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Bianchi Type I tilted cosmological model for barotropic perfect fluid distribution with heat conduction is
investigated.To get the deterministic solution, we have assumed barotropic condition p =y€,0 <y < 1, p being
isotropic pressure, € the matter density and a supplementary condition between metric potentials A, B, C as A
= (BC)n where n is the constant. To get the model in terms of cosmic time, we have also discussed some special
cases. The physical aspects of the model are also discussed.
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1. INTRODUCTION

Homogeneous and anisotropic cosmological models have
been widely studied in the frame work of General Relativ-
ity in the search of realistic picture of the universe in the
early stages of the evolution of universe. These models are of
two types: (i) orthogonal models in which matter moves or-
thogonally to the hyper-surface of homogeneity (ii) the tilted
models in which the fluid flow vector is not normal to the
hyper-surface of homogeneity. The tilted models are more
complicated than those of non-tilted one. The general dy-
namics of tilted cosmological models have been studied by
King and Ellis [1], Ellis and King [2], Collins and Ellis [3].
Bradley and Sviestins [4] have investigated that heat flow
is expected for tilted cosmological model. Mukherjee [5]
has investigated tilted Bianchi Type I cosmological model
with heat flux in General Relativity. He has shown that the
universe assumes a Pan cake shape. The velocity vector is
not geodesic and heat flux is comparable to the energy den-
sity. The cosmological models with heat flow have also been
studied by number of researchers like Novello and Rebou-
cas [6], Ray [7], Roy and Banerjee [8], Coley and Tupper [9],
Deng [10]. Mukherjee [11], Banerjee and Santos [12], Co-
ley [13], Roy and Prasad [14]. Bali and Sharma [15] have
investigated tilted Bianchi Type I dust fluid cosmological
model for perfect fluid distribution using the special condi-
tion A = B" between metric potential where n is the constant.
Bali and Meena [16] have investigated Bianchi Type I tilted
cosmological model for disordered radiation of perfect fluid
using the supplementary condition A = (BC)n between met-
ric potentials, n being a constant.

In this paper, we have investigated Bianchi type I tilted
cosmological model for barotropic perfect fluid distribution
(p =y €) using the special condition A = (BC)" between
metric potentials, n being a constant where p is the isotropic
pressure, € the matter density, 0 <y < 1.

For complete solutions of equations (6) — (10),we need
two extra conditions. An obvious one is equation of state p
=vy€ (0 <y < 1) given by (11), is general condition for
barotropic equation of state, p being isotropic pressure and
€ the matter density. This includes radiation for y = %, dust
filled universe p = 0 (Friedmann model) for y = 0, stiff fluid
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universe € = p (Zel’dovich fluid) for y= 1. These are physi-

cally valid conditions for the description of the universe.
The second condition A = (BC)" given by (12) is obtained

by assuming 61 a0 for non-tilt model i.e. for A = 0 where ¢!

is the eigen value of shear tensor (5‘1 and O the expansion in
the model where
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The motivation for assuming this condition is explained as
: Referring to the Thorne [17], the observations of the ve-
locity — redshift relation for extra galactic sources suggest
that the Hubble expansion of the universe is isotropic today
to within 30% [18,19]. More precisely, the redshift studies
place the link §§ < 0.30 where G is the shear and H is a Hub-
ble constant. Collins et al. [20] have pointed out that for
spatially homogeneous metric, the normal congruence to the
homogeneous hyper surface satisfies the condition § = con-

and

stant. The condition %} =constant for the metric (1) leads to
A= (BO)"
where n is the constant.

Some special cases for different values of n and v are dis-
cussed. The physical aspects of the model and singularities
in the model are also discussed.

2. METRIC AND FIELD EQUATIONS

We consider the Bianchi Type I metric in the form

ds? = —dt® + A%dx* + B2dy? + C?dz?... (1)

where A, B, C are functions of t alone.

The energy momentum tensor for perfect fluid distribution
with heat conduction is taken into form given by Ellis [21]
as

TJ; = (e+p) v,V + pgz +qv 4 vig ... (2)
together with
givivi= —1... (3)
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qiqi > 0... @)

qivi=0... (5)

where p is the isotropic pressure, € the matter density and qi
the heat conduction vector orthogonal to vi. The fluid flow
vector vi has the components

inhA
(S"; ,0,0, cosh?»)

satisfying (3), A being the tilt angle. ‘
The Einstein’s field equation RJi - % = = STETJi, (In the

generalized unit where ¢ = 1, G = 1 and taking A = 0)
for the line-element (1) leads to

By Cau | BaCy
B C BC

inhA
—87 | (e+p) sinh®A+p+2q, sn; (6)
Agg | Cqa | ACy
A TC Tac T R @)
Ag By | A4By
T+?+ AB 87T.p... (8)
A4By4 i A4Cy B4Cy4
AB AC BC
5 sinhA
—8m |—(e+p) cosh"A+p—2q, 9)
(e+p) A sinhA coshA + q;coshA + sinh’A =0... (10)
p q1 q1 coshh

where the subscript ‘4’ denotes the ordinary differentiation
with respect to ‘t’.

3. SOLUTION OF FIELD EQUATIONS

Equations from (6) to (10) are five equations in seven un-
knowns, A, B, C, €, p, A and ql. For the complete determi-
nation of these quantities, we assume that the model is filled
with barotropic perfect fluid which leads to

P=Te... (11)

where 0 <y <1
To get the deterministic solution, we also assume a supple-
mentary condition between metric potentials A, B and C as

A = (BO)"... (12)

where n is the constant.

For complete solutions of equations (6) — (10),we need
two extra conditions. An obvious one is equation of state p
=y € (0 <y<1)given by (11), is general condition for
barotropic equation of state, p being isotropic pressure and
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€ the matter density. This includes radiation fory = %, dust
filled universe p = 0 (Friedmann model) for y = 0, stiff fluid
universe € = p (Zel’dovich fluid) for y = 1. These are physi-
cally valid conditions for the description of the universe.
The second condition A = (BC)" given by (12) is obtained
by assuming 61 a0 for non-tilt model i.e. for A = 0 where o1

is the eigen value of shear tensor 0‘: and 0 the expansion in
the model where
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The motivation for assuming this condition is explained as :
Referring to the Thorne [17], the observations of the velocity
— redshift relation for extra galactic sources suggest that the
Hubble expansion of the universe is isotropic today to within
30% [18,19]. More precisely, the redshift studies place the
link % < 0.30 where o is the shear and H is a Hubble con-
stant. Collins et al. [20] have pointed out that for spatially
homogeneous metric, the normal congruence to the homo-
geneous hyper surface satisfies the condition § = constant.

The condition %} = constant for the metric (1) leads to
A= (BC)"

where n is the constant.

Equations (6) and (9) lead to

Bas Cas  2B4Cy Ay (By  C4

B "¢t B ta (B + c) =8n(e=p)...
(13)

Using the barotropoic condition p = Y€ given by (11) in

(13),we have

B | Caa | 2BiCy Ay By Go)

B C BC A \ B C
1

—87p <1 ) (14)
¥

Using (8) in (14), we have

Ba | Ca | 2BaCy A4 (Be Ga)

B C BC A B C

Ay Bas  A4By 1

—_— —_— 1——]... 15
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Equations (7) and (8) lead to

<B44C44> LM (B4C4> —0... (6

B C A \ B C
Equation (12) leads to
Ay B4 Cy
— = — 4+ —=... 1
N (B + C) (7

Thus equation (16) becomes

(CB4s— B Cus) By  Cy\
B, —BC) (B C) —0... (8)
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which on integration leads to

B
c? () = b(BC)™"... (19)
C/y4
where b is constant of integration.
Let
B
BC:yandE:v... (20)
Using (20) in (19), we have
%“ — b @1

Using the assumptions (20) and (12) in (15), we have

2 2
Haa oM Tywas Ve (o 0 1 g
u+nﬂ2_[<n+2>u+2v+< 2 4) 2
1v3 1 1
e B E IR 7
4 v 2 uv Y
Equations (21) and (22) leads to
2
e TR (23)
u u
where
GRI(E)
a= 1 1 24)
1=+ ) (1-1)]
bZ
£ (1)
{ = 1 1 (25)
0= ()
Let us assume that
M4 = f(,u) (26)
Thus
d/.l4 /
= — =ff... 27
Ha = 27)
Therefore equation (23) leads to
i 2a, —2n—1
— + — = 2u (28)
du  u
Equation (28) leads to
/ )
2 = Ly R (29)

(a—n)
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where L is constant of integration and

(=3) (%

(a—n) = (30)
1 1
6[1— (1—g) (n+ 5)}
= 31
(a—n) (4n+1) 3D
Using (31) in (29), we have
f2 — b2 'u—2n + LIu—Za (32)
(4n+1)
Equation (21) leads to
v b od
v e g
Thus, we have
b du
log v :/ (33)
([1+1) b2 _ _
H \/(4n+1)'“ 2“—|—L/,1 .
Hence the metric (1) reduces to the form
2 dt\? 5 s 2, =142
ds* = — i dy” + p"dx" 4 u(vdy“+ v dz7)...
u
(34)
which leads to
dT?
ds> = — - ; + TdX> +
{ @ L LT a}
+ T(vdY?4v 1dzZ?)... (35)

where v is determined by (33) and u=T.

4. SOME PHYSICAL AND GEOMETRICAL FEATURES

The isotropic pressure (p), the matter density (€), the ex-
pansion (8), cosh A, v1, v4, q1, g4, 611, 614 are given by

8Tp = (4an + 2a— 4n*>+ 2n+1) (36)

4T2a+2 e

1
8me = §[4an + 2a —4n* 4 2n + 1] (37)

4T2a+2 e



264 Raj Bali and Pramila Kumawat

1/2
dan+2a—4n*+2n+1) (L +1) +2(2a+2n+1
Y

coshA = (38)
2 (2a+2n+1)"?
[
d A4 By Cy which leads to
— —cosh ha (2% o 24, =4
0 atcos A+ cos k(A—i—B—i—C
b2 1 L \'? An2 1
(n+1) g T) T + (4an+2a—4n°+2n+1) v +1
1/2
+2(2a+2n+1)}
0 = (39)
2(2a+2n+1)"/2
1/2
] [(4an+2a—4n2+2n+1) (% +1) - 2(2a+2n+1)}
A\ = “ee (40)
2(2a+2n+1)Y/2n
1/2
[(4an+2a—4n2—|—2n+1) (% +1) +2(2a—|—2n+1)]
V= - (41)
2(2a+2n+1)"
1/2
(2n— 1)T2 { (4n+1b;T2n+2 + ngﬂ} [(4an+2a—4n2—|—2n—|—1) (% +1)
1/2
+2(2a+2n+1 2(2a+2n+1)+ (4an+2a—4n”>+2n+1) (L +1
Y
011 =
24 (2a+2n+1)>/?
{
(42)
—(Zn—l)Tn{ b’ + = }]/2 [(4an—|—2a—4n2—|—2n—|—1) (l —|—1)
<4n+1)T2n+2 T23+2 v
—2(2a+2n+1 dan+2a—4n’>+2n+1) (L +1)+2(2a+2n+1
Y
014 =

24 (2a+2n+1)>?
|

(43)  Now

J

(2n—1)T“{ b2 L }1/2

<4n+1)T2n+2 T2a+2
) 1/2
{(4an+2a—4n2+2n+1) (% +1)} —4(2a—|—2n—|—1)2]
d4an+2a—4n>+2n+1) (L +1)+2@2a+2n+1)| (1-1
b
48 (2a+2n+1)°

1 4
G111V +0puv’ =



Brazilian Journal of Physics, vol. 40, no. 3, September, 2010 265
(44)
Similarly
o v+ oVt =0... (45)
1/2
L [(4an+2a—4n2+2n+1) (% +1) —2(2a+2n+1)}
{(4an+2a74n2+2n+ 1) (%{ + 1) +2(2a+2n+ 1)}
q' 7 (46)
128m(2a+2n+ 1)/~ T?a+2+n
-L [(4an+23—4n2+2n+1) (% +1) - 2(Za+2n+l)}
172
[(4an+2a—4n2+2n+ 1) (1 + 1) +2(2a+2n+ 1)}
q' = ! @7)

5. DISCUSSION

The reality conditions
@Op+p>0@G)p+3p>0
given by Ellis [22], lead to

4an + 2a > 4n>—2n —1... (48)

The matter density € — oo when T — 0 and € — 0 when T
— oo, The model (35) starts with a big-bang at T = 0 and the
expansion in the model decreases as time increases. vl — 0
at T=0whenn < 0. ql =0,g4=0when L =0. coshA > 1
implies that

2
(dan+2a—4n® +2n+1) > %{(2a+2n+1)... (49)

cijvi= Oandw;jv =0... (50)

are satisfied as shown in (44) and (45) where Gij and wij
are shear tensor and vorticity tensor respectively. Since

1287 (2a+ 2n+ 1) /2 72242

(

lim % # 0. Hence the model does not approach isotropy

T —oo

for large values of T. There is a Point Type singularity in the
model (35) at T = 0 (MacCallum [23] ). The spatial volume
R? = /=g = ABC = T"!. Thus spatial (R3) increases as
time T increases where n+1 > 0.

Special Cases

We have also investigated the following cases:

On=1vy= % ,a = % lead to barotropic perfect fluid non-
tilted cosmological model as in this case cosh A = % which
is not defined as cosh A > 1 for tilted model.

(i)n = %,a = Oleadstoy = % (disordered radiation con-

dition) and cosh A = 1.

(ili))n = — %, a= — % leads to stiff fluid case y =1 and
coshA=1.
@(iv)n = %, a= — % leads to Y = O (dust distribution) but

cosh A is not defined.
Thus in all the above mentioned cases, no tilted cosmolog-
ical models are possible because for tilted model cosh A > 1.
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