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Superstring theories are promising candidates for unifying gravity with all matter interactions. In this work,
we discussed a particular 10-dimensional cosmology based on Gauss-Bonnet invariant term coupled to a gen-
eralized scalar-tensor theory as resulting from superstring theories. Some interesting features concerning the
late-time dynamics are explored and described in some details.
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One of the most recent surprising discoveries in modern
cosmology is the realization that our universe is accelerated
in time and is dominated by a mysterious dark energy which
accounts for about 70% of the total energy content. The
remaining 30% contribution is largely due to dark matter.
These data is based on the accumulations of recent astro-
nomical events in particular the Hubble diagram of super-
novae type Ia, [1,2] cosmic microwave background (CMB)
anisotropies [3], the large scale galaxies structures of the uni-
verse [4] and Sachs-Wolfe effects [5]. This is strong evidence
in favour of the existence of a dark energy (DE) fluid which
may be the realization of a positive cosmological constant
which is considered as the first natural theoretical explana-
tion of the accelerated expansion of the cosmos.

Many leading candidates for the dark energy were
discussed largely in literature including the K-essence
with modified kinetic energy [6], viscous fluid [7],
Chaplygin gas [8,9], Generalized Chaplygin gas model
(GCGM) [10,11], Brans-Dicke (BD) pressureless solu-
tions [12,13,14], decaying Higgs fields [15], dilaton field
of string theories with gaugino condensation [16], tachyon
(unstable field) as a dark energy source, [17,18] etc. Some
other nice alternatives scalar theories include the string-
inspired dilaton gravities and the higher derivative theories
with an additional quadratic scalar curvature [19], Gauss-
Bonnet (GB) cosmology [20], etc. These modified theories
of gravity revealed interesting consequences and have poten-
tial to provide a linkage between the accelerated expansion
of the universe and fundamental physics although the accel-
eration cannot be explained by the standard model of particle
physics and classical general relativity.

Recently, a great deal of interest has been done in extra-
dimensional cosmology as it may provides a possible under-
standing the smallness of the cosmological constant prob-
lem and a solution to the hierarchy problem. [21] From the
point of view of string theory, the GB term may be said to
be preferred, as they lead to a unitary and low energy ef-
fective theory free from ghosts. [22] In this work, we will
look at ten-dimensional late-time cosmology with Lovelock
gravity non-minimally coupled to the scalar field. The non-
minimal coupling is in fact required in many quintessence
models based on supergravity arguments as well as quantum
corrections to the scalar field theory and its renormalizabil-
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ity in curved spacetime. Moreover, in induced gravity theory
(quantum field renormalization theory) gravity results from
nonminimally scalar field coupling; other sources are also
the superunification theories (superstring and Kaluza-Klein
theories, wormholes, cyclic universe, etc.). [23-30] This term
also plays a primary role in many alternatives frameworks
including the Chern-Simons gravitational theories and the
renormalization of quantum field theories in curved space-
time. [31] The most remarkable feature of the GB gravity
is that at high energy limit it drastically transforms radial de-
pendence from inverse to proportionality as singularity is ap-
proached and thereby making it weak. [32] In other words,
all solutions approach de Sitter spacetime at high curvature,
which is naturally singularity-free.
The action of the theory in ten-dimension is [26]

S =
Z

d10x
√
−g10 (1)

×
[

f (φ)R−φ
−1

ω(φ)φ,Aφ
,A−V (φ)−κ

2Lm +CG(R)
]
.

Here

a) R is the scalar curvature,

b) ω(φ) is the Brans-Dicke coupling function between the
dynamical scalar field and the gravity,

c) f (φ) = φ is the coupling scalar function with the Ricci
scalar, i.e. geometry

d) V (φ) is the potential function playing the role of an effec-
tive cosmological constant of the theory,

e) g10 is the 10-dimensional scalar metric,

f) G(R) = R2−4RABRAB +RABCDRABCD is the quadratic GB
term,

g) C is the Gauss-Bonnet coefficient

h) κ2 is the gravitational coupling constant set equal to one
here for mathematical simplicity,

i) Lm represents the matter-Lagrangian,

j) the indices run A,B, ... ∈ (0, ...,9).
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The field equations that followed from the action (1) are:

f
[

RAB−
1
2

gABR
]
+

1
2

gAB

[
ω(φ)

φ
φ,Eφ

,E +V (φ)
]

−ω(φ)
φ

φ,Aφ,B− f;A;B + f ;A
;A gAB

+
C
2

[
RABCDRABCD−4RABRAB +R2]gAB

−C
[
2RACDERCDE

B +2RRAB−4RABCDRCD−4RACRC
B
]

=
1
2

TAB , (2)

R f ′+2
ω(φ)

φ
φ

;A
;A +

(
ω′(φ)

φ
− ω(φ)

φ2

)
φ

,A
φ,A−V ′(φ) = 0,

(3)
where f ;A

;A ≡ f ′′φ,Aφ,A + f ′φ;A
;A and f ′ ≡ d f

/
dφ, f ′′ =

d2 f
/

dφ2. The energy-momentum tensor in theory is

T A
B = diag(−ρ, p, p, p,P,P,P,P,P,P),

where ρ, p and P are the matter density, visible pressure and
extra-dimensional pressure respectively.
The metric we adopt in our theory corresponds to a flat and
homogeneous spacetime and looks like: [26,33]

ds2 =−dt2 +a2(t)
3

∑
i=1

dxidxi+︸ ︷︷ ︸
visible FRW

b2(t)
6

∑
j=1

dy jdy j

︸ ︷︷ ︸
extra−dimensions

. (4)

With these considerations the Friedmann field equation
and equation (3) are given by:

3H2
a +18HaHb +15H2

b +36CHb

×
(
2H3

a +15H2
a Hb +20HaH2

b +5H3
b
)

= V (φ)+
8πρ

φ
+

ω(φ)
φ

H2
φ −3HaHφ, (5)

φ̈+3Haφ̇+
1
2

φR− 1
2

dV
dφ

+
1
2

φ̇
2
(

ω′(φ)
ω(φ)

− 1
φ

)
= 0, (6)

where Ha = ȧ
/

a,Hb = ḃ
/

b and Hφ = φ̇
/

φ augmented by the
energy conservation equation

ρ̇+3Ha(ρ+ p)+6Hb(ρ+P) = 0. (7)

It is almost unfeasible to solve the above set of field equa-
tions even in the homogeneous and isotropic FRW back-
ground geometry as these are only a pair of independent
field equations, with at least five field variables, in addition
to the density and pressure. A possible and realistic solu-
tion requires at least three additional assumptions to obtain
exact analytical solutions. However, it may be possible to
find a fixed form for f and ω which would satisfy all the
field equations from early Universe through matter domi-
nated era with different cosmological evolution of φ. Ac-
cordingly, in our approach, we believe that scaling solutions

enable the asymptotic behaviour and stability of the cosmo-
logical background to be determined. Moreover, they pro-
vide a framework for establishing the behaviour of more gen-
eral cosmological solutions. In what follows, we will assume
in the visible section the equation of state p = (γ−1)ρ, γ is
a constant. Besides, we assume for simplicity that the scal-
ing laws behavior: ω(φ) = ω0φm, V (φ) = V0φn, a(t) = a0tq,
b(t) = b0trand φ(t) = φ0t p.p,q,m,n and r are real constants
and ω0,V0,a0,b0 and φ0are the values of the parameters at
the present epoch assumed equal to unity for mathemati-
cal simplicity. The natural way of getting from 9+1 a 3+1
dimensional universe is to compactify the six spatial extra-
dimensions by hand. For this motive, we make the hypoth-
esis that b(t) = (1

/
a(t))N ,N ∈ R+. This gives the simple

relation Hb = −NHa. [26] Then equations (5), (6) and (3)
reduce straightforwardly to:

3qt−2 (q(N−1)(5N−1)+ p)

= t pn +8πρt−p + p2t p(m−1)−2−36CqN
×(5N(N−1)(N−3)−2)q3t−4, (8)

ρ̇+3γρ
q
t

+6
r
t
(ρ+P) = 0, (9)

R = nt pn−2p−2
(

p−1+3q+
1
2

p(m−1)
)

pt−2. (10)

We already know that the behaviour of the Ricci scalar is dic-
tated by the metric, nevertheless, it is obvious from equation
(10) that, if for instance, we set p(n− 2) = −2, a consis-
tent solution is obtained if, for instance, the scalar curvature
varies like R = ξt−2,ξ ∈ R, i.e. R → 0 at late time as re-
quired by inflation theory. Accordingly, equation (8) takes
the special form:

3qt−2 (q(N−1)(5N−1)+ p)

= t2p−2 +8πρt−p + p2t p(m−1)−2−36CN
×(5N(N−1)(N−3)−2)q4t−4. (11)

We are concerned on the involvement of the GB invariant
curvature term to the dynamical equation of motion as GB
gravity can lead to late-time accelerated expansion of the
universe. For this, we select the consistent solution which
is equivalent to the statement “mass without mass” [26,28]:

ρ(t) =
9CN
2π

(5N(N−1)(N−3)−2)q4t p−4− 1
8π

t3p−2

=− 1
8π

t3p−2

×
(
−36CN (5N(N−1)(N−3)−2)q4t−2−2p +1

)
,

=
9CN
2π

(5N(N−1)(N−3)−2)qpH4−p
a − 1

8π
q3p−2H2−3p

a ,

=− 1
8π

q3p−2H2−3p
a

×
(
−36CN (5N(N−1)(N−3)−2)q2−2pH3p−2

a H4−p
a +1

)
.

(12)

Obviously, at the critical time
tc = [1

/
36CN (5N(N−1)(N−3)−2)]−1/2(1+p), the matter
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energy density vanishes with time. However, the results of
large-scale structure surveys and results of measurements
of masses of galaxies give best fit for density parameter for
matter Ωm,0 = 0.3. Accordingly, we would like to avoid for
instance such an event and we choose p =−1 for which

ρ(t) =−
(
−9CN

2π
(5N(N−1)(N−3)−2)q4 +

1
8π

)
t−5,

=−
(
−9CN

2π
(5N(N−1)(N−3)−2)q−1 +

1
8π

q−5
)

H5
a .

(13)

Therefore, equation (11) is reduced to:

3qt−2 (q(N−1)(5N−1)+ p) = p2t−(m−1)−2, (14)

from which a consistent and realistic relation is obtained,
if for instance, m = 1withn = 4 from the constraint p(n−
2) = −2. The scalar field, the coupling function and the
scalar potential evolve respectively like φ(t) ∝ t−1, ω(φ) ∝

φ and V (φ) ∝ φ4 during the accelerated expansion of the
universe. A positive matter energy density corresponds to
q4 > 1

/
36CN[5N(N−1)(N−3)−2],N > 0. Notice that

N = 1 or N = 1
/

5 give 3q = p. Furthermore, equation (10)
gives ξ = 8− 6q and hence as long as q < 1.33, ξ > 0 and
therefore the Ricci scalar curvature R = (8− 6q)t−2is pos-
itive or negative according to whether q < 1.33orq > 1.33.
We have, hence, a deviation from the standard cosmology
which predicts a scalar curvature R = 0. It is interesting
to have an accelerated universe dominated by dark energy
with scalar non-zero curvature. Equation (14) gives in its
turn 3q(q(N−1)(5N−1)−1) = 1 from which one deduces
straightforwardly:

q =
3±

√
9+12(N−1)(5N−1)

6(N−1)(5N−1)
. (15)

An accelerated expansion may occur if, for instance, q > 1.
Hence, the positive and then negative signs of equation (15)
are plotted in Figures 1 and 2 respectively:

 

FIG. 1: q = 3+
√
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√
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FIG. 2: q = 3−
√
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1
15
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√
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1
5

< N < 1,

N <
1
15

(9−4
√

6).

The constraint q4 > 1
/

36CN[5N(N−1)(N−3)−2],N > 0
gives now C >−4.10−3.

Two interesting features arise here:
1-The matter density obviously depends on the Gauss-
Bonnet coupling constant and behaves as ρ ∝ H5

a ,
2-the scale factor parameter depends on the parameter N.

Furthermore, we assume that the pressure is isotropic in-
cluding the extra-dimensions, i.e.p = P. Equation (9) is
reduced to ρ̇ + 3(q + 2r)γt−1ρ = 0 and gives accordingly
p− 4 + 3(q + 2r)γ = 0 or 3(q + 2r)γ = 5. It is notewor-
thy that the Hubble parameter H(t)≡ ȧ

/
a and the decelera-

tion parameter q̄(t) ≡ −äa
/

ȧ2 are related byq̄ ≡ −ä
/

Hȧ =
−(q−1)

/
q. In fact, the kinematic approach to cosmolog-

ical tests provides direct confirmation of the present accel-
erating dynamics independently on the validity of General
Relativity, as well as on the matter-energy content of the
Universe. In this perspective, one may use a phenomeno-
logical two-linear parameter expansion for the decelerating
parameter, i.e. q̄(z) = q̄0 + q̄1z where q̄0 and q̄1 are arbi-
trary constants to be compared with the values constrained
by the Union supernovae data. The recent astrophysical and
observational data favor the recent acceleration q̄0 < 0 (Low
Energy Limit) and past deceleration q̄1 > 0 (High Energy
Limit) with high confidence level. To illustrate, we make use
of the more recent results obtained by the Union SNe com-
pilation as well as some of the results found in literature, in
particular the recently extended dataset of distant supernovae
observed with HST34, e.g. q̄0 ≤−0.25 with 68% confidence
level. We choose N ≈ 0.1 from which one deduces easily:
q ≈ 2.51 for the positive sign and hence q̄0 ≈ −0.6. Hence
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from the constraint 3(q+2r)γ = 5, we find r = 5
/

6γ−1.255.
As naturally, we expect a contracting extra-dimensions dur-
ing the accelerated expansion of the universe, then r < 0or
γ > 0.66 and the equation of state parameter is consequently
w = γ− 1 > −0.33. While for N ≈ 1.05, we find q ≈ 5
and q̄0 ≈ −0.8. Accordingly, r = 5

/
6γ− 2.5 and hence

w = γ− 1 > −2
/

3. Both illustrations correspond to dark
energy dominance. It is noteworthy that cosmologies with
w < −1have some potentially serious problems. One of the
main serious problem concerns the fact that the speed of the
energy flow may surpass the speed of light allowing closed
causal loops. An additional problem is related to the Hamil-
tonian which can be unbounded below depending on the cos-
mological system, but mainly for phantom matter with a neg-
ative kinetic energy. Such a system has a negatively infi-
nite ground state, therefore no stable vacuum solution ex-
ists [35]. Other problem is related to Big Rip, i.e. the uni-
verse expansion would accelerate at such a speedy rate that
the event horizon would ultimately minimize to the point that
all bound systems are ripped apart, as no particle can remain
causally connected to any other particle.

The effective gravitational constant in the theory is here
G10 ∝ φ−1 ∝ t. The present day variation of the gravita-
tional constant is

∣∣Ġ10
/

G10
∣∣ = 2H0

/
q. Notice that form

N ≈ 1.05, q ≈ 5 and hence
∣∣Ġ10

/
G10

∣∣ ≈ 0.4H0with H0 =
80± 7 km−1Mpc−1 in accordance with recent astronomical
data [36]. It is noteworthy that over the years there have
been many experiments performed that place upper limits
on the time variability of the effective gravitational coupling
constant. In general, it was recently observed that for late
times, a modified cosmology with varying gravitational cou-
pling constant is in accordance with the observed values of
the cosmological parameters. [37]

In summary, if we admit the superstring theory as a true
and promising quantum field theory of gravity unifying grav-
ity with all matter interactions, the GB invariant term is the
only grouping of curvature-squared interactions for which
the low-energy effective action is ghost-free. In the present
work our main aim was to explore the novel cosmological
features resulting from the presence of the Gauss-Bonnet
curvature term in 10-dimensional modified gravity with non-
minimal coupling. We ignored the presence of the dilaton
field and the Yang-Mills field strength, therefore our frame-
work is different from the multidimensional scenarios dis-
cussed by Kripfganz-Perlt [38] and Lorentz-Petzold. [39]
However, most of the previous works have been devoted
to vacuum solutions. In order that the equivalence prin-
ciple is satisfied, we have identified the scalar field as a

run-away modulus without direct matter couplings though
gravitational dynamics are modified due to the presence of
modulus-dependent loop corrections. We showed that such
coupling can trigger the accelerated expansion of the uni-
verse without the presence of phantom energy field after a
scaling matter era. Besides investigating the late-time cos-
mological evolution of such models, we also derive quanti-
tative constraints on the scenario of Gauss-Bonnet coupling
function. We have choose scaling solutions as we strongly
believe that scaling solutions during the dynamical evolution
of the universe play a crucial role as they serve to better un-
derstand many extended properties. Moreover, these scaling
solutions can lead in reality to a viable late-time cosmology
with the accelerated expansion starting earlier (z > 1) than in
common (uncoupled) dark energy cosmological models but
still consistent with the recent SNeIa supernovae astrophysi-
cal data. The GB coupling parameter is subdominant to the
Einstein term and decays like f (t) ∝ t−1. Since the Einstein
terms go also as R ∝ t−2, the effects of the Gauss-Bonnet
correction term on the late-time universe is small, but it still
plays an important role in the cosmic evolution. In other
words, the linear curvature term therefore dominates over
the contribution of the quadratic term and all other higher or-
der terms if curvature is non-minimally coupled to the scalar
field. The factor f (φ)R varies like f (φ)H2

a as R ∝ H2
a for

the factor CG(R) ∝ t−4 = H4
a to remain subdominant as it

is expected through the evolution of the universe. The term
f (φ)R plays here a leading role with regard to the effect of
the Gauss-Bonnet term on the evolution of the universe.
We have obtained a late time accelerated expansion of the
universe without crossing the phantom divide line, i.e. with-
out the presence of phantom field of any kind and indepen-
dent of the signature of the GB coupling parameter. There
exist other specific scenarios of dark energy with striking fea-
tures capable of explaining the present accelerated expansion
of the universe [40,41,42,43,44,45]. The simple model de-
scribed in this paper belongs to the same sort but holds some
new features discussed above. This model needs a firmer the-
oretical supporting which might come from modified gravity
theories. Other interesting consequences may be revealed in
particular the luminosity distance expression and statistical
analysis of the data obtained; however, it is a primitive model
and work in this direction is under progress. This only shows
that such investigations may be useful for a future study.
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