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Final state interactions effects on kinetic energy sum spectra in nonmesonic weak decay
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We analyze the effect of final state interactions (FSI) on coincidence spectra in nonmesonic hypernuclear
weak decay, ΛN → nN, as a function of the kinetic energy sum, EnN = En + EN , both for np and nn events.
Adopting a formalism recently developed, the effects of FSI originated from the interaction between the out-
going nucleons and those in the residual core are included analytically in a very simple way within the eikonal
approximation through the modification of the emerging particles momenta. Numerical results are shown for
5
Λ

He and 12
Λ

C hypernucleus. We found that coincidence spectra are only slightly modified and the disagreement
between theory and experimental data still persists, mainly for nn events in 5

Λ
He where enough statistics exists.

We conclude that admixtures of excitations in the final state produced by FSI need to be added to our approach
in order to improve the agreement with data.
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1. INTRODUCTION

The nonmesonic hypernuclear weak decay (NMHD)
ΛN → NN is the dominant channel for a Λ particle decay-
ing inside nuclear medium because the free decay through
the mesonic mode Λ→ πN is Pauli blocked. That NMHD
mode offers a good opportunity to scrutinize the strangeness-
changing |∆S| = 1 nonleptonic weak interaction between
hadrons. As such, it is useful to advance in the knowledge of
the involved physics. Along the last four decades there has
been a continuous interest in this decay mode strongly mo-
tivated by the disagreement between theoretical results and
experimental data for the different observables: i) the total
nonmesonic decay width, ΓNM = Γn + Γp, being Γn and Γp
the rates for the neutron and proton induced decay channels,
Λn→ nn and Λp→ np, respectively; ii) the neutron to pro-
ton ratio, Γn/p ≡ Γn/Γp; iii) the intrinsic asymmetry param-
eter, aΛ; iv) the kinetic energy spectra for protons and neu-
trons, SN(EN) ; and v) the double coincidence nucleon spec-
tra, SnN(cosθnN) and SnN(En +EN), showing the angular and
kinetic energy sum distributions of the emitted nucleons.

Several important advances have been made in recent
years regarding the determination of Γn/p, both from the the-
oretical and experimental side. In fact, the recent measure-
ments of single and double coincidence nucleon spectra in
different experiments have been somehow managed to de-
rive values of that observable, which indicates the necessity
of having a good knowledge about the spectra in NMHD. Be-
tween those experiments we mention: i) the new high quality
measurements of single-nucleon spectra done in Refs. [1–5],
and ii) the double-coincidence nucleon spectra from Refs.
[4, 6–10]. It is also important to mention the new exper-
iments planned at J-PARC where the statistics will be in-
creased much higher and the spectra will be observed clearly
[11]. Additionally, on the theoretical hand some evaluations
have been performed in order to analyze the spectra [12–18].
Related with the coincidence nN spectra, in which we will

concentrate from here on, it has been repeatedly mentioned
in the literature that: i) the bump observed in the experimen-
tal Snn(En + En) spectrum at low energies is not reproduced
by the theory, which may be indicative of nn coincidences
originated from sources other than Λn decays; and ii) dif-
ferences between theoretical calculations and experimental
data may be the result of final state interactions (FSI) in the
np and nn channels and/or two-nucleon-induced decay mode
(ΛNN→ NNN).

Particularly, we will pay special attention to the work from
Ref. [16] where is developed a model for the evaluation of
coincidence spectra which includes, in the framework of the
independent particle shell model, the effects of the recoil of
the residual nucleus and of the spreading in strength of the
deep-hole states on NMHD observables. There is concluded
that: i) that model is the appropriate lowest-order approxima-
tion for the theoretical calculations of the kinetic energy sum
spectra in NMHD, and ii) it is in comparison to that picture
that one should to appraise the effects of FSI and of two-
nucleon-induced decay mode. On the other hand, very re-
cently we have presented a simple and analytical formalism
to evaluate FSI experimented by the two nucleons leaving
the residual nucleus after the primary nomesonic hyperon-
nucleon decay process [19]. There, an approach based on
the eikonal approximation is developed and an optical po-
tential is introduced to represent nuclear medium and to de-
scribe the nucleon-nucleus dispersion process along the nu-
cleon outgoing path. In that work we analyze the effect of
FSI on integrated observables such as the number of emit-
ted pairs of nucleons and the asymmetry parameter, but not
over the spectra. Subsequently, a similar idea has been ap-
plied and a relativistic model for NMHD which includes the
effects of FSI through an energy-dependent complex optical
potential has been used to study integrated observables and
the kinetic energy and angular spectra [18].

All the above mentioned arguments have motivated us to
analyze the effect of FSI on the kinetic energy sum spectra
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adopting the eikonal approach. In Sect. 2. we will briefly
describe the procedure introduced in Ref. [19] to incorporate
FSI to the formalism developed in Ref. [16]. Numerical
results and summarizing conclusions are drawn in Sect. 3.

2. FORMALISM

The decay rate for the primary NMHD of an initial hyper-
nucleus A+1

Λ
X (with spin JIMI and energy EJI ) to a residual

nucleus A
Λ

Y (with several states having spin JF MF and ener-
gies EνF JF ) plus two free nucleons (with spins, isospins and
momenta sN , tN and pN , respectively, for N = n, p) is evalu-
ated from the expression [20–22]

ΓN= 2π ∑
snsN tntN νF JF MF

∫
|(pnsntnpNsNtN ;νF JF MF |V |JIMI)|2

× δ(EnN +Er−∆νF JF )
dpn

(2π)3
dpN

(2π)3 . (1)

Here EnN = p2
n

2mN
+ p2

N
2mN

is the total kinetic energy of the
outgoing primary pair with mN being the nucleon mass,
Er = |pn+pN |2

2mN(A−1) is the recoil energy, ∆νF JF = EJI −EνF JF + ∆

with ∆ = mΛ −mN is the released energy being mΛ the Λ

mass, and V is the transition potential used to describe the
primary nonmesonic decay process.

For the determination of the matrix element
(pnsntnpNsNtN ;νF JF MF |V |JIMI) we follow the treat-
ment developed in Ref. [19]. The effects of FSI are
incorporated by using the final nucleon states constructed in
the framework of the nonrelativistic eikonal approximation
[23–27]. In coordinate representation the accumulated
effect of the interactions felt by the emerging nucleons
along their outgoing path inside the residual nucleus
is included through the action of the operator factor
S†(r) on the unperturbed plane wave functions [19, 28]:
< rn|pn >< rN |pN >= S†(rn,pn)S†(rN ,pN)eipn·rneipN ·rN ,

where S(r,p) = e−i mN
p

∫ +∞
zp dzVopt(b,z). Here p has been

chosen along the z axis, r = (b,zp = p̂ · r) represents the
nucleon location after the primary nomesonic decay and
(b,z) the posterior collision point, being b the impact
parameter. For the optical potential associated to the
nuclear medium representation we adopt the simplified
form Vopt(r) = −

(
V0 + V1

A τ ·T
)

inside the nucleus (|r| ≤ R,

being R = 1.25A1/3 fm the nuclear radius) with V0 and
V1 representing the real isoscalar and isovector ”depths”,
respectively, and τ and T the nucleon and residual nucleus
isospin operators. After some simple and straightforward
algebra, the emerging two nucleon wave functions can be
written as [19]

< rn|pn >< rN |pN >= eiαN p·reiαN P·R, αN =
(

1+
mN

< p >2 ṼN

)
, for N = n, p, (2)

where we have made the change to relative and center of
mass variables (p = 1

2 (pn−pN), P = pn +pN , r = rn−rN and

R = 1
2 (rn + rN)) and we have defined < p >2=

( pF +pmax
2

)2
,

with pF =
√

2mNεF and pmax =
√

2mN∆
(A−1

A

)
being the

Fermi and maximum momentum allowed kinematically to
nucleons, respectively. The effective strength dependence on
the residual nucleus and nucleon isospins is contained in the
potential ṼN which holds

ṼN =
{

Ṽ0 for N = n
Ṽ0 + Ṽ1

2A for N = p
, (3)

for 5
Λ

He and

ṼN =

{
Ṽ0− Ṽ1

2A for N = n
Ṽ0 + Ṽ1

2A for N = p
, (4)

for 12
Λ

C. Here Ṽ0 and Ṽ1 represent average constant values.

Next, we follow two steps [16]: i) we write Eq. (1)
in terms of relative and center of mass variables, p and
P, respectively, and defining εp = p2

mN
, εP = P2

4mN
A+1
A−1 and

Er = P2

2mN(A−1) we carry out the δ(εp + εP−∆νF JF ) integra-
tion; ii) we express the decay rate as an integral in the vari-
able E ≡ EnN = ∆νF JF − 2

A+1 εP, and obtain the transition
probability density SnN(E) by performing the derivative on
E, SnN(E) = dΓN

dE . Thus, the spectrum as a function of the
kinetic energy sum is given by

SnN(E) =
4m3

N
π

√
(A+1)(A−1)3 ∑

νF JF

∑
SlLλJT

√
(∆νF JF −E)(E−∆′

νF JF
)

×
∣∣∣ 〈(αN p)l(αNP)LλSJT νF JF ;JI |V |JI〉

∣∣∣2 , (5)



Brazilian Journal of Physics, vol. 40, no. 3, September 311

with p =
√

mN(A+1)
2 (E−∆′

νF JF
), P =√

2mN(A−1)(∆νF JF −E), ∆′
νF JF

= ∆νF JF
A−1
A+1 and the

condition ∆′
νF JF
≤ E ≤ ∆νF JF . The nuclear moment is given

by

〈(αN p)l(αNP)LλSJT νF JF ;JI |V |JI〉= Ĵ−1
I ∑

jN

fJ(jNνF JF)

×M ((αN p)l(αNP)LλSJT ; jΛjNmtN ), (6)

with jN ≡ nN lN jN tN and jΛ ≡ nΛ lΛ jΛ tΛ being the single-
particle states for the nucleon and lambda, respectively (we
assume that the Λ particle behaves as a | 12 ,− 1

2 〉 isospin par-
ticle in the 1s1/2 level). We have defined

fJ(jNνF JF) = (−)2JF ĴĴI

{
JC JI jΛ
J jN JF

}
〈JC||a†

jN mtN
||νF JF〉,

(7)
with JC being the core spin such that |(JC jΛ)JI〉 and [20, 21]

M ((αN p)l(αNP)LλSJT ; jΛjNmtN ) =
1√
2

[
1− (−)l+S+T

]
×((αN p)l(αNP)LλSJT |V |jΛjNmtN J), (8)

corresponds to the two body matrix element between the

bounded Λ-nucleon system and the two final unbounded nu-
cleons.

In order to account for the nuclear structure of the resid-
ual nucleus we follow the procedure from [16], i.e., we con-
sider the highly excited hole states to be quasistationary and
described by Breit-Wigner distributions, whose widths are
estimated from the experimental data. Concretely, the per-
turbed eigenkets |νF JF > are constructed starting from the
unperturbed basis |iNJF >0 with iN = 0,1, · · · ,nN ,nN +1, · · · ,
where for iN ≤ nN we have simple doorway states | jNJF >
whereas for iN ≥ nN + 1 we have more complicated bound
configurations as well as those including unbound single-
particle states in the continuum. Thus, writing

|νF JF >= ∑
jN

CνF JF
jN | jNJF > +

∞

∑
iN=nN+1

CνF JF
iN |iNJF >0, (9)

it is easy to see that only the ket | jNJF > in this expansion
will contribute to the matrix element 〈JC||a†

jN mtN
||νF JF〉 in

Eq. (7). Additionally, because of the high density of states,
the amplitudes CνF JF

jN will be estimated phenomenologically
converting the discrete energies ∆νF JF into the continuous
variable ε and the discrete sum on νF into an integral on ε.
This allows to write [16]

SnN(E) =
4m3

N
π

√
(A+1)(A−1)3 ∑

JF

∑
SlLλJT

∫
∞

−∞

PjN JF (ε)
√

(ε−E)(E− ε′)

×
∣∣∣ 〈(αN p)l(αNP)LλSJT JF ;JI |V |JI〉

∣∣∣2 dε, (10)

where p =
√

mN(A+1)
2 (E− ε′), P =

√
2mN(A−1)(ε−E),

ε′ = ε
A−1
A+1 and the condition ε′ ≤ E ≤ ε has to be fulfilled.

Here PjN JF (ε) = |C jN JF (ε)|2ρJF (ε) is the strength function
being ρJF (ε) the density of perturbed states with angular mo-
mentum JF . By making the simplification PjN JF ' PjN , they
will be evaluated from the simplest approximation

PjN (ε) = δ(ε−∆ jN ), (11)

for the 5
Λ

He states, whereas for 12
Λ

C they will be calculated
from the Breit-Wigner distributions,

PjN (ε) =
2γ jN

π

1
γ2

jN +4(ε−∆ jN )2
, (12)

where γ jN are the widths of the resonance centroid at energies
∆ jN [29].

Finally, before to exhibit our numerical results, we would
like to remark that the method developed here to include FSI
can be applied independently of the exchange potential V
adopted for describing the NMHD. Particularly, we have em-
ployed the one-meson-exchange model from Refs. [20–22]
which uses a standard strangeness-changing weak ΛN→NN
transition potential comprising the exchange of the complete
pseudoscalar and vector meson octets (π, η, K, ρ, ω, K∗).

The contribution of the meson M to this potential depends
on the radial functions [20]

f S
M(r) =

1
3

[
m2

M
e−mMr

4πr
−δ(r)

]
,

f T
M(r) =

m2
M

3

[
1+

3
mMr

+
3

(mMr)2

]
e−mMr

4πr
,

f ′M(r) = −mM

(
1+

1
mMr

)
e−mMr

4πr
, (13)

with f S
M(r) and f T

M(r) describing the parity conserving scalar
and tensorial parts, respectively, and f ′M(r) the parity violat-
ing one. Here it is also important to stress that we have in-
cluded in our calculation the final state interactions between
the two outgoing nN particles, which have been extensively
discussed in the literature and are known to be very important
[13]. Their effect have been included phenomenologically by
modifying the two emitted nucleons plane waves as in our
mentioned works. In this way, final short range correlations
are simulated at a simple Jastrow-like level multiplying the
exchange potential by the correlation function

gNN(r) = 1− j0(qcr), (14)

with qc = 3.93 fm−1. The finite nucleon size effects at the
interaction vertices are gauged by the monopole form factor
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(Λ2
M−µ2

M)/(Λ2
M +q2), being ΛM the cutoff for the meson M

[20]. This corresponds in coordinate space to replacing each
of the shape functions (13) as follows:

f S
M(r)→ f S

M(r) = f S
M(r)− f S

ΛM
(r)− 1

6
(Λ2

M−m2
M)(ΛMr−2)

e−ΛMr

4πr
,

f T
M(r)→ f T

M(r) = f T
M(r)− f T

ΛM
(r)− 1

6
(Λ2

M−m2
M)(ΛMr +1)

e−ΛMr

4πr
,

f ′M(r)→ f ′M(r) = f ′M(r)− f ′ΛM
(r)+

r(Λ2
M−m2

M)
2

e−ΛMr

4πr
, (15)

where fΛM (r) has the same structure as fM(r) but with mM→
ΛM . Additionally, we have taken into account corrections
due to kinematical effects related to the Λ-nucleon mass dif-
ference and the first-order nonlocal terms [21].

FIG. 1: Normalized energy sum spectra for 5
Λ

He and 12
Λ

C. Solid
and dashed lines correspond to calculations with and without FSI,
respectively.

3. RESULTS AND CONCLUDING REMARKS

In the previous section we have developed a very simple
and easily manageable procedure to analyze the effect of FSI
on the kinetic energy sum spectra SnN(E). This method will
be applied to evaluate the coincidence nN spectra for 5

Λ
He

and 12
Λ

C decays. With the aim of comparison, we have per-
formed two evaluations of the spectra for each hypernucleus:
one neglecting and the other including the effect of final in-
teractions. When one neglects their influence at all we take

FIG. 2: Comparison between theoretical results including FSI (solid
line) and experimental data (dashed lines) for the energy sum spec-
tra of 5

Λ
He and 12

Λ
C decays.

Ṽ0 = Ṽ1 = 0 in Eqs. (3) and (4). Otherwise, the calculation
including FSI effect has been realized adopting the values
carefully discussed in Ref. [19] for the potentials: Ṽ0 = 15
MeV (Ṽ0 = 20 MeV) and Ṽ1

2A = 13.75 MeV ( Ṽ1
2A = 5 MeV) for

5
Λ

He (12
Λ

C). We present in Fig. 1 our results for the normal-
ized SnN(E)/ΓN coincidence spectra of 5

Λ
He and 12

Λ
C hyper-

nuclei. They show that the part of FSI we have considered
until now in spite of giving a sizable contribution to the spec-
tra do not have a decisive effect on it, in the sense that they do
not modify qualitative its form. These FSI, included through
the renormalization of the momenta p→ αNp and P→ αNP
(see Eq. (2)) correspond to: i) admixtures between the states
|nn;n−1 > and |np;p−1 > (through the term proportional to
Ṽ1 in the optical potential) with nn and np representing the
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Final state

 

 

Initial state

 

 

FIG. 3: Initial and final states for 5
Λ

He nonmesonic decay.

pair of outgoing nucleons and n−1 (p−1) the neutron (proton)
hole in the residual core; ii) mixtures of the states |nn;n−1 >
and |np;p−1 > with themselves (through the term propor-
tional to Ṽ0). With the purpose of helping to understand the
physic involved in NMHD, we show in Fig. 2 our results for
the kinetic sum spectra including FSI together with the ex-
perimental data taken from Refs. [8, 9], adequately normal-
ized to facilitate the comparison. Our theoretical nn and np
spectra exhibit a series of peaks, one for each occupied shell
model state. This agrees qualitatively well with the np data
of 5

Λ
He where a bump at ∼ 145 MeV is shown but the con-

cordance for nn-coincidences measurements is no so good
because a low energy bump is exhibited by the data. This in-

dicate that our description of the mechanism involved in the
NMHD is incomplete. In the case of 12

Λ
C spectra (or heavier

hypernuclei) because of the resolution of the detector system,
not considered here, is reasonable that only a wide bump at
about 130 MeV would appear in the experimental spectra.
This problem could be eliminated after the forthcoming data
of the experiments at J-PARC. Meanwhile, the 5

Λ
He data of-

fer a good opportunity to improve our description of NMHD.
It is interesting to mention here that similar comments can be
drawn about more evolved evaluations of coincidence spec-
tra including FSI effects at one-hole excitations level [30].

Therefore, in order to analyze future improvements to
achieve a complete description of FSI felt by the outgoing
nucleons, we will consider a simple ’toy model’ including
the possibility of more energetic configurations in the final
state, i.e., configurations containing additional particle-hole
(ph) excitations generated by FSI of the emitted nucleons
and absent in the eikonal picture. We show in Fig. 3 the
initial and final states contributing to the NMHD of 5

Λ
He,

where the core is |JCMC〉 = |0〉 ≡ |4He〉. Considering the
2h1p, 3h2p, · · · , κh(κ−1)p, · · · configurations as perturba-
tions over the 1h one, originated by nuclear interaction be-
tween the emerging nN nucleons and those in residual core,
the time independent perturbation theory gives the available
final states as

|nN;κ >= ∑
κ′=1,2,···

∑
N′=n,p

Cκκ′(NN′)|nN′;κ
′ >,κ = 1,2, · · · ,

(16)
where |nN′;κ′ > represents the unperturbed state with a
κ′h(κ′− 1)p excitation and |nN;κ > the corresponding per-
turbed one. To simplify we will restrict to additional 2h1p
excitations considering only the following configurations:
|nn;n−1,nn−1 >, |nn;n−1,pp−1 >, |np;p−1,nn−1 > and
|np;p−1,pp−1 > 1. In this case the unperturbed final states
will be

|nN;1〉 ≡ b†
JF MF ,N |0;nN〉,

|nN;2〉 ≡
[

bp 3
2
,N′(b

†
s 1

2
,N′b

†
s 1

2
,N)J′=0,1

]
JF MF

|0;nN〉, for N′ = n, p, (17)

where b†
j,N (b j,N) creates (destroys) an N-hole in the single

particle state jN . The final state |nN;JF > will be one of the
perturbed levels |nN;1〉 or |nN;2〉 given in Eq. (16). The co-
efficients containing the information about nuclear interac-
tion, Vstrong, are given by Cκκ′(NN′) = <nN′;κ′|Vstrong|nN;κ>

Eκ−E
κ′

for
κ 6= κ′ and Cκκ(NN′) is fixed by the normalization condition
∑κ′N′ |Cκκ′(NN′)|2 = 1. Introducing these final states in the
nuclear moment 〈JC||a†

jN mtN
||JF〉 from Eq. (7) it is easy to see

that only the terms proportional to the state |nN;1〉 will give
a non-null contribution. As a consequence, the coincidence
spectra will receive now contributions coming from the con-
figuration |nN;1〉 (proportional to C11) but also from |nN;2〉

(proportional to C21). Thus, we can schematically write

SnN(E) = |C11(NN)|2S1h
nN(E)+ |C21(NN)|2S2h1p

nN (E), (18)

where S1h
nN(E) is given by Eqs. (10)-(12) with ∆ jN = ε jΛ +

ε jN + ∆ and S2h1p
nN (E) has exactly the same form but with

∆ jN = ε jΛ + ε jN + ∆ + ∆tr being ∆tr = εs 1
2
− εp 3

2
the energy

invested in the s 1
2
→ p 3

2
transition. Because εp 3

2
> εs 1

2
the

new 2h1p contribution tends to remove nucleons from the
high energy part of the spectrum while filling the low en-
ergy region. The intensity of the new peak at lower energies
will depend of the value of the coefficients Cκ1. Its evalua-
tion is out of the scope of the present work but our reasoning
indicates that a future detailed evaluation could shed some
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light on the physics involved in the problem. In fact, addi-
tional nuclear excitations produced by FSI could help to ex-
plain the discrepancies between theoretical and experimental
data for the coincidence spectra and also the differences ob-
served between nn and np spectra. Because we are adopting
a very simplified toy model our conclusions are not defini-
tive. Additionally, we are neglecting at all the contribution
of two-nucleon-induced decay, which could also produce nu-
cleons to lower energies, mainly because the available energy
is shared between three final particles.

In summary, we have performed a simple analysis of the
effect of final state interactions on the nN spectra as a func-
tion of the kinetic energy sum of the outgoing nucleons,
SnN(E = En +EN). We have studied the effect of FSI adopt-
ing both: i) the formalism developed in Ref. [16] for the
calculation of the nN-coincidence spectra, which offers an
adequate scheme to appraise the effect of additional contri-
butions not included in the plane independent particle shell
model; and ii) a simple method based on the eikonal approx-
imation recently developed in Ref. [19] to incorporate the
effect of the interactions felt by the outgoing nucleon in its
travel through the residual core. We show that these FSI,

which mainly produce a renormalization of the nucleon’s
momenta originated from the rescattering processes, give an
important contribution but do not produce the desired effect
on the spectra, in the sense that they do not generate the bump
observed in the experimental nn spectrum of 5

Λ
He at ∼ 100

MeV. Our results indicate that this low energy peak could be
originated from more energetic configurations which should
be added to the final state interactions considered until now
in our formalism. A detailed evaluation of the effect of
such configurations and also from two-nucleon-induced de-
cay within the framework of finite nucleus formalism is re-
quired in the future.
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tivista (Reverte S.A., 1972) p. 181.

[28] B. Van Overmeire, W. Cosyn, P. Lava and J. Ryckebusch,
Phys. Rev. C73, 064603 (2006) and references therein.

[29] C. Mahaux, P.E. Bortignon, R.A. Boglia and C.H. Dasso,
Phys. Rep. 120, 1 (1985).

[30] E. Bauer, Nucl. Phys. A796, 11 (2007).


