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Ion-Polymer Interaction Analysis: an Inversion Of NMR Spin Echo Experimental Data
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A methodology for ion-polymer interaction estimation is discussed in the present work. This method is based
on the inversion of experimental spin echo NMR data using Hopfield neural network to retrieve transverse re-
laxation time distributions. The adopted model systems consist of aqueous solutions of poly (ethylene oxide),
molar mass 1500, 4000 and 35000 g mol−1 and sodium nitroprusside (NP) at different concentrations. Dipolar
interaction is investigated in this work through the reduction in the transverse relaxation time and increase in
the area under the distribution curves of the PEO protons which presented a linear correlation with the NP con-
centration. Neural network results were compared with the Simplex optimization procedure and experimental
NMR values. The proposed methodology is robust, stable, non restrictive in relation to the system and more
efficient to handle experimental data.
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1. INTRODUCTION

Nuclear Magnetic Resonance (NMR) relaxometry is a
very useful tool for understanding chemical and physical
phenomena in complex multiphase systems. In special,
works in the literature confirm the transverse relaxation
function is more sensitive to structural changes than the
spin-lattice relaxation and self-diffusion measurements [1-
3]. Chemical environment induces the formation of isochro-
mats, a physical concept that means an infinitesimal ensem-
ble with the same frequency. The spin echo decay data can
be obtained by the Carr-Purcell-Meiboom-Gill – CPMG se-
quence pulse, which refocuses these magnetizations and ac-
quires information on molecular dynamics throughout the
transverse relaxation time, T2. This important parameter can
be used to indirectly measure properties of organic liquid and
soft-solid samples [4].

To analyze a sample through NMR relaxometry, it is cru-
cial to obtain a reliable deconvolution of T2 components from
the discrete and noisy decaying echo signal. This is es-
sentially an ill-conditioned inverse problem [5-9] and needs
robust mathematical treatment to be solved. Hopfield neu-
ral network, adapted to inverse problem methodology [6,7],
were used in the present work to obtain T2 distributions from
spin echo NMR experimental data [10] in aqueous solutions
of poly(ethylene oxide) and sodium nitroprusside.

Natural or synthetic water-soluble polymers are widely ap-
plied in technological areas such as biotechnology, pharma-
ceuticals and adhesives [11,12]. This number of applications
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has increased considerable, and polymers are expected to be
the main product demanded by industrially developed so-
cieties [13]. Nevertheless, the expansion of research needs
physicochemical data of macromolecular aqueous solutions,
as well as the development of models to relate experimental
data with molecular interaction parameters. This is an im-
portant step for understanding more complex formulations
requested by the numerous technical applications.

The establishment of a systematic and effective method-
ology for quantitative evaluation of ion-polymer interaction
in aqueous media is proposed in this work. This methodol-
ogy is not restricted to a specific system and provides a wide
range of applications, such as data processing in the brain
tissue for the diagnosis of multiple sclerosis [8], kinetic con-
stants inversion from absorbance measurement [14] and data
processing of scattered light [15-17].

2. THEORETICAL BACKGROUND

2.1. Relaxation process in a system of two spins

Dipole-dipole interaction consists in a spin particle I inter-
acting with a magnetic field generated by another spin parti-
cle S. The Hamiltonian of this interacting pair is [18]

H
′
=− h2

R3 γIγS [3(I ·n)(S ·n)−I ·S] (1)

where n is the unitary vector in the radial direction, γ is
the gyromagnetic ratio and R is the internuclear distance.
This term can be considered as a perturbation in the com-
plete Hamiltonian, H of a system within a magnetic field, B0,
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along the z direction. In this case, the non-perturbed Hamil-
tonian is composed by the motion of the particles, HM, and
the Zeeman energies for each spin, so that

H =HM−~B0γIIz−~B0γSSz+H
′

For spins of value 1/2, according to its magnetic moments,
the longitudinal components of IZ and SZ are

IZ |+〉 = +
1
2
|+〉

IZ |−〉 = −1
2
|−〉 (2)

SZ |+〉 = +
1
2
|+〉

SZ |−〉 = −1
2
|−〉

From this, it can be established four eigenstates
|+〉 |+〉 ; |+〉 |−〉 ; |−〉 |+〉and | −〉| −〉 with the respec-
tive population numbers N++ ; N+− ; N−+ and N−−. Tran-
sitions between these eigenstates are possible through the
transitions probabilities ω0, ω1, ω′1 and ω2 respectively, as
represented in the diagram of Figure 1.

 

FIG. 1: Diagram of transition probabilities among the eingestates
of a dipole-dipole interaction.

The longitudinal T1 relaxation time calculation was firstly
carried out by Abragam and Pound [19]. In 1955, Solomon

[18] has extended this methodology to transverse relaxation
time calculation, T 2 , by considering interacting pairs of like
spins, nuclei in paramagnetic solution and interacting unlike
spins. For this, a new basis set is defined in similarity with
the equation (2) as

Ix |α〉 = +
1
2
|α〉

Ix |β〉 = −1
2
|β〉 (3)

Sx |α〉 = +
1
2
|α〉

Sx |β〉 = −1
2
|β〉

In this base, four states
|α〉 |α〉 ; |α〉 |β〉 ; |β〉 |α〉and |β〉 |β〉 are also established,
with their occupation number Nαα ; Nαβ ; Nβα and Nββ

and transition probabilities per unit of time u0,u1,u
′
1 and u2 ,

respectively. However, these states are not eigenstates of en-
ergy and the base must be defined from its orthogonal states
expansion in the eigenvectors of energy, |+〉 and |−〉 as

|α〉=
(

1√
2

)
[ |+〉+ |−〉]

|β〉=
(

1√
2

)
[ |+〉− |−〉]

Additionally, although the basis set of equation (3) can
be assumed, the experimentally observable quantities are the
z-components of the macroscopic magnetizations, Iz and Sz,
being proportional to

(N+++N+−)−(N−++N−−)= KIz

(N+++N−+)−(N+−+N−−)= KSz (4)

To develop this equation, one can consider the kinetic pro-
cess of the eigenstates transition:

dN++

dt
=−

(
ω1+ω

′
1+ω2

)
N+++ω

′
1N+−+ω1N−++ω2N−−+c

dN+−
dt

=ω
′
1N++−

(
ω0+ω

′
1+ω1

)
N+−+ω0N−++ω1N−−+c

dN−+

dt
=ω1N+++ω0N+−−

(
ω0+ω

′
1+ω1

)
N−++ω

′
1N−−+c (5)
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dN−
dt

=ω2N+++ω1N+−+ω
′
1N−+−

(
ω1+ω

′
1+ω2

)
N−−+c

Substituting equations (5) in the derivative form of equa-
tion (4) we get:

dIZ

dt
=−(ω0+2ω1+ω2)

(
IZ−I0

)
−(ω2−ω0)(SZ−S0)

dSZ

dt
=−(ω2−ω0)

(
IZ−I0

)
−(ω0+2ω1+ω2)(SZ−S0) (6)

with I0 and S0 being the equilibrium magnetization of spins
Iand S.

For the transverse components, Ix and Sx, in the basis set
of equations (3), the calculation method is identical [18]. We
have only to substitute the probabilities of transitions and the
occupation numbers of the states, getting the equations

dIx

dt
=−(u0+2u1+u2) Ix−(u2−u0)Sx

dSx

dt
=−(u2−u0) Ix−(u0+2u1+u2)Sx (7)

In the present work, nuclei in paramagnetic solution are
studied. For this case, the relaxation process of a nu-
clear spin, I , when paired with an electronic spin, S, of
a paramagnetic ion is a consequence of the dipole-dipole
interaction, H

′
. In contrast, for the electronic spin, this pro-

cess is negligible and we have to consider Sz=S0 and Sx= 0,
which causes a simple decay in equation (7), with the relax-
ation time:

1
T2

=u0+2u1+u2 (8)

The transition probabilities are calculated by perturbation
theory in first order, as in reference [18] and the transverse
relaxation time of spins in paramagnetic solutions can be de-
scribed by

1
T2

=
h2γ2

I γ2
S

r6 τc (9)

being r the interatomic distance and τc the rotational corre-
lation time, or the characteristic time of a particle in solution
on Brownian rotation diffusion movement.

2.2. The spin echo theory

The nuclear spin angular frequency, i.e. the Larmor fre-
quency, is represented as [19,20],

ω(r) =−γB(r) (10)

in which γ is the magnetogyric ratio and B(r) the local mag-
netic field. Due to spin-spin interactions, neighboring nu-
clei have different local fields and different frequencies. The

spins can be refocused, forming an echo, by applying a hard
1800 pulse of radio-frequency after a hard 900 pulse in rela-
tion to the total magnetization vector. This experiment was
first verified by E.L. Hahn in 1949, after the initial discovery
of NMR [20]. From this experiment, two important prop-
erties can be obtained: relaxation time and diffusion coeffi-
cient [21].

Decrease of coherence produces a magnetization decaying
curve in each echo time, t, from which the transverse relax-
ation time [19-23], T2 , can be calculated. Nevertheless, dis-
tribution of T2 components reflects the several spin-spin re-
laxation processes occurring inside the matter. The concept
of T2 distribution is useful since there will be a set of isochro-
mats acting in the relaxations process. Under these theoret-
ical considerations a single T2 component is not possible, as
in equation (9), but rather its distribution. Consequently one
has to deal with multiple T2 components, resulting in a total
magnetization function [21]:

Ixy = ∑P(λi)exp(−tλi) (11)

with λi = 1/T2i, the decay rate for each process and P(λi) its
corresponding probability.

For a continuous distribution of transverse relaxation
times and the probability density function [6], f (λ) =
P(λ)/

dλ, this equation can be written as∫
K(t,λ) f (λ)dλ = I(t) (12)

in which I(t) is the signal intensity measured at the spin echo
time, t, and K(t,λ) = exp(−tλ) the kernel of the process.
Equation (12) is a Fredholm integral equation of first or-
der [20-22] used to calculate the relaxation time distribution
function by a deconvolution process. Presence of noisy in
the available data for the echo signal will make the inverse
calculation of f (λ) an inverse ill-posed problem. Therefore,
one has to use robust and stable methods to solve this kind
of problem. In this work, Hopfield neural network method-
ology was chosen [6,7].

2.3. Neural Network background

In the neural network approach, nervous impulse simula-
tion is performed applying a transfer function,φ, in the neu-
ron states, u. The activated values are propagated in the net-
work during a learning time until a convergence criteria is
reached. For this, an energy function is defined as [6]

E =
1
2

m

∑
j=1

(Pcal, j−Pexp, j)2 (13)

with Pcal and Pexp the calculated and experimental properties,
respectively.

Calculated spin echo decay curve, the Pcal property, is ob-
tained from the activated neurons, φ(u), which are changed
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TABLE 1: Sample compositions.Table 1 – Sample compositions. 

Samples Polymer  (% w/w) D2O (% w/w) NP (% w/w)  

PEO Mn 1500 
S11 9.9893 90.0106 0.0000 
S12 9.9960 89.7473 0.2566 
S13 9.9877 89.5124 0.4999 
S14 9.9940 89.2464 0.7595 

PEO Mn 4000 
S21 9.9701 90.0299 0.0000 
S22 9.9893 89.7544 0.2562 
S23 10.0090 89.4910 0.4999 
S24 10.0017 89.2385 0.7599 

PEO Mn 35000 
S31 9.9967 90.0033 0.0000 
S32 9.9907 89.7563 0.2530 
S33 9.9887 89.5114 0.4999 
S34 10.0176 89.2363 0.7460 

 

during the learning time, τ. In this case, the activated neurons
in the network represent the f(λ) curve. Thus, the derivative
of the energy function is written as, [24]

dE
dτ

=
n

∑
i=1

m

∑
j=1

(
e j

∂(Pcal) j

∂φi

∂φi

∂ui

dui

dτ

)
(14)

in which n is the number of neurons and e j = ∑
m
j=1(Pcal, j−

Pexp, j). This is also the number of points retrieved in the
transverse relaxation function f(λ) from the inversion process
of the m experimental data.

The neural network convergence is assured by the error
function decreasing with the learning time. For this, two con-
ditions in the algorithm have to be imposed. The first one is
establish

dui

dτ
=−

m

∑
j=1

∂(Pcal) j

∂φi
e j (15)

transforming (14) in

dE
dτ

=−
n

∑
i=1

∂φi

∂ui

(
dui

dτ

)2

(16)

The transfer function as an increasing function of the neu-
ron states, i.e.∂φ

/
∂u > 0, which will imply dE

dτ
< 0, is the sec-

ond condition to be assumed.
As the learning process is carried out, several solutions

are possible to be found. Nevertheless, this neural network
approach, as a consequence of the decreasing error, provides
the one which best reproduces the experimental property.

Solution of Hopfield differential equations were obtained
by integrating equations (15) using a fourth order Runge-
Kutta method [25]. From an initial guess, the stopping con-
dition of the integration process occurs if the error function
reaches the minimum value, i.e. dui

/
dτ = 0.

3. EXPERIMENTAL SECTION

To determine experimentally the relationship between the
transverse relaxation time and interaction of poly(ethylene
oxide) (PEO) and sodium nitroprusside (NP) inD2O, samples
containing different compositions of mixtures of these three
components were prepared according to Table 1.

The poly(ethylene oxide), PEO (average molecular
mass of 1500, 4000 and 35000 g mol−1), were ob-
tained from Sigma (USA). The Merck (Germany) salt,

Na2[Fe(CN)5(NO)] (99.0%) was of analytical grade and
used without any further purification. Aqueous solutions of
the polymer and nitroprusside (NP) were prepared in the con-
centrations of 10 %(w/w) in polymer and in the range of 0.00
to 0.75% (w/w) in NP. The samples were kept at 20 ◦C for 3
days before the measurements. The spin echo experimental
data were obtained on a Bruker 400 MHz NMR spectrometer
with the CPMG sequence pulse.

4. RESULTS AND DISCUSSION

The assumption of transverse relaxation time distribution
as a property to characterize the PEO-NP interaction is made
in the present work. An specific enthalpic interaction among
poly(ethylene oxide) segments and [Fe(CN)5NO]2− anion
has been demonstrated, using FTIR measurements and phase
partitioning behavior in Aqueous Two Phase Systems. [26]
The initial dipole-dipole interaction between the PEO pro-
tons is perturbed by salt addition. Since the NP salt contains
Fe (III), the electron-nucleus dipolar interaction is a more
effective mechanism, causing a reduction in relaxation time
of the PEO protons, as can be seen in equation (9). Thus,
changes in transverse relaxation time distributions of PEO
protons in aqueous medium and ionic different concentra-
tions were verified.

Four sets of experiments were performed with mixtures
composed of polymers with different molecular weights
(PEO 1500, 4000 and 35000 g mol−1) in fixed concentra-
tion of approximately 10.00% w/w and sodium nitroprusside
at different concentrations (0.00, 0.25, 0.50 and 0.75% w/w),
as described in Table 1.

The relaxation time distribution is obtained by numerical
integration of activated neuron states, equation (15), which
requires an initial condition to be solved. In this work, In-
verse Laplace Transform (ILT) [21] is used as initial guess
for the neural network inputs. Although the ILT is used in
a routine way to invert NMR echo data, its results can be
considerable improved. As shown in references [6,7,21] the
neural network has the property of reduce the residual error
in an optimization problem. Therefore, one may use the ILT
as a first approximation to obtain better results, with lower
residual errors. This will provide additional and more accu-
rate results for the experimentalists.

To check the consistency of the computational method,
simulated data is given to the network together with an exact
initial guess; in this case activated neuron states is constant
in the learning time, showing the methodology is appropri-
ate to invert the data. Stability of the Hopfield neural network
method was tested against errors in the simulated data. For
errors up to 30% this approach was able to return results in
fair agreement with the original data, showing the robustness
of this inversion process to handle experimental error.

Using experimental spin echo decay curve, one can ob-
serves in Table 2, the maximum of T2 distribution curves ob-
tained from the Hopfield neural network procedure. From
these results it is verified that as the concentration of NP in-
creases, the value of T2,max decreases. This can be attributed
to the increased strength of ion-polymer interaction, as de-
scribed in equation (9).
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TABLE 2: Transverse relaxation time and area under the
distribution function for the samples.

Table 2 – Transverse relaxation time and area under the distribution function for the 
samples. 
 

Samples Neural 
Network T2 (s) 

Area under 
peak / 10-3 Simplex T2 (s) Experimental T2 (s) 

S11 0.6095 1.185  0.5932 0.5937 
S12 0.5867 1.227 0.5730 0.5730 
S13 0.5714 1.270 0.5547 0.5544 
S14 0.5479 1.300 0.5417 0.5415 

 
S21 0.6027 1.201 0.5839 0.6004 
S22 0.5867 1.221 0.5709 0.5716 
S23 0.5633 1.258 0.5521 0.5532 
S24 0.5432 1.313 0.5299 0.5084 

     
S31 0.6027 1.187 0.5648 0.5670 
S32 0.5714 1.251 0.5620 0.5626 
S33 0.5469 1.321 0.5503 0.5506 
S34 0.5120 1.356 0.5185 0.5193  

 
 
 

TABLE 3: Neural network and Simplex error comparison for spin
echo decay adjustment.

Table 3 – Neural network and Simplex error comparison for spin echo decay 

adjustment. 

 Neural Network 
Error  

Simplex error 

PEO Mn 1500 
S11 2.110e-10 9.303e-05 
S12 2.829e-10 9.212e-05 
S13 7.301e-11 2.264e-05 
S14 2.880e-10 8.932e-05 

PEO Mn 4000 
S21 1.575e-10 1.223e-04 
S22 5.163e-10 3.430e-04 
S23 3.928e-10 2.733e-04 
S24 5.892e-10 3.247e-04 

PEO Mn 35000 
S31 4.085e-10 3.410e-04 
S32 1.968e-10 1.255e-04 
S33 2.673e-10 1.331e-04 
S34 8.277e-11 5.053e-05 

 

  TABLE 4: Linear correlation index in: (a) Relaxation time versus
NP concentration curves and (b) Area under the distribution curves

versus NP concentration.

Table 4. Linear correlation index in: (a) Relaxation time versus NP concentration 

curves and (b) Area under the distribution curves versus NP concentration. 

Sample Set r  (a) r (b) 

S1 0.9977 0.9962 

S2 0.9970 0.9796 

S3 0.9979 0.9919 

 

 

 Distribution functions calculated by the neural network
for the PEO 1500 system with 0%, 0.2566%, 0.4999% and
0.7595% NP is presented in Figure 2. Peak distributions are
appropriately described by a set of 32 neurons, which cor-
responds also the base size. Residual error is smaller if a
multiple components of T2 is adopted, as can be confirmed
in Table 3. This also indicates equation (12) is appropriate to
describe this problem, contrary to individual analysis of the
components.

Integrals over the distributions are proportional to the
number of spins in similar dynamic behavior [21,27]. In Ta-
ble 2 it is also presented the area under the distributions of
all systems. One can verify the area is directly proportional
to NP concentration. This can be attributed to the extension
of the ion-polymer interaction, once larger NP concentration
affects an equally larger number of PEO protons. Figures 3
and 4 show linear correlations among NP mass concentration
and T2 parameter and the area under the distribution func-
tions, respectively. Table 4 shows the correlation index to
this assumption.

According to Brereton et.al. [2,3], the problem formu-

FIG. 2: Neural network transverse relaxation time distribution for
PEO 1500: (+) 0% NP, (o) 0.2566% NP, (*) 0.4999% NP and (∆)
0.7595% NP.

 

FIG. 3: Transversal relaxation time and NP concentration (%w/w)
linear correlation. The symbols are for the set of samples: (o) s1,
(*) s2 and (∆) s3.

lation with Polyethylene melts at low molecular weights
(<1700 g mol−1) is relatively simple since the spin echo de-
cay curve shows a single-exponential behavior from which
T2 can be assigned. At higher molecular weights the NMR
decay curve is non exponential and clearly reflects a more
complex dynamics. The present study confirms that the re-
fined treatment could reflect not only the polydispersity ef-
fects but also the differential dipolar interaction resulting
from the anisotropic motion of the polymer chains on the
NMR time scale.

In summary, the results presented in Table 2 and Figure 3
and 4 show two general tendencies: One is related to the
direct correlation of NP concentration increase with the re-
laxation time decrease, which reflects an increasing strength
of the interaction. The second is related to the increase in the
area under the distribution curves according to the increase
of the NP concentration, which reflects the larger number of
spins involved in the interaction, i.e. characterize a greater
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interaction extension.
The experimental echo decay curves were also analyzed

by the simplex optimization method. This method is ana-
logue to one usually adopted by the NMR equipments, which
treats the problem as an adjustment of the experimental data
by one exponential curve [28,29]. The experimental and sim-
plex results obtained are shown in Table 2. At this point one
can also note the better residual error results of the neural
network methodology in comparison with the simplex algo-
rithm, as presented in Table 3.

 

FIG. 4: Area under the T2 distribution and NP concentration
(%w/w) linear correlation. The symbols are the same as in figure 2.

5. CONCLUSION

The combination of the inverse problem methodology and
intermolecular forces analysis was applied to ion-polymer
interaction estimation using experimental NMR spin echo
data. The adopted model systems consist of aqueous solu-
tions of poly (ethylene oxide) and sodium nitroprusside (NP)
at different concentrations.

This inversion methodology provides T2 distributions of
the components, which reflects the several spin relaxation
processes occurring inside the matter. Under these theoret-
ical considerations, the obtained results show smaller resid-
ual errors in comparison with the simplex optimization pro-
cedure and experimental NMR equipment software. This
fact is important to confirm the effectiveness of the proposed
methodology.

The system responses also allow a linear correlation
among the nitroprusside concentration and the transverse re-
laxation time, together with the PEO protons amount in the
similar dynamic behavior. This linear correlation is proposed
here as a quantitative approach for ion-polymer interaction
estimation in aqueous solutions. Finally, the PEO molecu-
lar weight dependence in the transverse relaxation time and
the area under the distribution curves shows the angular cor-
relation is an individual characteristic of each material, as
verified for the response of all sample sets.
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