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Bianchi Type I tilted cosmological model for barotropic perfect fluid distribution with heat conduction is
investigated.To get the deterministic solution, we have assumed barotropic condition p = γ∈,0 ≤ γ ≤ 1, p being
isotropic pressure, ∈ the matter density and a supplementary condition between metric potentials A, B, C as A
= (BC)n where n is the constant. To get the model in terms of cosmic time, we have also discussed some special
cases. The physical aspects of the model are also discussed.
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1. INTRODUCTION

Homogeneous and anisotropic cosmological models have
been widely studied in the frame work of General Relativ-
ity in the search of realistic picture of the universe in the
early stages of the evolution of universe. These models are of
two types: (i) orthogonal models in which matter moves or-
thogonally to the hyper-surface of homogeneity (ii) the tilted
models in which the fluid flow vector is not normal to the
hyper-surface of homogeneity. The tilted models are more
complicated than those of non-tilted one. The general dy-
namics of tilted cosmological models have been studied by
King and Ellis [1], Ellis and King [2], Collins and Ellis [3].
Bradley and Sviestins [4] have investigated that heat flow
is expected for tilted cosmological model. Mukherjee [5]
has investigated tilted Bianchi Type I cosmological model
with heat flux in General Relativity. He has shown that the
universe assumes a Pan cake shape. The velocity vector is
not geodesic and heat flux is comparable to the energy den-
sity. The cosmological models with heat flow have also been
studied by number of researchers like Novello and Rebou-
cas [6], Ray [7], Roy and Banerjee [8], Coley and Tupper [9],
Deng [10]. Mukherjee [11], Banerjee and Santos [12], Co-
ley [13], Roy and Prasad [14]. Bali and Sharma [15] have
investigated tilted Bianchi Type I dust fluid cosmological
model for perfect fluid distribution using the special condi-
tion A = Bn between metric potential where n is the constant.
Bali and Meena [16] have investigated Bianchi Type I tilted
cosmological model for disordered radiation of perfect fluid
using the supplementary condition A = (BC)n between met-
ric potentials, n being a constant.

In this paper, we have investigated Bianchi type I tilted
cosmological model for barotropic perfect fluid distribution
(p = γ ∈) using the special condition A = (BC)n between
metric potentials, n being a constant where p is the isotropic
pressure, ∈ the matter density, 0 ≤ γ ≤ 1.

For complete solutions of equations (6) – (10),we need
two extra conditions. An obvious one is equation of state p
= γ ∈ (0 ≤ γ ≤ 1) given by (11), is general condition for
barotropic equation of state, p being isotropic pressure and
∈ the matter density. This includes radiation for γ = 1

3 , dust
filled universe p = 0 (Friedmann model) for γ = 0, stiff fluid
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universe ∈ = p (Zel’dovich fluid) for γ = 1. These are physi-
cally valid conditions for the description of the universe.

The second condition A = (BC)n given by (12) is obtained
by assuming σ1

1 αθ for non-tilt model i.e. for λ = 0 where σ1
1

is the eigen value of shear tensor σ
j
i and θ the expansion in

the model where
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The motivation for assuming this condition is explained as
: Referring to the Thorne [17], the observations of the ve-
locity – redshift relation for extra galactic sources suggest
that the Hubble expansion of the universe is isotropic today
to within 30% [18,19]. More precisely, the redshift studies
place the link σ

H ≤ 0.30 where σ is the shear and H is a Hub-
ble constant. Collins et al. [20] have pointed out that for
spatially homogeneous metric, the normal congruence to the
homogeneous hyper surface satisfies the condition σ

θ
= con-

stant. The condition σ1
1

θ
=constant for the metric (1) leads to

A = (BC)n

where n is the constant.
Some special cases for different values of n and γ are dis-

cussed. The physical aspects of the model and singularities
in the model are also discussed.

2. METRIC AND FIELD EQUATIONS

We consider the Bianchi Type I metric in the form

ds2 = −dt2 + A2dx2 + B2dy2 + C2dz2 . . . (1)

where A, B, C are functions of t alone.
The energy momentum tensor for perfect fluid distribution
with heat conduction is taken into form given by Ellis [21]
as

Tj
i = (ε+p) viv

j + pgj
i + qivj + viqj . . . (2)

together with

gijvivj = −1 . . . (3)
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qiqi > 0 . . . (4)

qivi = 0 . . . (5)

where p is the isotropic pressure, ε the matter density and qi
the heat conduction vector orthogonal to vi. The fluid flow
vector vi has the components(

sinhλ

A
, 0, 0, coshλ

)
satisfying (3), λ being the tilt angle.
The Einstein’s field equation Rj

i −
R
2 gj

i = −8πTj
i, (In the

generalized unit where c = 1, G = 1 and taking Λ = 0)
for the line-element (1) leads to
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(ε+p) A sinhλ coshλ+q1coshλ + q1
sinh2

λ

coshλ
= 0 . . . (10)

where the subscript ‘4’ denotes the ordinary differentiation
with respect to ‘t’.

3. SOLUTION OF FIELD EQUATIONS

Equations from (6) to (10) are five equations in seven un-
knowns, A, B, C, ε, p, λ and q1. For the complete determi-
nation of these quantities, we assume that the model is filled
with barotropic perfect fluid which leads to

p = γε . . . (11)

where 0 ≤ γ ≤ 1
To get the deterministic solution, we also assume a supple-
mentary condition between metric potentials A, B and C as

A = (BC)n . . . (12)

where n is the constant.
For complete solutions of equations (6) – (10),we need

two extra conditions. An obvious one is equation of state p
= γ ∈ (0 ≤ γ ≤ 1) given by (11), is general condition for
barotropic equation of state, p being isotropic pressure and

∈ the matter density. This includes radiation for γ = 1
3 , dust

filled universe p = 0 (Friedmann model) for γ = 0, stiff fluid
universe ∈ = p (Zel’dovich fluid) for γ = 1. These are physi-
cally valid conditions for the description of the universe.

The second condition A = (BC)n given by (12) is obtained
by assuming σ1

1 αθ for non-tilt model i.e. for λ = 0 where σ1
1

is the eigen value of shear tensor σ
j
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The motivation for assuming this condition is explained as :
Referring to the Thorne [17], the observations of the velocity
– redshift relation for extra galactic sources suggest that the
Hubble expansion of the universe is isotropic today to within
30% [18,19]. More precisely, the redshift studies place the
link σ

H ≤ 0.30 where σ is the shear and H is a Hubble con-
stant. Collins et al. [20] have pointed out that for spatially
homogeneous metric, the normal congruence to the homo-
geneous hyper surface satisfies the condition σ

θ
= constant.

The condition σ1
1

θ
= constant for the metric (1) leads to

A = (BC)n

where n is the constant.
Equations (6) and (9) lead to
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Using the barotropoic condition p = γε given by (11) in
(13),we have
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Using (8) in (14), we have
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Equations (7) and (8) lead to(
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Equation (12) leads to
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Thus equation (16) becomes
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which on integration leads to

C2
(

B
C

)
4
= b (BC)−n . . . (19)

where b is constant of integration.
Let

BC = µ and
B
C

= ν . . . (20)

Using (20) in (19), we have
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Using the assumptions (20) and (12) in (15), we have
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Equations (21) and (22) leads to

µ44

µ
+ a

µ2
4

µ2 = `µ−2(n+1) . . . (23)

where

a =

[
n −

(
n2− n

2 −
1
4

)(
1− 1

γ

)]
[
1−
(
n+ 1

2

)(
1− 1

γ

)] . . . (24)

` =
b2

4

(
1− 1

γ

)
[
1−

(
n + 1

2

) (
1− 1

γ

)] . . . (25)

Let us assume that

µ4 = f (µ) . . . (26)

Thus

µ44 =
dµ4
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′
. . . (27)

Therefore equation (23) leads to

df2

dµ
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Equation (28) leads to
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where L is constant of integration and
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Using (31) in (29), we have
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Equation (21) leads to

dν
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dµ√
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Hence the metric (1) reduces to the form

ds2 = −
(

dt
dµ

)2

dµ2 + µ2n dx2 + µ(νdy2 + ν
−1dz2) . . .

(34)
which leads to

ds2 = − dT2{
b2

(4n+1) T−2n + L T−2a
} + T2n dX2 +

+ T(νdY2 +ν
−1dZ2) . . . (35)

where ν is determined by (33) and µ = T.

4. SOME PHYSICAL AND GEOMETRICAL FEATURES

The isotropic pressure (p), the matter density (ε), the ex-
pansion (θ), cosh λ, v1, v4, q1, q4, σ11, σ14 are given by

8πp = (4an + 2a− 4n2 + 2n+1)
L

4T2a+2 . . . (36)

8πε =
1
γ

[4an + 2a − 4n2 + 2n + 1]
L

4T2a+2 . . . (37)
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. . . (44)

Similarly

ω11v1 + ω14v4 = 0 . . . (45)

q1 =

−L
[
(4an+2a−4n2 +2n+1)

(
1
γ

+1
)
− 2(2a+2n+1)

]1/2[
(4an+2a−4n2 +2n+1)

(
1
γ

+1
)

+ 2(2a+2n+1)
]

128π(2a+2n+1)1/2 T2a+2+n
. . . (46)

q4 =

−L
[
(4an+2a−4n2 +2n+1)

(
1
γ

+1
)
− 2(2a+2n+1)

]
[
(4an+2a−4n2 +2n+1)

(
1
γ

+1
)

+ 2(2a+2n+1)
]1/2

128π(2a+2n+1)1/2 T2a+2
. . . (47)

5. DISCUSSION

The reality conditions
(i) ρ + p > 0 (ii) ρ + 3p > 0
given by Ellis [22], lead to

4an + 2a > 4n2− 2n −1 . . . (48)

The matter density ∈ → ∞ when T→ 0 and ∈ → 0 when T
→ ∞. The model (35) starts with a big-bang at T = 0 and the
expansion in the model decreases as time increases. v1→ 0
at T= 0 when n < 0. q1 = 0, q4 = 0 when L = 0. cosh λ > 1
implies that

(4an+2a−4n2 +2n+1) >
2γ

1+ γ
(2a+2n+1) . . . (49)

σij vj = 0 and wij vj = 0 . . . (50)

are satisfied as shown in (44) and (45) where σij and wij
are shear tensor and vorticity tensor respectively. Since

lim
T→∞

σ

θ
6= 0. Hence the model does not approach isotropy

for large values of T. There is a Point Type singularity in the
model (35) at T = 0 (MacCallum [23] ). The spatial volume
R3 =

√
−g = ABC = Tn+1. Thus spatial (R3) increases as

time T increases where n+1 > 0.

Special Cases

We have also investigated the following cases:

(i) n = 1, γ = 1
2 , a = 1

2 lead to barotropic perfect fluid non-
tilted cosmological model as in this case cosh λ = 7

8 which
is not defined as cosh λ > 1 for tilted model.

(ii) n = 1
2 , a = 0 leads to γ = 1

3 (disordered radiation con-
dition) and cosh λ = 1.

(iii) n = − 1
2 , a = − 1

2 leads to stiff fluid case γ = 1 and
cosh λ = 1.

(iv) n = 1
2 , a = − 1

4 leads to γ = 0 (dust distribution) but
cosh λ is not defined.

Thus in all the above mentioned cases, no tilted cosmolog-
ical models are possible because for tilted model cosh λ > 1.
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