contributing more
significantly or not according to the ranges of temperatures
considered. To put this approach on a more firm ground, it is
necessary to justify the assumption of a decoupling between
the different elementary excitation, permitting us to assume
the form (1) and to also justify the physical basis of a frac-
tionary kinetic energy term. The gain with this kind of ap-
proach lies on the nonlocal character of the low temperature
Hamiltonian, represented by fractionary terms in the kinetic
energy. This new element can be the source of a very rich
spectral distribution of energies and can indicate a possible
mechanism to explain the non-conventional thermal behavior
of glasses. If this picture holds true, each glass system will
find the more appropriated value of α to express the impor-
tance of non-local effects on its dynamics.



510 E. K. Lenzi et al.

ACKNOWLEDGMENTS

We thank CNPQ/INCT-SC and Fundação Araucária for
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