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Is it possible to accommodate massive photons in the framework of a gauge-invariant
electrodynamics?
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The construction of an alternative electromagnetic theory that preserves Lorentz and gauge symmetries, is
considered. We start off by building up Maxwell electrodynamics in (3+1)D from the assumption that the
associated Lagrangian is a gauge-invariant functional that depends on the electron and photon fields and their
first derivatives only. In this scenario, as well-known, it is not possible to set up a Lorentz invariant gauge theory
containing a massive photon. We show nevertheless that there exist two radically different electrodynamics,
namely, the Chern-Simons and the Podolsky formulations, in which this problem can be overcome. The former
is only valid in odd space-time dimensions, while the latter requires the presence of higher-order derivatives of
the gauge field in the Lagrangian. This theory, usually known as Podolsky electrodynamics, is simultaneously
gauge and Lorentz invariant; in addition, it contains a massive photon. Therefore, a massive photon, unlike the
popular belief, can be adequately accommodated within the context of a gauge-invariant electrodynamics.
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1. INTRODUCTION

Maxwell electrodynamics, or its quantum version,
i.e., QED, is widely recognized as the adequate theory for the
description of the electromagnetic phenomena, because of
the astonishing agreement between theory and experiment.
However, it only enjoyed this high status after some of its
intrinsic problems were solved. Among them, the most re-
markable one is certainly the presence of divergences or in-
finities, even at the classical level [1].

This aspect of the Maxwell electromagnetic theory nat-
urally emerges when the self-energy of an elementary
(charged) particle, like the electron, for example, is consid-
ered. An object of this sort has no internal structure, which
means that it must be regarded (classically) as a geometric
point. Its Coulomb energy, given by

ECoul α

∫
∞

0
E2dV , (1)

where E is the electron electric field, like the associated self-
energy, diverges.

Objects having finite extension, on the other hand, such as
composite particles, must be described by internal degrees
of freedom since in this case the aforementioned problem,
at least in principle, does not occur. Hadronic particles, for
instance, belong to this category since their static properties,
like mass, are finite and, in principle, obtained through the
quark dynamics.

In spite of the mentioned success of the electromagnetic
theory, it remain some intriguing questions that cannot be
completely answered by a simple comparison between ex-
periment and theory. One of most remarkable, among oth-
ers, is the question of the massless character of the photon.
From a theoretical point of view the existence of massive
photons is perfectly compatible with the general principles
of elementary particle physics. This possibility cannot be
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discarded either from an experimental viewpoint. Indeed,
despite the fact that a very small value for the photon mass
has not been found experimentally up to now, this does not
allows to conclude that its mass must be identically zero. In
fact, the more accurate experiments currently avaliable can
only set up upper bounds on the photon mass. Incidentally,
the recently recommended limit published by Particle Data
Group is mγ ≤ 2× 10−25GeV [2]. On the other hand, us-
ing the uncertainty principle, we obtain an upper limit on the
photon rest mass equal to 10−34GeV , which is found by as-
suming that the universe is 1010 years old [3]. Nonetheless,
the relevant question, from a theoretical point of view, is that
a nonvanishing value for the photon mass is incompatible
with Maxwell electrodynamics.

So, we can ask ourselves whether or not it would be pos-
sible to construct a gauge-invariant electrodynamics, such as
Maxwell one, but in which a massive photon could be ac-
commodated. At first sight, it seems that the Proca theory
[4], described by the Lagrangian

L =−1
4

FµνFµν +
1
2

m2AµAµ, (2)

where Fµν = ∂µAν− ∂νAµ, fulfills the aforementioned re-
quirements. Lagrangian (2) leads to massive dispersion re-
lations for the gauge boson, implying in a Yukawa potential
in the static case. Since this potential has a finite range, the
electron self-energy is finite [1]. Besides, Proca electrody-
namics is Lorentz invariant. However, gauge invariance is
lost, which is certainly undesirable since, as a consequence,
this model would be in disagreement with the predictions of
the Standard Model SU (3)×SU (2)×U (1) [5].

Other alternative models, such as the Chern-Simons [6]
and the Podolsky [7] ones, can be constructed in the same
vein.

In the Chern-Simons electrodynamics a coupling between
the gauge field and the field strength is introduced into the
Lagrangian through the Levi-Civita tensor. This coupling
yelds a massive dispersion relation for the gauge field. As
a result of this mechanism, a massive photon is generated.
Nevertheless, the mentioned mechanism explicitly breaks the
Lorentz invariance in four dimensions, unless a 2-form gauge
field is also introduced that mixes up with the Maxwell po-
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tential. In odd dimensions, however, this model is simulta-
neously Lorentz and gauge invariant.

Podolsky electrodynamics, on the other hand, seems more
interesting in comparison to the above cited models since
it can accomaddate a massive photon without violating the
Lorentz and gauge symmetries in (3+1)D.

There are other interesting aspects of Podolsky theory that
deserves to be exploited. For instance, within its context
magnetic monopoles and massive photons can coexist with-
out conflict. That is not the case as far as the Proca model [8]
is concerned.

The aim of this paper is precisely to discuss the issue of the
photon mass in the framework of some outstanding electro-
magnetic theories. To start off, Maxwell theory is considered
in section II. In particular, it is shown in this section that this
theory can be built up via simple and general assumptions; it
is also demonstrated that Lorentz and gauge invariance con-
strain the photon mass to be equal to zero. In section III,
we discuss the Chern-Simons theory and prove that in odd
dimensions the photon can acquire mass without breaking
the Lorentz and gauge symmetries. In section IV the Podol-
sky electromagnetic theory is analyzed. We show that within
the context of this model, massive photons are allowed while
the Lorentz and gauge symmetries are preserved. It is worth
mentioning that the approach to the Podolsky model we have
taken in this paper may be regarded as an alternative method
to those employed by A. Accioly [9] and H. Torres-Silva
[10].

2. MAXWELL ELECTRODYNAMICS

We shall construct Maxwell electrodynamics based
on the following three assumptions:

(i)Lorentz invariance holds.
(ii)There exists a Lagrangian L for the theory which is a

functional of the electron and photon fields, as well as of
their first derivatives, namely,

L = L (ψ,∂µψ;Aµ,∂µAν) . (3)

(iii)L is invariant under a local gauge transformation.
In this spirit, we consider the following gauge transforma-

tions with respect, respectively, to the bosonic field

Aµ → A′µ = Aµ +∂µβ(x) , δAµ = ∂µβ, (4)

and the matter field

ψ → ψ
′ = exp(ieβ)ψ, δψ = ieβψ. (5)

In the above equations β is a local gauge parameter, β =
β(x).

The requirement of the invariance of the Lagrangian with
respect to these transformations, δgaugeL = 0, yields

∂L
∂ψ

(ieψ)β+
∂L

∂(∂µψ)
(ieψ)∂µβ+

∂L
∂(∂µψ)

(ie∂µψ)β

+
∂L
∂Aµ

(∂µβ)+
∂L

∂(∂µAν)
(∂µ∂νβ) = 0. (6)

Now, since β is an arbitrary parameter, we promptly obtain

∂L
∂ψ

(ieψ)+
∂L

∂(∂µψ)
(ie∂µψ) = 0. (7)

Using the Euler-Lagrange equations for the ψ field in the
above expression, we then find

∂µ

[
ie

∂L
∂(∂µψ)

ψ

]
= 0. (8)

This result clearly shows there exists a Noetherian vector cur-
rent associated to the gauge symmetry

jµ ≡ ∂L
∂(∂µψ)

(ieψ) , (9)

which is conserved (∂µ jµ = 0).
On the other hand, to first-order in β derivatives, we have[

∂L
∂(∂µψ)

ieψ

]
+

∂L
∂Aµ

= 0, (10)

which can be written as

∂L
∂Aµ

=− jµ. (11)

This relation tells us how the gauge field must be coupled
to a conserved current in the Lagrangian.

Finally, the second-order derivative terms in the gauge pa-
rameter yield the condition

(∂µ∂νβ)
∂L

∂(∂µAν)
= 0, (12)

which implies that the symmetric part of the derivative term
in the Lagrangian must be null, i.e,

∂L
∂
[
∂(µAν)

] = 0. (13)

Thus, we can write

∂L
∂
[
∂[µAν]

] = Hµν, (14)

where Hµν is a totally antisymmetric rank-two tensor. Here

∂[µAν] ≡ ∂µAν−∂νAµ, (15)

∂(µAν) ≡ ∂µAν +∂νAµ. (16)

Consequently, the bosonic sector of the Lagrangian is
given by

L = a∂[µAν]H
µν +b jµAµ. (17)

The first term in Eq. (17) is related to the vector field only,
and must be bilinear in Aµ. As a consequence, one of the
Lorentz indices of Hµν must necessarily be associated to the
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gauge field. The simplest choice for the kinetic term, which
is quadratic in ∂µAν, is

Hµν = ∂[µAν], (18)

i.e., the tensor Hµν can be identified with the usual electro-
magnetic field strength Fµν. Taking this into account, the
corresponding Lagrangian can be written in the general form

L =aFµνFµν +b jµAµ, (19)

where a and b are arbitrary constants. By analyzing the equa-
tions of motion related to (17), it is trivial to see that a conve-
nient choice for these constants is a =− 1

4 and b = 1, which
allows us to write

L =−1
4

FµνFµν + jµAµ, (20)

which is nothing but Maxwell Lagrangian.
The field Aµ in (18) is massless. This raises the interesting

question: Could we have chosen the tensor Hµν such that it
contained a gauge-invariant mass term related to Aµ, besides
the massless term? Since in the selection of the early Hµν we
have excluded the possibility that Aµ could be massive, this
is a pertinent question. Let us then discuss this possibility.

The kinetic part of the gauge field in the Lagrangian, as
commented above, must have the general form

L α ∂[µAν]H
µν. (21)

In other words, Hµν must be a function of Aµ and its first
derivatives only. Therefore, Hµν can be written in the alter-
native form

Hµν = Fµν +hµν , (22)

where, obviously, hµν is an antisymmetric tensor. Accord-
ingly,

hµν = ε
µναβ (?)

α
Aβ, (23)

where εµναβ is the Levi-Civita tensor and the quantity (?)
α

is a Lorentz vector to be determined. There are two possi-
bilities to be considered. The first one is to assume that the
mentioned quantity is a constant vector, which implies that
it would play the role of a fundamental quantity of nature.
In this case, the aforementioned constant vector would sin-
gle out a special direction in space-time leading, as a conse-
quence, to a breaking of the Lorentz symmetry. The remain-
ing choice is (?)

α
= ∂α, which would imply that the searched

quantity should be proportional to the electromagnetic field-
strength, hµν α Fµν. Thus, we come to the conclusion that
the gauge field is massless due to the two very general as-
sumptions considered in the construction of the Lagrangian,
in addition to the Lorentz invariance.

3. CHERN-SIMONS ELECTRODYNAMICS

In the preceding section we concluded that a La-
grangian which is a functional of the electron and photon

fields, as well as of their first derivatives and, besides, is
invariant under local gauge transformations and consistent
with the Lorentz symmetry, confers a massless character to
the vector field. Our proof, however, relied upon the fact
that the space-time was endowed with (3 + 1) dimensions.
Yet, it is possible to show that in odd dimensional space-
times the form of the antisymmetric tensor Hµν need not be
proportional to Fµν only. That is the case of the so-called
Chern-Simons electrodynamics. In order to obtain the La-
grangian corresponding to this theory we suppose that the
same assumptions utilized in the construction of the Maxwell
theory still hold. As long as the quantity Hµν is concerned,
we consider another alternative: the space-time has (2+1)di-
mensions (in particular). In such a case we have to construct
an antisymmetric tensor (hµν). This quantity can now be ex-
pressed as follows

hµν = ε
µναAα. (24)

A Lorentz invariant term can be then constructed by contract-
ing this term with the usual electromagnetic tensor Fµν. This
means that the Lagrangian can be written in the form

L α aFµνFµν +bε
µναFµνAα, (25)

where a and b are arbitrary constants. Here b has dimension
of mass.

The above result may be extended to any odd dimension,
because we can always construct the Chern-Simons term
through the contraction of a field with n Lorentz indices with
its field-strength containing n + 1 indices. The Levi-Civita
tensor, on the other hand, will have 2n + 1 indices. For in-
stance, in a 5-dimensional space time, we have

Chern-Simons term = ε
µνλαβBµνHλαβ, (26)

with

Hλαβ = ∂λBαβ +∂αBβλ +∂βBλα. (27)

We remark that we have only considered gauge 1−forms
to build the Chern-Simons term; nevertheless, it is also pos-
sible to use a gauge 2−form (the so called ”BF ” term(
εµνκλBµνFκλ

)
) to accomplish this goal. However, in order

to avoid the introduction of new degrees of freedom [11], we
have opted in this paper to work in the Chern-Simons sce-
nario.

4. PODOLSKY ELECTRODYNAMICS

In the preceding sections, we have found that in
(1+3)D the vector gauge field is massless as a consequence
of the very general assumptions made in order to build the
associated Lagrangian. That is not the case whenever odd
dimensional space-times are concerned. Indeed, in these
space-times a mass term for the vector field is allowed. We
are now ready to focus on the issue theme of this work, i.e.,
the question of whether or not massive photons can be ac-
commodated in the context of a gauge-invariant electromag-
netic theory in (3 + 1)D. To do that, we shall relax one of
the assumptions made in the construction of the preceding
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electrodynamics, namely, the one that forbids the presence
of higher derivatives of the gauge field in the Lagrangian.
As a result, the gauge sector will be altered while the matter
contribution remains unchanged. To be more explicit, let us
suppose that the Lagrangian is as follows

L = L (ψ,∂µψ;Aµ,∂νAµ,∂λ∂µAν) . (28)

Imposing now that (26) is invariant with respect to the trans-
formations (4) and (5) yields

∂L
∂ψ

(ieβψ)+
∂L

∂(∂µψ)
[ie(∂µβ)ψ]+

∂L
∂(∂µψ)

(ieβ∂µψ)

+
∂L
∂Aµ

(∂µβ)

+
∂L

∂(∂µAν)
(∂µ∂νβ)+

∂L
∂(∂λ∂µAν)

(∂λ∂µ∂νβ) = 0. (29)

Noting, as it was expected, that the lower-order terms in
the gauge parameter β have not changed, we come to the
conclusion that the conditions (9), (11) and (14) will not be
altered. The term with third order derivatives, on the other
hand, tells us that

∂L
∂(∂µ∂νAλ)

(∂λ∂µ∂νβ) = 0. (30)

A possible solution to (27), is(
∂

λFµν

)
Gλµν,

where the quantity G cannot be symmetric with respect to
all its indices due to the Lorentz invariance. Actually, Gµνλ

must be antisymmetric in the last two indices, i.e., Gµνλ =
Gµ[νλ] so that we may identify ∂L

∂(∂λ∂[µAν])
with Gλ[µν]. As a

consequence,

∂L
∂
(
∂λ∂[µAν]

) = Gλ[µν], (31)

where

Gλ[µν] = Gλµν−Gλνµ.

Therefore, the corresponding Lagrangian must have the
general form

L = aFµνFµν +b
(

∂
λFµν

)
Gλ[µν] + c jµAµ. (32)

The functional above is a function of Aµ, ∂µAν and ∂µ∂νAλ.
Now, since the second derivatives, ∂µ∂ν, commute, the an-
tisymmetric part of Gλ[µν] must be constructed with first
derivatives of the field Aµ only. Since the term

(
∂λFµν

)
Gλ[µν]

must be quadratic in the gauge field, the remaining index of
Gλ[µν] will be identified with the first derivative of the an-
tisymmetric part of the aforementioned tensor. This means
that the quantity Gλ[µν] is nothing but the derivative of the
usual field-strength tensor. Hence, the Lagrangian is given
by

L =−1
4

FµνFµν +
b2

4

(
∂

λFµν

)
∂λFµν + jµAµ, (33)

where judicious values for the arbitrary constants were cho-
sen. The above Lagrangian is known as the Podolsky La-
grangian. Here b is a constant with dimension of (mass)−1.

Now, in order not to conflict with well-established results
of QED, the parameter b must be very small, which implies
that the massive photon, unlike what is claimed in the lit-
erature, is a heavy photon. Indeed, recently, Accioly and
Scatena [12] found that its mass is ∼ 42GeV , which is of
the same order of magnitude as the mass of the W (Z) boson
[13]. This is an interesting coincidence.

To conclude, we call attention to the fact that Podolsky
theory plays a fundamental role in the discussion about the
issue of the compatibility between magnetic monopoles and
massive photons.
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