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We consider a two-dimensional conformal field theory which contains two kinds of the bosonic degrees of
freedom. Two linear dilaton fields enable us to study a more general case. Various properties of the model such
as OPEs, central charge, conformal properties of the fields and associated algebras will be studied.
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1. INTRODUCTION

Among the various conformal field theories (CFTs) the
linear dilaton CFT has some interesting applications in the
string theory, e.g. see [1–6]. In this CFT, modification of the
energy-momentum tensor was anticipated by a linear dila-
ton field. This CFT significantly changes the behavior of the
worldsheet theory. In addition, this CFT is a consistent way
for reducing the spacetime dimension without compactifica-
tion. The linear dilaton CFT also appears as an ingredient in
many string backgrounds, critical and non-critical. Accord-
ing to its importance we proceed to develop it.

In this paper we consider an action which is generaliza-
tion of the bosonic part of the N = 2 superstring theory. In
addition, we introduce two linear dilaton fields to build our
model. Thus, we study a conformally invariant field theory
in two flat dimensions. Anticipating to the string theory, we
refer to these two dimensions as the string worldsheet. Vari-
ous OPEs of the model will be calculated. Due to the dilaton
fields, some of these OPEs, and also conformal transforma-
tions of the worldsheet fields Xµ(σ,τ) and Y µ(σ,τ) have de-
viations from the standard forms. Presence of some param-
eters in the central charge enables us to receive a desirable
dimension for the spacetime. The algebra of the oscillators
reveals that the oscillators of X-fields do not commute with
that of Y -fields.

This paper is organized as follows. In section 2, we shall
introduce the action of the model and the linear dilatonic
energy-momentum tensor associated to it. In section 3, var-
ious OPEs of the model will be studied. In section 4, con-
formal transformations of the worldsheet fields will be ob-
tained. In section 5, various quantities will be expressed in
terms of the oscillators, and two algebras for the model will
be obtained. Section 6 is devoted for the conclusions.

2. THE MODEL

We begin with the action of the scalar fields Xµ(z, z̄) and
Y µ(z, z̄) in two dimensions

S =
1

2πα′

∫
d2z(∂zXµ

∂z̄Xµ +β∂zY µ
∂z̄Yµ

+ λ(∂zXµ
∂z̄Yµ +∂z̄Xµ

∂zYµ)), (1)

where µ ∈ {0,1, ...,D− 1} and β and λ are constants, i.e.
independent of z and z̄. For the spacetime we consider the
flat Minkowski metric ηµν = diag(−1,1, ...,1). The special
case β = 1 and λ = 0 indicates the bosonic part of the N = 2
super-conformal field theory. Thus, we say the set {Xµ} de-
scribes the spacetime coordinates. In other words, Xµ(σ,τ)
is regarded as the embedding of the worldsheet in the space-
time. However, Y µ(σ,τ) enters essentially in the same way.
So the set {Y µ(σ,τ)} does not describe additional dimen-
sions. The conformal invariance of this action, i.e. symmetry
under the conformal transformations z→ z′(z) and z̄→ z̄′(z̄),
leads to the zero conformal weights for the fields Xµ and Y µ.

The equations of motion, extracted from the action (1), are

∂z∂z̄Xµ +λ∂z∂z̄Y µ = 0,

λ∂z∂z̄Xµ +β∂z∂z̄Y µ = 0. (2)

We assume that the determinant of the coefficients of these
equations to be nonzero i.e.,

det
(

1 λ

λ β

)
= β−λ

2 6= 0. (3)

Therefore, we obtain

∂z∂z̄Xµ = 0,

∂z∂z̄Y µ = 0. (4)

These imply ∂zXµ and ∂zY µ are functions of z, and ∂z̄Xµ and
∂z̄Y µ are functions of z̄.

The corresponding energy-momentum tensor has the com-
ponents
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T ′zz ≡ T ′(z) =− 1
α′

(: ∂zXµ
∂zXµ : +β : ∂zY µ

∂zYµ : +λ : ∂zXµ
∂zYµ : +λ : ∂zY µ

∂zXµ :),

T ′z̄z̄ ≡ T̃ ′(z̄) =− 1
α′

(: ∂z̄Xµ
∂z̄Xµ : +β : ∂z̄Y µ

∂z̄Yµ : +λ : ∂z̄Xµ
∂z̄Yµ : +λ : ∂z̄Y µ

∂z̄Xµ :) ,

T ′zz̄ = T ′z̄z = 0, (5)

where : : denotes normal ordering.
It is possible to construct a more general CFT with the

same action (1), but with different energy-momentum tensor

T (z) = Λi j : ∂zX
µ
i ∂zX jµ : +V i

µ∂
2
z Xµ

i ,

T̃ (z̄) = Λi j : ∂z̄X
µ
i ∂z̄X jµ : +V i

µ∂
2
z̄ Xµ

i ,

Tzz̄ = Tz̄z = 0, (6)

where sum over i and j is assumed with i, j ∈ {1,2}. We
define

Xµ
1 = Xµ , Xµ

2 = Y µ,

V 1
µ = Vµ , V 2

µ = Uµ,

Λ =− 1
α′

(
1 λ

λ β

)
. (7)

The vectors V µ and Uµ are fixed in the spacetime. For each
pair of these vectors we have a CFT. The extra terms in (6)

are total derivatives. Thus, we shall see that they do not affect
the status of T (z) and T̃ (z̄) as generators of conformal trans-
formations. The field Φ =VµXµ in (6) is linear dilaton. In the
same way Φ′ = UµY µ is a linear field in the Y-space. In fact,
by introducing the worldsheet fields {Y µ(σ,τ)} and defining
the energy-momentum tensor (6), we have generalized the
linear dilaton CFT. The case β = 1 and λ = 0 decomposes
the model to two copies of the linear dilaton CFT.

3. OPERATOR PRODUCT EXPANSIONS (OPES)

3.1. The OPEs XX , XY and YY

We use the path integral formalism to derive operator
equations. Since the path integral of a total derivative is zero,
we have the equation

0 =
∫

DXDY
δ

δXµ(z, z̄)

[
e−SXν(w, w̄)...

]
=

∫
DXDYe−S

[(
1

πα′
∂z∂z̄[Xµ(z, z̄)+λY µ(z, z̄)]Xν(w, w̄)+η

µν
δ

(2)(z−w, z̄− w̄)
)

...

]
= 〈
(

1
πα′

∂z∂z̄[Xµ(z, z̄)+λY µ(z, z̄)]Xν(w, w̄)+η
µν

δ
(2)(z−w, z̄− w̄)

)
...〉. (8)

The point (w, w̄) might be coincident with (z, z̄), but the in-
sertion “...” is arbitrary, which is away from (z, z̄) and (w, w̄).
Arbitraryness of the insertion implies

1
πα′

∂z∂z̄[Xµ(z, z̄)+λY µ(z, z̄)]Xν(w, w̄)

=−η
µν

δ
(2)(z−w, z̄− w̄), (9)

as an operator equation. In the same way, the equation

∫
DXDY

δ

δXµ(z, z̄)

[
e−SY ν(w, w̄)...

]
= 0, (10)

gives the operator equation

∂z∂z̄[Xµ(z, z̄)+λY µ(z, z̄)]Y ν(w, w̄) = 0. (11)

In the equation (10) change Xµ to Yµ, we obtain

1
πα′

∂z∂z̄[λXµ(z, z̄)+βY µ(z, z̄)]Y ν(w, w̄)

=−η
µν

δ
(2)(z−w, z̄− w̄). (12)

Similarly, in the first line of (8) replacing Xµ by Yµ leads to

∂z∂z̄[λXµ(z, z̄)+βY µ(z, z̄)]Xν(w, w̄) = 0. (13)
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The equations (9), (11), (12) and (13) give the following
equations

∂z∂z̄Xµ(z, z̄)Xν(w, w̄) =− πβα′

β−λ2 η
µν

δ
(2)(z−w, z̄− w̄),

∂z∂z̄Y µ(z, z̄)Xν(w, w̄) =
πλα′

β−λ2 η
µν

δ
(2)(z−w, z̄− w̄),

∂z∂z̄Xµ(z, z̄)Y ν(w, w̄) =
πλα′

β−λ2 η
µν

δ
(2)(z−w, z̄− w̄),

∂z∂z̄Y µ(z, z̄)Y ν(w, w̄) =− πα′

β−λ2 η
µν

δ
(2)(z−w, z̄− w̄).

(14)

That is, the equations of motion (4) hold except at the co-
incident point (z, z̄) = (w, w̄). Define the matrix Qi j as in the
following

Q =
α′

2(β−λ2)

(
β −λ

−λ 1

)
. (15)

Thus, the equations (14) can be written in the compact form

∂z∂z̄X
µ
i (z, z̄)Xν

j (w, w̄) =−2πQi jη
µν

δ
(2)(z−w, z̄− w̄). (16)

According to this, we have the normal ordered equation

: Xµ
i (z, z̄)Xν

j (w, w̄) := Xµ
i (z, z̄)Xν

j (w, w̄)+Qi jη
µν ln |z−w|2,

(17)

where ∂z∂z̄ ln |z−w|2 = 2πδ(2)(z−w, z̄− w̄) has been used.
The equation (16) and (17) indicate the equation of motion

∂z∂z̄ : Xµ
i (z, z̄)Xν

j (w, w̄) := 0. (18)

3.2. The T T OPE

Let F be any functional of {Xµ} and {Y µ}. Thus, the
generalization of (17) is defined by

F [X ,Y ] = exp
(
− 1

2
Qi j

∫
d2z1d2z2 ln |z1− z2|2

δ

δXµ
i (z1, z̄1)

δ

δX jµ(z2, z̄2)

)
: F [X ,Y ] : . (19)

The OPE for any pair of the operators F and G is given by

: F :: G := exp
(
−Qi j

∫
d2z1d2z2 ln |z1− z2|2

δ

δXµ
iF(z1, z̄1)

δ

δX j
µG(z2, z̄2)

)
: F G : , (20)

where the functional derivatives act only on the fields F or
G , respectively. For F = Xµ

i (z, z̄) and G = Xν
j (w, w̄) this

reduces to the equation (17), as expected.
Using the equation (20), we obtain

: ∂zX
µ
i (z)∂zX jµ(z) :: ∂wXν

k (w)∂wXlν(w) :=

: ∂zX
µ
i (z)∂zX jµ(z)∂wXν

k (w)∂wXlν(w) : +
D

(z−w)4 (QikQ jl +QilQ jk)

− 1
(z−w)2

(
Qik : ∂zX

µ
j (z)∂wXlµ(w) : +Qil : ∂zX

µ
j (z)∂wXkµ(w) :

+Q jk : ∂zX
µ
i (z)∂wXlµ(w) : +Q jl : ∂zX

µ
i (z)∂wXkµ(w) :

)
. (21)

Now the Taylor expansion of ∂zX
µ
i (z) around z = w changes

this equation to
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: ∂zX
µ
i (z)∂zX jµ(z) :: ∂wXν

k (w)∂wXlν(w) :∼ D
(z−w)4 (QikQ jl +QilQ jk)

− 1
(z−w)2

(
Qik : ∂wXµ

j (w)∂wXlµ(w) : +Qil : ∂wXµ
j (w)∂wXkµ(w) :

+Q jk : ∂wXµ
i (w)∂wXlµ(w) : +Q jl : ∂wXµ

i (w)∂wXkµ(w) :
)

− 1
z−w

(
Qik : ∂

2
wXµ

j (w)∂wXlµ(w) : +Qil : ∂
2
wXµ

j (w)∂wXkµ(w) :

+Q jk : ∂
2
wXµ

i (w)∂wXlµ(w) : +Q jl : ∂
2
wXµ

i (w)∂wXkµ(w) :
)

, (22)

where the non-singular terms have been omitted. For calcu-
lating the T T OPE we also need the following OPEs

: ∂zXν
i (z)∂zX jν(z) : ∂

2
wXµ

k (w)∼

− 2
(z−w)3 (Qik∂wXµ

j (w)+Q jk∂wXµ
i (w))

− 2
(z−w)2 (Qik∂

2
wXµ

j (w)+Q jk∂
2
wXµ

i (w))

− 1
z−w

(Qik∂
3
wXµ

j (w)+Q jk∂
3
wXµ

i (w)), (23)

∂
2
z Xµ

k (z) : ∂wXν
i (w)∂wX jν(w) :

∼ 2
(z−w)3 (Qki∂wXµ

j (w)+Qk j∂wXµ
i (w)), (24)

∂
2
z Xµ

i (z)∂2
wXν

j (w)∼ 6
(z−w)4 η

µνQi j. (25)

Adding all these together we obtain the T T OPE as in the
following

T (z)T (w)∼ c
2(z−w)4 −

1
(z−w)2

[
2Λi jV k

µ

(
Qik∂

2
wXµ

j (w)+Q jk∂
2
wXµ

i (w)
)

+Λi jΛkl

(
Qik∂wX jµ(w)∂wXµ

l (w)+Qil∂wX jµ(w)∂wXµ
k (w)

+Q jk∂wXiµ(w)∂wXµ
l (w)+Q jl∂wXiµ(w)∂wXµ

k (w)
)]

− 1
z−w

[
Λi jΛkl

(
Qik∂

2
wX jµ(w)∂wXµ

l (w)+Qil∂
2
wX jµ(w)∂wXµ

k (w)

+Q jk∂
2
wXiµ(w)∂wXµ

l (w)+Q jl∂
2
wXiµ(w)∂wXµ

k (w)
)

+Λi jV k
µ

(
Qik∂

3
wXµ

j (w)+Q jk∂
3
wXµ

i (w)
)]

. (26)

The T̃ T̃ OPE also has a similar form in terms of z̄, w̄ and c̃.
The central charges are given by

c = c̃ = 2DΛi jΛkl(QikQ jl +QilQ jk)+12Qi jV i
µV µ

j ,

= 2D+
6α′

β−λ2 (βVµV µ−2λVµUµ +UµUµ). (27)

Vanishing conformal anomaly relates the parameters of the
model. That is, string actually can move in a wide range of
the dimensions. However, by adjusting the variables β, λ, V µ

and Uµ, we can obtain desirable dimension for the spacetime.
The case V µ = Uµ = 0 gives the central charges c = c̃ = 2D,
i.e., D for {Xµ} and D for {Y µ}. If β = 1 and λ = 0, the action

(1) reduces to two copies of the free string action, and hence
the energy-momentum tensor (6) is modified to two copies
of the energy-momentum tensor of the linear dilaton CFT. In
this case the central charge also reduces to two copies of the
central charge of the linear dilaton CFT

c = cX + cY ,

cX = D+6α
′VµV µ,

cY = D+6α
′UµUµ. (28)
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Since there is ΛQ =− 1
2 I2×2, the T T OPE (26), and simi-

larly the T̃ T̃ OPE take the standard forms

T (z)T (w)∼ c
2(z−w)4 +

2
(z−w)2 T (w)+

1
z−w

∂wT (w),

T̃ (z̄)T̃ (w̄)∼ c̃
2(z̄− w̄)4 +

2
(z̄− w̄)2 T̃ (w̄)+

1
z̄− w̄

∂w̄T̃ (w̄).

(29)

According to the central charge terms, T and T̃ are not con-
formal tensors. Apart from these terms, (29) is the statement
that T (z) and T̃ (z̄) are conformal fields of the weights (2,0)

and (0,2), respectively.

3.3. The OPEs T X , TY , T̃ X and T̃Y

The OPE T Xµ
k is

T (z)Xµ
k (w, w̄)∼ 1

(z−w)2 V µ
i Qik−

1
z−w

Λi j[Qik∂wXµ
j (w)

+Q jk∂wXµ
i (w)]. (30)

Thus, for k = 1 and k = 2 we obtain

T (z)Xµ(w, w̄)∼ 1
(z−w)2

α′

2(β−λ2)
(βV µ−λUµ)+

1
z−w

∂wXµ(w),

T (z)Y µ(w, w̄)∼ 1
(z−w)2

α′

2(β−λ2)
(−λV µ +Uµ)+

1
z−w

∂wY µ(w). (31)

In the same way we have

T̃ (z̄)Xµ(w, w̄)∼ 1
(z̄− w̄)2

α′

2(β−λ2)
(βV µ−λUµ)+

1
z̄− w̄

∂w̄Xµ(w̄),

T̃ (z̄)Y µ(w, w̄)∼ 1
(z̄− w̄)2

α′

2(β−λ2)
(−λV µ +Uµ)+

1
z̄− w̄

∂w̄Y µ(w̄). (32)

The U-terms and V -terms imply that Xµ and Y µ are not
conformal tensor operators. Putting away these terms (the
square singular terms) of the above OPEs leads to the condi-
tions

βV µ−λUµ = 0,

−λV µ +Uµ = 0. (33)

Since we assumed β− λ2 6= 0, we obtain V µ = Uµ = 0.
Therefore, (31) and (32) reduce to the OPEs T ′X , T ′Y , T̃ ′X
and T̃ ′Y . That is, with T ′ and T̃ ′ the fields Xµ and Y µ are con-
formal tensors, as expected. However, we shall not consider
the case (33).

4. CONFORMAL TRANSFORMATIONS OF Xµ AND Y µ

The infinitesimal conformal transformations z→ z′ = z +
εg(z) and z̄→ z̄′ = z̄+ εg(z)∗ imply the currents

j(z) = ig(z)T (z),
j̃(z̄) = ig(z)∗T̃ (z̄). (34)

For any holomorphic function g(z) these are conserved.
These currents lead to the Ward identity

δXµ
i (w, w̄) =−ε

(
Resz→wg(z)T (z)Xµ

i (w, w̄)+ ¯Resz̄→w̄g(z)∗T̃ (z̄)Xµ
i (w, w̄)

)
, (35)

where “Res” and “ ¯Res” are coefficients of (z−w)−1 and (z̄−
w̄)−1, respectively. From the OPEs (31) and (32) and the

Ward identity (35) we obtain the conformal transformations

δXµ(w, w̄) =−ε[g(w)∂wXµ(w)+g(w)∗∂w̄Xµ(w̄)]

− α′ε

2(β−λ2)
(βV µ−λUµ)[∂wg(w)+∂w̄g(w)∗], (36)
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δY µ(w, w̄) =−ε[g(w)∂wY µ(w)+g(w)∗∂w̄Y µ(w̄)]

− α′ε

2(β−λ2)
(−λV µ +Uµ)[∂wg(w)+∂w̄g(w)∗]. (37)

Due to the inhomogeneous parts, originated from V µ, Uµ, β

and λ, the fields Xµ and Y µ do not transform as conformal
tensor. These parts also indicate that these transformations
are not infinitesimal coordinate transformations δz = εg(z)

and δz̄ = εg(z)∗.

5. MODE EXPANSIONS

Now we express some quantities of the model in terms of
the oscillators of Xµ and Y µ. The OPEs (31) and (32) give

T (z)∂wXµ(w)∼ 1
(z−w)3

α′

β−λ2 (βV µ−λUµ)+
1

(z−w)2 ∂wXµ(w)+
1

z−w
∂

2
wXµ(w),

T̃ (z̄)∂wXµ(w)∼ 0, (38)

T (z)∂wY µ(w)∼ 1
(z−w)3

α′

β−λ2 (−λV µ +Uµ)

+
1

(z−w)2 ∂wY µ(w)+
1

z−w
∂

2
wY µ(w),

T̃ (z̄)∂wY µ(w)∼ 0. (39)

Thus, the conformal weights of ∂zXµ(z) and ∂zY µ(z) are

h∂X = 1 , h̃∂X = 0,

h∂Y = 1 , h̃∂Y = 0. (40)

According to these conformal weights, we obtain the Laurent
expansions

∂zX
µ
i (z) =−i

√
α′

2

∞

∑
m=−∞

α
µ
(i)m

zm+1 ,

∂z̄X
µ
i (z̄) =−i

√
α′

2

∞

∑
m=−∞

α̃
µ
(i)m

z̄m+1 . (41)

Single-valuedness of Xµ and Y µ implies that

α
µ
(i)0 = α̃

µ
(i)0 =

√
α′

2
pµ

i , (42)

where pµ
i is the linear momentum. Now integration of the

expansions (41) gives the closed string solution

Xµ
i (z, z̄) = xµ

i − i
α′

2
pµ

i ln |z|2 + i

√
α′

2

∞

∑
m6=0

1
m

×
(

α
µ
(i)m

zm +
α̃

µ
(i)m

z̄m

)
. (43)

Reality of Xµ
i implies that α

µ†
(i)m = α

µ
(i)(−m) and α̃

µ†
(i)m =

α̃
µ
(i)(−m).

The expansions (41) also lead to

α
µ
(i)m =

√
2
α′

∮
C

dz
2π

zm
∂zX

µ
i (z),

α̃
µ
(i)m =−

√
2
α′

∮
C̃

dz̄
2π

z̄m
∂z̄X

µ
i (z̄), (44)

where C in the z-plane and C̃ in the z̄-plane are counterclock-
wise. Therefore, by using the OPEs ∂zX

µ
i (z)∂wXν

j (w) and
∂z̄X

µ
i (z̄)∂w̄Xν

j (w̄) we obtain

[αµ
(i)m,αν

( j)n] = [α̃µ
(i)m, α̃ν

( j)n] =
2
α′

mη
µνQi jδm,−n,

[αµ
(i)m, α̃ν

( j)n] = 0,

[xµ
i , pν

j ] =
2i
α′

η
µνQi j. (45)

For λ 6= 0 we observe that the oscillators of Xµ do not com-
mute with the oscillators of Y µ.

In terms of the oscillators the nonzero elements of the
energy-momentum tensor find the forms

T (z) =−α′

2
ηµνΛi j

∞

∑
m=−∞

∞

∑
n=−∞

1
zm+n+2 : α

µ
(i)mα

ν

( j)n : +i

√
α′

2
V i

µ

∞

∑
m=−∞

m+1
zm+2 α

µ
(i)m,

T̃ (z̄) =−α′

2
ηµνΛi j

∞

∑
m=−∞

∞

∑
n=−∞

1
z̄m+n+2 : α̃

µ
(i)mα̃

ν

( j)n : +i

√
α′

2
V i

µ

∞

∑
m=−∞

m+1
z̄m+2 α̃

µ
(i)m. (46)
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The Virasoro operators are

Lm =
∮

C

dz
2πi

zm+1T (z),

L̃m =
∮

C̃

dz̄
2πi

z̄m+1T̃ (z̄). (47)

In terms of the oscillators they take the forms

Lm =−α′

2
Λi jηµν

∞

∑
n=−∞

: α
µ
(i)m−nα

ν

( j)n : +i

√
α′

2
(m+1)V i

µα
µ
(i)m,

L̃m =−α′

2
Λi jηµν

∞

∑
n=−∞

: α̃
µ
(i)m−nα̃

ν

( j)n : +i

√
α′

2
(m+1)V i

µα̃
µ
(i)m. (48)

Using the standard methods one can show that the normal
ordering constant for all Lm and L̃m is zero. According to
the equations (45), or the standard form of the OPEs T T and
T̃ T̃ , i.e. the equations (29), the Virasoro algebra also has the
standard form

[Lm,Ln] = (m−n)Lm+n +
c

12
(m3−m)δm,−n,

[L̃m, L̃n] = (m−n)L̃m+n +
c̃

12
(m3−m)δm,−n,

[Lm, L̃n] = 0. (49)

The Hamiltonian of the system is given by

H = L0 + L̃0−
c+ c̃
24

. (50)

Thus, the equations (27) and (48) express this Hamiltonian
in terms of the oscillators and the parameters of the model

H =
1
2

α
′(p1.p1 +2λp1.p2 +βp2.p2 +2iV.p1 +2iU.p2)

−α
′
Λi jηµν

∞

∑
n=1

(αµ
(i)(−n)α

ν

( j)n + α̃
µ
(i)(−n)α̃

ν

( j)n)

− α′

2(β−λ2)
(βV.V −2λV.U +U.U)− D

6
, (51)

where the symmetry of ηµν and Λi j were introduced.
For the open string there are

α
µ
(i)m = α̃

µ
(i)m , α

µ
(i)0 = α̃

µ
(i)0 =

√
2α′pµ

i , (52)

and hence the solution is

Xµ
i (z, z̄) = xµ

i − iα′pµ
i ln |z|2 + i

√
α′

2

∞

∑
m 6=0

α
µ
(i)m

m

(
1
zm +

1
z̄m

)
.(53)

The corresponding energy-momentum tensor and Virasoro
operators are given by the first equations of (46) and (48).
Thus, the associated Virasoro algebra also is described by
the first equation of (49).

Note that we imposed the boundary conditions of the
closed string and open string on Y µ(σ,τ). However,

Y µ(σ,τ) may be neither closed nor open. Assuming
closeness or openness for Y µ(σ,τ), the worldsheet fields
(Xµ(σ,τ) ,Y µ(σ,τ)) find four configurations: (closed ,
closed), (open , open), (open , closed) and (closed , open).
We considered the first and the second cases. The third and
the fourth cases also can be investigated in the same way.

6. CONCLUSIONS AND SUMMARY

We studied a CFT model with two kinds of the bosonic de-
grees of freedom Xµ and Y µ, which interact kinetically with
each other. For each kind of these fields we introduced a
linear dilaton field.

Using the path integral formalism, we obtained the OPEs
XX , XY and YY . These OPEs enabled us to introduce a gen-
eral definition for the OPEs. We observed that the T T and
T̃ T̃ OPEs of the model have the standard forms. Due to the
vectors V µ and Uµ, which define the dilatons, the OPEs T X ,
TY , T̃ X and T̃Y have deviations from the standard forms of
them. The central charge of the model depends on the space-
time dimension, the parameters of the theory and the vectors
V µ and Uµ. A vanishing conformal anomaly and hence a
desirable dimension for the spacetime can be achieved by
tuning these variables.

Putting away the interacting terms of the action, the model
split into two copies of the linear dilaton CFT. The splitting
also occurs for the energy-momentum tensor and hence for
the central charge.

Using the conserved currents, associated to the conformal
symmetry, the conformal transformations of the fields Xµ and
Y µ have been extracted. Therefore, the vectors V µ and Uµ

and also the parameters of the model indicate that Xµ and Y µ

are not conformal tensors. That is, these transformations are
not pure coordinate transformations.

According to the mode expansions of Xµ and Y µ, we
obtained the oscillator-algebra of the model. Due to the
nonzero coupling constant λ the oscillators of Xµ do not com-
mute with the oscillators of Y µ. We expressed the energy-
momentum tensor and the Virasoro operators in terms of the
oscillators. We observed that the Virasoro operators also
form the standard algebra.
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