Preparação e Caracterização de Membranas Microporosas Obtidas a Partir de Blendas de PVDF/PMMA.

José Carlos C. Petrus, Hilary C. Menezes e Alfredo T. N. Pires.

Resumo: Membranas microporosas foram preparadas pela técnica de inversão de fases por imersão-coagulação na presença de um não solvente, a partir de blendas de PVDF/PMMA (Polifluoreto de vinilideno/Polimetacrilato de metila), em diferentes composições percentuais em peso, pela dissolução destes polímeros em DMF (N'N'Dimetilformamida). A microscopia eletrônica de varredura (MEV), a espectroscopia de absorção na região do infravermelho com transformada de Fourier por reflexão interna (FTIR-ATR), a calorimetria de varredura diferencial (DSC), foram as técnicas utilizadas na caracterização das membranas, além dos ensaios de permeabilidade e retenção de soluto. Diferentes morfologias foram obtidas quando se variou a concentração dos componentes da blenda. Um aumento na concentração de PMMA, diminuiu o grau de cristalinidade do PVDF e aumentou a porosidade global e a espessura das membranas e provocou um acréscimo importante nos fluxos permeados e na retenção de soluto.

Palavras-chave: Membranas microporosas, blendas, PVDF/PMMA, permeabilidade.

Introdução

O desenvolvimento da área de polímeros, durante as últimas décadas, favoreceu o surgimento de materiais mais resistentes física e quimicamente, e apropriados para a preparação de diferentes tipos de membranas microporosas, atendendo às exigências de cada processo. Não só o material empregado, mas também as variações nas condições de preparo das membranas, são de importância fundamental no estabelecimento de suas características morfológicas e funcionais^[1-4].

Muitos trabalhos vêm sendo desenvolvidos para melhor entendimento sobre a termodinâmica e a cinética do processo de coagulação dos polímeros durante a preparação de membranas microporosas^[5-8].

Os processos de separação com membranas vêm se tornando importantes como alternativas aos processos convencionais de separação nas indústrias químicas, farmacêuticas e de alimentos. Em muitos casos, o baixo consumo de energia, a redução do número de etapas em um processamento, maior eficiência na separação e maior qualidade do produto final, são os principais atrativos destes processos.

A partir do desenvolvimento de membranas assimétricas de acetato de celulose por Loeb e Sourirajan, no início da década de 60, os processos com membranas experimentaram um grande avanço. Membranas assimétricas são caracterizadas por possuírem uma subcamada irregular apresentando uma porosidade crescente em direção oposta à pele filtrante. Esta subcamada

José Carlos C. Petrus, Departamento de Engenharia Química e Engenharia de Alimentos, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis, S.C.; Hilary C. Menezes, Departamento de Tecnologia de Alimentos, Universidade Estadual de Campinas, Campinas, S.P.; Alfredo T. N. Pires, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, S.C.

pode apresentar estrutura tipo esponja e/ou cavidades, que confere a estas membranas resistência mecânica e favorece um elevado fluxo permeado, quando comparada com a subestrutura de membranas densas ou simétricas. A pele filtrante e a subcamada são preparadas a partir do mesmo material e num único processo, geralmente por inversão de fases por imersão-coagulação em um não solvente, que pode levar a uma diversidade de estruturas morfológicas.

Em escala industrial, diferentemente da utilizada em laboratórios, são processados grandes volumes de fluidos e altos fluxos permeados que são importantes para a viabilidade do processo. Portanto, membranas que apresentam altos fluxos permeados com manutenção de suas propriedades seletivas, são desejadas.

O PVDF e o PMMA são conhecidos por serem compatíveis no estado fundido para todas as composições e apresentam uma fase homogênea, mesmo em nível molecular^[9]. Membranas preparadas pela técnica de imersão-coagulação a partir destes polímeros são mais porosas e menos hidrofóbicas^[10].

Este trabalho teve como objetivo a preparação e caracterização de membranas microporosas e assimétricas a partir de PVDF e da blenda PVDF/PMMA, que pudessem ser utilizadas na clarificação e estabilização biológica de suco de frutas.

Experimental

Materiais

Polifluoreto de vinilideno (PVDF) - Aldrich, código 18,270; Polimetilmetacrilato (PMMA) - Aldrich, código 18,224; N'N'Dimetilformamida - Merck, art. 3034; LiCl - Merck; Clorofórmio - Merck, art. 21506; suporte de poliéster-polipropileno - Viledon filter, Carl Freudenberg;

Equipamentos

Microscópio eletrônico de varredura (MEV) - Phillips, modelo XL-30; Espectrômetro de absorção na região do infravermelho com transformada de Fourier - (FTIR) - Perkin Elmer; Calorímetro de varredura diferencial (DSC) - Shimadzu, modelo DSC-50; Espectrofotômetro UV/Visível, Hewlett Packard (HP), modelo 8452-A; Purificador de água "Milli-QTM Water system" - Millipore; Célula de filtração, esquematizada na Figura 1, que foi construída especialmente para atender as exigências deste trabalho, onde se pudessem coletar o permeado e o retentado, simultâneamente.

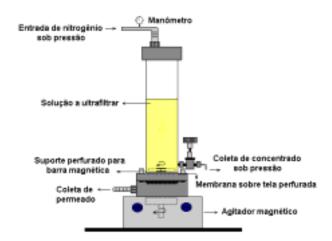


Figura 1. Desenho esquemático da célula utilizada nos experimentos de ultrafiltração

Métodos

As blendas foram formadas pela dissolução de diferentes concentrações percentuais em peso de PMMA - 1,0 a 4,0% e de PVDF - 17,5 e 20,0% (vide Tabela 1), em DMF. As membranas foram preparadas a partir destas soluções poliméricas, pela coagulação em água, conforme procedimento mostrado na Figura 2. O LiCl foi utilizado na concentração de 1,0% (p/p) para aumentar a porosidade das membranas e por ser muito higroscópico e solúvel em água, se difunde totalmente para o banho de coagulação^[11].

A caracterização das membranas foi feita para o estudo de suas morfologias, além do desempenho quanto à permeabilidade à água e retenção de soluto. Os ensaios de filtração foram realizados na célula esquematizada na Figura 1, sob as seguintes condições operacionais: pressão 2,0 Kgf/cm², agitação mecânica (400 rpm) e temperatura ambiente. A Albumina do Soro Bovino (BSA), com massa molar média de 67.000 g/mol, foi utilizada como soluto teste nos ensaios para determinação do nível de retenção das membranas. Soluções salinas de BSA foram preparadas a 0,06% em 0,5% de NaCl. Baixa concentração de BSA foi utilizada para se evitar a interação entre as moléculas desta proteína (interações intermoleculares) o que poderia aumentar artificialmente o seu diâmetro. As amostras de permeado e concentrado foram coletadas após 1 hora do início da filtração e pesadas em balanca eletrônica analítica e os fluxos, após conversão, foram expressos em Kg/hm2. A área de cada membrana utilizada nestes ensaios foi de 10,2 x 10⁻⁴ m². A determinação do nível de retenção da BSA foi feita através de leitura espectrofotométrica a 280nm, de amostras do concentrado e permeado e expressa com R = 1 - (concentração de BSA no permeado/concentração de BSA no concentrado) x 100.

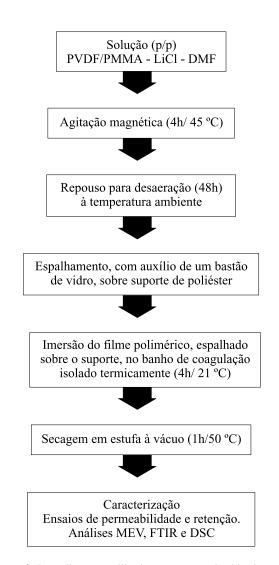


Figura 2. Procedimentos utilizados no preparo das blendas e das membranas

Através de espectros de FTIR foi verificada a permanência do PMMA na estrutura das membranas quando submetidas à ação de solvente e de soluções quimicamente agressivas normalmente utilizadas na limpeza e sanitização.

Para observação microscópica, todas as amostras foram fraturadas em nitrogênio líquido e posteriormente recobertas com fina camada de ouro (± 350Å).

Resultados e discussão

Permeabilidade e retenção de soluto pelas membranas

São relacionadas na Tabela 1, as membranas obtidas a partir de diferentes composições percentuais das blendas de PVDF/PMMA, suas espessuras e os valores de permeabilidade e retenção.

A presença de PMMA nas membranas de PVDF teve um efeito pronunciado em suas propriedades de transporte e retenção. Um aumento na concentração de PMMA aumentou o fluxo de água e de solução de BSA para as 2 concentrações de PVDF. Os níveis de retenção, entretanto, só aumentaram quando se utilizou o PVDF a 20,0% e PMMA a 2,0 e 4,0%, na solução polimérica.

Sendo o PMMA um polímero amorfo e menos hidrofóbico que o PVDF, a sua adição na solução polimérica permite a obtenção de membranas com maior região amorfa e com características mais hidrofílicas, quando comparadas com aquelas membranas preparadas somente com o PVDF^[10]. Ocorreu ainda, um aumento nas espessuras das membranas com o aumento na concentração de PMMA, devido ao aumento na porosidade global das membranas. Membranas mais hidrofílicas são características importantes para se obter altos fluxos de soluções aquosas já que a hidrofilicidade torna a membrana mais "molhável". O aumento no fluxo de água e de solução de BSA verificado, acompanhado pelo aumento nos níveis de retenção desta proteína, quando aumenta a concentração de PMMA, indicam um aumento na porosidade (poros por unidade de área) superficial da membrana e uma redução no diâmetro destes poros.

Observa-se também, que uma maior concentração de PVDF na solução polimérica gerou membranas com menores fluxos permeados. Membranas preparadas a partir da coagulação de soluções mais concentradas, normalmente são menos porosas e apresentam menores fluxos permeados.

Durante a ultrafiltração forma-se sobre a superfície da membrana uma fina camada de solutos retidos, que passa a oferecer uma resistência adicional ao fluxo de massa. Este efeito pode ser observado quando se compara o fluxo de água e o fluxo de solução com BSA (Tabela 1). Um eventual entupimento dos poros superficiais das membranas, também precisa ser considerado.

Morfologia das membranas

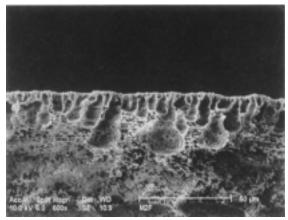
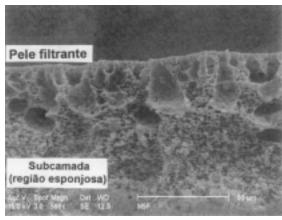
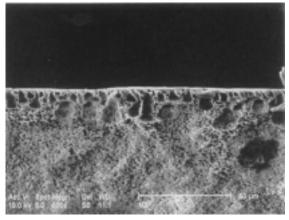
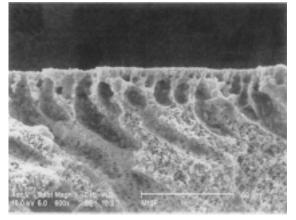

As membranas preparadas pela técnica de inversão de fases por imersão-coagulação, a partir tanto do PVDF quanto da blenda PVDF/PMMA, apresentaram características morfológicas assimétricas. Um aumento na concentração de PMMA resultou num aumento na porosidade global e na espessura das membranas. Micrografias das fraturas das membra-

Tabela 1. Dados de fluxo de permeado, retenção de soluto e espessura das membranas preparadas a partir de diferentes composições da blenda de PVDF/PMMA


Membranas	*PVDF	*PMMA	**PVDF	**PMMA	Fluxo á gua (kg/hm²)	Fluxo solu çã o BSA (kg/hm²)	Reten çã o BSA (%)	Espessura*** (μm)
M1	17,5	0,0	100,0	0,0	115	39	79	80
M1a	17,5	1,0	94,6	5,4	90	48	53	90
M1b	17,5	2,0	89,7	10,3	130	55	64	100
M1c	17,5	4,0	81,4	18,6	345	63	78	105
M2	20,0	0,0	100,0	0,0	34	18	86	100
M2a	20,0	1,0	95,2	4,8	46	26	83	100
M2b	20,0	2,0	90,9	9,1	51	36	95	115
M2c	20,0	4,0	83,3	16,7	110	41	94	120

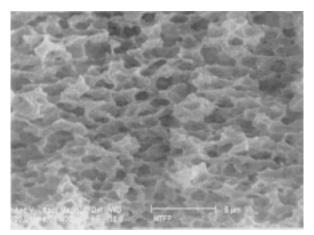
^{*} Concentrações percentuais (p/p) dos polímeros dissolvidos em DMF.


nas M1, M1c e M2, M2c são mostradas na Figura 3. Atribue-se a menor hidrofobicidade do PMMA, comparativamente ao PVDF, à alteração nas taxas de difusão e contra-difusão do solvente (DMF) e do não solvente (água), durante a preparação das membranas devido possivelmente, a uma redução na tensão


M1 - 100% PVDF / 0,0% PMMA

M1c - 81,4% PVDF / 18,6% PMMA

M2 - 100% PVDF / 0,0% PMMA



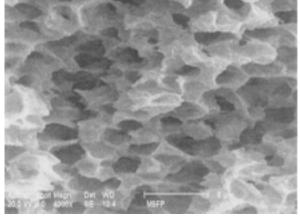

M2c - 83,3% PVDF / 16,7% PMMA

Figura 3. Micrografias das fraturas das membranas com diferentes percentuais em peso de PVDF e PMMA

^{**} Concentrações percentuais (p/p) dos polímeros nas membranas após eliminação do DMF (calculado através de balanço de massa).

^{***} Sem o suporte de poliéster-polipropileno.

M1a - 94,6% PVDF / 5,4% PMMA

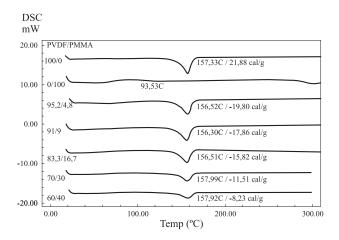

M1c - 81,4% PVDF / 18,6% PMMA

Figura 4. Micrografias das fraturas das membranas M1a e M1c, mostrando detalhes das regiões esponjosas

interfacial entre a superfície do filme e o banho de coagulação, gerando regiões com células maiores e mais abertas^[10]. Esta estrutura favorece um maior fluxo permeado melhorando, portanto, as propriedades de transporte da membrana.

Embora a maior resistência ao fluxo de massa esteja a nível da pele filtrante, uma estrutura mais aberta da subcamada, como a obtida neste trabalho, deve ser considerada por oferecer uma menor resistência a este fluxo, quando as membranas são utilizadas nos processos de separação. Portanto, a pele filtrante e a subcamada, identificadas na Figura 3 (M1c), apresentam resistências decrescentes e em série. Detalhes das estruturas esponjosas das membranas M1a e M1c são mostradas na Figura 4.

O crescimento observado no tamanho dos poros da subcamada com o aumento na concentração de PMMA na solução polimérica, pode ser o resultado de uma maior velocidade de precipitação do PVDF,

Figura 5. Termogramas para diferentes composições percentuais em peso da blenda PVDF/PMMA

alterando a sua porosidade superficial e contribuindo para o aumento do fluxo permeado.

Análise térmica

Os termogramas, de diferentes composições percentuais dos componentes da blenda PVDF/PMMA, são mostrados na Figura 5.

A adição de um polímero amorfo a um polímero semi-cristalino tende a diminuir a temperatura de fusão (T_m) ou apenas reduzir o grau de cristalinidade do componente semi-cristalino, como ocorreu neste caso.

Observa-se que para todas as composições estudadas da blenda, a temperatura de fusão do PVDF se manteve inalterada. Portanto, a presença de PMMA não interferiu na estrutura dos cristais de PVDF durante a sua coagulação, mas inibiu parcialmente o crescimento ou a formação destes cristais.

A Figura 6 mostra a redução no grau de cristalinidade do PVDF frente a adição do PMMA. Os pontos apresentados no gráfico foram obtidos a par-

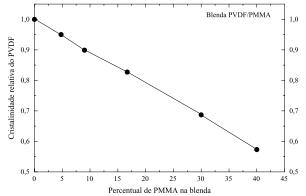


Figura 6. Cristalinidade do PVDF em função da concentração de PMMA na blenda

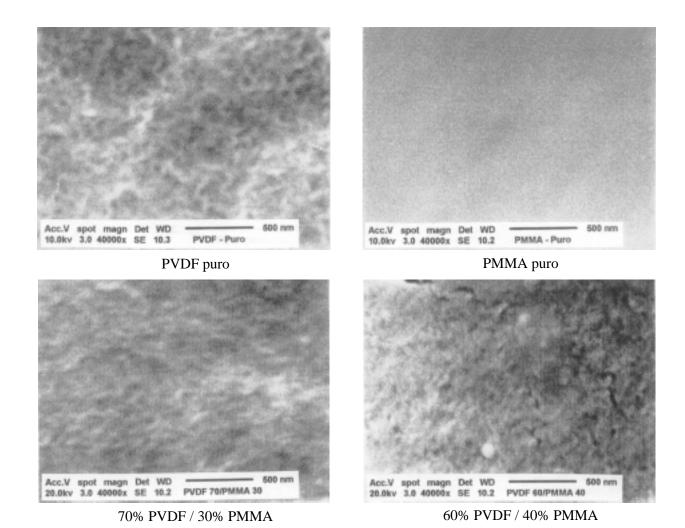


Figura 7. Micrografias da superfície das membranas preparadas a partir de PVDF e PMMA puros e das blendas em diferentes concentrações percentuais em peso

tir dos termogramas da Figura 5. Eles representam a razão entre o valor correspondente à entalpia de fusão do PVDF na mistura (considerando a massa de PMMA) e o valor da entalpia de fusão do PVDF puro, considerando-se total cristalização.

É observado um comportamento linear entre o aumento percentual de PMMA na blenda e a redução na cristalinidade do PVDF.

HAHN e co-autores^[9] mostraram que em blendas de PVDF/PMMA, obtidas a partir do estado fundido, a cristalinidade do PVDF foi totalmente inibida quando a concentração de PMMA na blenda atingiu 40%, ou 80% quando as amostras foram tratadas a 135°C por 24 horas.

Microscopia da superfície dos filmes

Na Figura 7 são mostradas micrografias da superfície de membranas preparadas pela técnica de inversão de fases por imersão-coagulação, a partir dos polímeros puros e da blenda PVDF/PMMA. Não são observados domínios, mesmo para 40% de PMMA na blenda, indicando uma homogeneidade característica de uma blenda miscível.

Espectroscopia de absorção na região do infravermelho com transformada de Fourier por reflexão interna (FTIR-ATR)

A permanência do PMMA na estrutura das membranas foi investigada. Este componente sendo lixiviado pode contaminar o filtrado e a sua saída da estrutura da membrana pode provocar alterações importantes em suas propriedades funcionais.

A permanência de outros polímeros como o PVP (polivinilpirrolidona) na estrutura de fibras ocas de polieterimida (utilizadas como suporte de membranas compostas) foi estudada por Borges e co-auto-

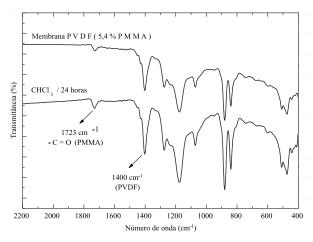
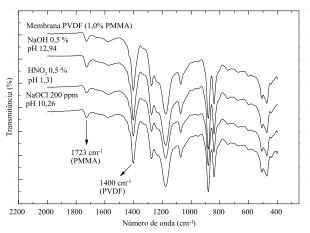



Figura 8. Espectros de FTIR-ATR de membranas preparadas a partir da blenda PVDF/PMMA submetidas ou não ao tratamento com clorofórmio

Figura 9. Espectros de FTIR de membranas PVDF/PMMA submetidas a ação de soluções quimicamente agressivas

res^[12]. Foi verificado que o PVP permanece na matriz polimérica, mas não uniformemente distribuído se concentrando na superfície da membrana.

Membranas de PVDF foram preparadas a partir de soluções poliméricas contendo 1,0% de PMMA (5,4% na membrana final) e mantidas submersas em clorofórmio, solvente apenas para o PMMA, por 24 horas à temperatura ambiente. Os espectros na região do infravermelho, mostrados na Figura 8, indicam que o PMMA permaneceu na estrutura das membranas, não havendo variação na relação entre as bandas em 1723 e 1400 cm⁻¹, relativas ao PMMA e ao PVDF, respectivamente.

O PMMA também permaneceu na estrutura das membranas, mesmo quando estas foram submergidas em soluções quimicamente agressivas, utilizadas nos programas de limpeza e sanitização, por 72 horas, um período muito superior ao normalmente utilizado industrialmente. Os espectros de FTIR-ATR são mostrados na Figura 9.

Conclusões

A partir da blenda PVDF/PMMA foi possível a preparação de membranas assimétricas com boas características morfológicas e funcionais quando comparadas com aquelas preparadas somente a partir do PVDF. O aumento na concentração de PMMA na blenda, embora não alterasse a entalpia de fusão do PVDF, reduziu acentuadamente a sua cristalinidade. Além disso, um aumento na concentração de PMMA, aumentou significativamente a porosidade global das membranas, com conseqüente incremento em suas espessuras.

Verificou-se que o PMMA permaneceu na estrutura das membranas mesmo na presença de um bom solvente e, também, quando submetidas à ação de soluções normalmente utilizadas nos programas de limpeza e sanitização. Isto assegura a manutenção de suas características morfológicas e funcionais, garantindo um bom desempenho durante os processos de ultrafiltração.

Está sendo estudado pelos autores o desempenho destas membranas na clarificação e estabilização biológica de suco de frutas, através de uma unidade piloto de ultrafiltração tangencial, com resultados preliminares bastante satisfatórios.

Referências Bibliográficas

- 1. Munari,S.; Bottino,A.; Capannelli. "Casting and performance of polyvinylidene fluoride based membranes", J. Membrane Science, Vol 16, p 181-193 (1983).
- Shih,H.C.; Yeh,Y.S.; Yasuda,H.; "Morphology of microporous poly(vinylidene fluoride) membranes studied by gas permeation and scanning electron microscopy", J. Memb. Sci., Vol 50, p 299-317 (1990).
- Yanagishita, H.; Nakane, T.; Yoshitome, H.
 "Selection criteria for solvent and gelation
 medium in the phase inversion process", J.
 Memb. Sci., Vol 89, p 215-221 (1994).
- 4. Gotoh, M.; Tamiya, E.; Karube, I.; "Preparation and performance of poly(vinyl butyral) membrane for ultrafiltration", J. Appl. Polym. Sci., Vol 48, p 67-73 (1993).
- Wienk,I.M.; Boom,R.M.; Beerlage,M.A.M.; Bulte,A.M.W.; Smolders,C.A.; Strathmann,H.; "Recent advances in the formation of phase

- inversion membranes made from amorphous or semi-crystalline polymers", J. Memb. Sci., Vol 113, p 361-371 (1996).
- 6. Di Luccio, M.; Borges, C.P.; Nobrega, R.; Habert, A.C.; "Microporous membranes by phase inversion II. Polycarbonate/Polyvinylpyrrolidone/NMP/Water system", Anais do II CITEM, Rio de Janeiro, 8 a 10 de agosto, p 53-61 (1994).
- Boon, R.M.; Th. van den Boomgaard.; Smolders C. A.; "Mass transfer andthermodynamics during immersion precipitation for a twopolymer system. Evaluation with the system PES-PVP-NMP-Water", J. Memb. Sci., V 90, 231-249 (1994).
- 8. Wijmans, J.G.; Rutten, H.J.J.; Smolders, C.A.; "Phase separation phenomena in solutions of poly(2,6-Dimethyl-1,4-phenyleneoxide) in mixtures of trichoroethylene, 1,octanol, and methanol: relationship to membrane

- formation", J. Polym. Sci., Vol 23, 1941-1955 (1985).
- Hahn, B.R.; Herrmann-Schönherr, O.; Wendorff, J.H.;
 "Evidence for a crystal-amorphous interphase in PVDF and PVDF/PMMA blends", Polymer, Vol 28, 201-207 (1987).
- 10. Nunes, S.P.; Peinemann, K.V.; "Ultrafiltration membranes from PVDF/PMMA blends", J. Memb. Sci., Vol 73, 25-35 (1992).
- Petrus, J.C.C.; "Preparação, modificação e caracterização de membranas assimétricas para clarificação de suco de frutas", Tese de Doutorado, Unicamp (1997).
- 12. Borges, C.P.; Nobrega, R.; Habert, A.C.; "Fibras ocas de polieterimida utilizando polivinilpirrolidona como aditivo à solução polimérica. Caracterização por ESCA e análise elementar", Anais do 2º Congresso Brasileiro de Polímeros, São Paulo-SP, 5 a 8 de outubro, 467-471 (1993)