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Differentiation of affected and nonaffected ovaries in ovarian 
torsion with magnetic resonance imaging texture analysis
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INTRODUCTION
Ovarian torsion (OT) is defined as a partial or complete turn 
of the ovary and ovarian vascular pedicle on its long axis1,2. OT 
results venous blood flow obstruction, edema, and consequent 
necrosis of ovarian tissue because of subsequent arterial blood flow 
obstruction2. Its nonspecific symptoms and a wide differential 
diagnosis of pelvic abdominal pain make it difficult to diagnose 
OT, even in experienced hands, with the use of multimodality 
screening tools. Furthermore, the reliability of ultrasonography 
(US) and magnetic resonance imaging (MRI) assessments in the 
diagnosis of OT is limited by the variety of experience of radiol-
ogists1,2. An increased incidence of OT, especially in pregnant 
women, children, and women undergoing ovulation induction 
therapy, draws attention to this issue1. In contrast, timely diag-
nosis and management of OT is crucial for the preservation of 
ovarian reserve and fertility1. Thus, an accurate, noninvasive 
method that does not use contrast media or radiation to predict 
OT preoperatively is essential for the overall treatment of OT, 
especially in children and pregnant women. 

Texture analysis (TA) is an emerging technique that allows 
for the analysis of the distribution of pixel intensities and trans-
forms digital medical images into mineable data by extracting 

quantitative features mathematically3-18. TA has recently been 
investigated for the identification of brain, renal, lung, and 
ovarian tumors and diseases6,8. However, to the best of our 
knowledge, there is still no study in the literature that uses TA 
to differentiate affected and nonaffected ovaries in OT. TA is a 
promising method, and the texture data obtained can be used 
in deep learning algorithms for rapid diagnosis and treatment 
of OT in emergency settings. The most obvious example of 
this is artificial intelligence-based algorithms used in stroke 
patients19. OT, in contrast, is a difficult process to diagnose, 
and the fact that the torsed and nontorsed ovaries can be dif-
ferentiated by TA can provide rapid diagnosis and treatment of 
OT with deep learning applications in emergency settings. We 
think that TA may help differentiate affected and nonaffected 
ovaries based on lesion signal intensity characteristics in MRI. 
Accordingly, we aimed to investigate the feasibility and accu-
racy of TA for differentiating affected and nonaffected ovaries 
in OT on T2-weighted MR images.

METHODS
A flowchart of the TA model is shown in Figure 1.
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SUMMARY
OBJECTIVE: This study aimed to evaluate the feasibility of texture analysis on T2-weighted axial images in differentiating affected and nonaffected 

ovaries in ovarian torsion.

METHODS: We included 22 torsioned ovaries and 19 healthy ovaries. All patients were surgically proven ovarian torsion cases. On T2-weighted 

axial images, ovarian borders were delineated by the consensus of two radiologists for magnetic resonance imaging-based texture analysis. Statistical 

differences between texture features of affected and nonaffected ovaries were assessed. 

RESULTS: A total of 44 texture features were extracted from each ovary using LIFEx software. Of these, 17 features were significantly different 

between affected and nonaffected ovaries in ovarian torsion. NGLDM_Coarseness and NGLDM_Contrast, which are the neighborhood gray-level 

difference matrix parameters, had the largest area under the curve: 0.923. The best cutoff values for the NGLDM_Contrast and NGLDM_Coarseness 

were 0.45 and 0.01, respectively. With these cutoff levels, NGLDM_Contrast had the best accuracy (85.37%).

CONCLUSION: Magnetic resonance imaging-based texture analysis on axial T2-weighted images may help differentiate affected and nonaffected 

ovaries in ovarian torsion.
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Patients
This retrospective study was approved by the institutional review 
board of our university hospital, and written informed consent 
was waived (OMU/KAEK-2016/49). The database of our uni-
versity hospital was reviewed to identify surgically proven OT 
patients with preoperative MRI examinations between January 
2015 and April 2020. The inclusion criteria were surgically 
proven OT, MRI examination prior to surgery, and having an 
axial T2-weighted MRI (n=22). The exclusion criterion was 
MR images with motion artifacts (n=1) and torsion cases with 
paraovarian cysts neoplasms (n=3).

MR image acquisition and ovarian segmentation
A 1.5-T MRI Scanner (Siemens Magnetom Symphony Quantum, 
Erlangen, Germany) equipped with phased-array coils was 
used for MRI examinations. The standard T2-weighted MRI 
protocol was used.

The affected and nonaffected ovaries were manually segmented 
by the consensus of two radiologists with 9 and 8 years of expe-
rience in abdominal imaging using LIFEx software (www.lifex-
soft.org). LIFEx software is a free, multiplatform, and easy-to-use 

freeware called LIFEx, which enables the calculation of con-
ventional, histogram-based, textural, and shape features from 
PET, SPECT, MR, CT, and US images, or from any combina-
tion of imaging modalities. Axial T2-weighted MR images were 
exported in Digital Imaging and Communications in Medicine 
(DICOM) format from the hospital database to LIFEx software. 
The region of interest included the largest cross-sectional, two-di-
mensional area of ovaries in axial planes selected on T2-weighted 
MR images (Figure 2)16. All ovarian tissue was used, including 
cysts and necrosis. Paraovarian cysts neoplasms, which cause 
some adnexal torsion cases, were excluded (n=3). After ovarian 
segmentation, texture feature extraction was performed.

Texture feature extraction
Texture analysis was obtained from two-dimensional images 
of segmented ovaries on axial plain using LIFEx software. 
Preprocessing steps including spatial resampling, gray-level dis-
cretization, and intensity rescaling were performed for all MR 
images after ovarian segmentation. To create homogeneity for 
the voxel values, spatial resampling was performed, and after 
calculating their means±standard deviations, X-Y-Z directions 

Figure 1. Flowchart diagram for texture analysis in ovarian torsion.
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were rescaled as 0.87, 1.07, and 5, respectively. A gray-level range 
between 1 and 128 bits/pixel was used for intensity discretiza-
tion to ensure uniformity for TA. The ±3 sigma technique was 
used for intensity rescaling to minimize different MRI protocol 
effects. A total of 44 texture features were extracted. Notably, 12 
first-order features were derived from discretized, conventional, 
histogram, and shape features, and 32 second-order features were 
derived from gray-level co-occurrence matrix (GLCM) features, 
gray-level run-length matrix (GLRLM) features, neighborhood 
gray-level different matrix (NGLDM) features, and gray-level 
zone length matrix (GLZLM) features. 

Statistical analysis
Statistical analyses were performed using IBM SPSS version 23. 
Normality distributions of quantitative parameters were analyzed 
using the Shapiro-Wilk test. The Mann-Whitney U test was used 
to compare data that did not conform to normal distributions. 
Receiver operator characteristic (ROC) analysis was performed 
for diagnostic test evaluation, and sensitivity and specificity were 
evaluated. Data are expressed as mean (95% confidence interval). 
A p<0.05 was considered statistically significant.

In the power analysis performed with reference to the 
results of the Bekci et al.’s study, which is evaluated diffu-
sion-weighted MRI features of torsioned and normal ovaries, 
with a test power to be 95%, a total of 22 cases are required, 
with 11 cases in each group20.

RESULTS

Patient characteristics
The median age of the patients was 27 (range 5–65). In all, 
26 surgically proven OT patients were evaluated. A total of 

41 ovaries were included in the study in 22 patients, exclud-
ing the cases with motion artifact (n=1) and paraovarian cyst 
neoplasm (n=3), which were the exclusion criteria. Three OT 
patients had previous oophorectomy. A total of 22 torsioned 
ovaries and 19 healthy ovaries were evaluated.

Texture features
A total of 1 first-order and 16 second-order features, includ-
ing 1 DISCRETIZED_HISTO_Entropy_log2 feature, 5 
GLCM features, 4 GLRLM features, 3 NGLDM features, and 
4 GLZM features, demonstrated statistically significant differ-
ence between affected and nonaffected ovaries on T2-weighted 
axial MR images in OT patients. NGLDM_Coarseness and 
NGLDM_Contrast, which are the NGLDM parameters, had 
the largest area under the curve: 0.923 (Figure 3). The best cut-
off values for NGLDM_Contrast and NGLDM_Coarseness 
were 0.45 and 0.01, respectively. With these threshold values, 
sensitivity, specificity, and accuracy values were 86.36% (65.09–
97.09%), 84.21% (60.42–96.62%), 85.37% and 36.36% 
(17.2–59.34%), 100% (82.35–100%), and 65%, respectively. 
NGLDM_Contrast had the best accuracy (85.37%). 

DISCUSSION
Magnetic resonance imaging-based TA analysis on T2-weighted 
axial images for the differentiation of affected and nonaffected 
ovaries in OT was investigated in this study for the first time 
in the medical literature. A total of 17 TA features were signifi-
cantly different between affected and nonaffected ovaries, with 
ROC values ranging between 0.679 and 0.923. Our results 
demonstrate that NGLDM_Contrast, which is the NGLDM 
parameter, has excellent differentiation accuracy, with an area 
under curve (AUC) of 0.923 for affected and nonaffected ovaries 

Figure 2. (A) 30-year-old women with right-sided surgically proven ovarian torsion. T2-weighted axial magnetic resonance imaging demonstrate 
enlarged right ovary with peripherally located cysts [arrowheads]. Arrow indicates normal ovary on the left. (B) The region of interest included 
the largest cross-sectional, two-dimensional area [arrowheads] of ovary in axial plane selected on T2-weighted magnetic resonance imaging. 
(C) Both affected [arrowheads] and nonaffected ovaries [affected] manually segmented by the consensus of two radiologists using LIFEx software.
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in OT. NGLDM_Coarseness and NGLDM_Contrast values 
of 0.45 and 0.01 were the best diagnostic parameters for pre-
dicting OT, respectively. With these threshold values, sensi-
tivity and specificity reached 86.36% and 100%, respectively.

Ovarian torsion is increasingly prevalent, especially in children 
and pregnant women2. Although US is the first choice of imaging 
modality used in the diagnosis of OT, for further investigation, MRI 
is used as an advanced imaging method in most cases1,2. However, 
both the user-dependent diagnostic performance of US and the 
varying accuracy of MRI have required the development of a new 
method for the diagnosis of OT1. In addition, the need for the use 
of contrast agents during the classical evaluation of OT with MRI 
presents a disadvantage for pediatric cases and pregnant women. 
At this point, TA plays an important role in the diagnosis of OT 
without using contrast media or radiation exposure. 

Texture analysis is a mathematical method that allows the 
examination of changes in intensity that cannot be detected with 
the human eye in MR images9-12. Texture features can be divided 
into five groups: size- and shape-based features, descriptors of the 
image intensity histogram, descriptors of the relationships between 

image voxels (e.g., GLCM features, GLRLM features, NGLDM 
features, and GLZLM features), and fractal features13. We used 
TA only on axial T2-weighted images. Using only a single MRI 
sequence for MRI examination is essential in terms of time man-
agement, which is important in the diagnosis and treatment of 
OT. After careful segmentation of ovaries by the consensus of two 
radiologists, texture features were extracted. Our study demonstrated 
that 17 parameters consisting of first- and second-order features 
differ significantly with TA of axial T2-weighted images. Of these, 
NGLDM_Contrast, which is a second-order feature, was able to 
predict torsed ovaries with the highest accuracy. A neighboring 
gray tone difference matrix quantified the difference between a 
gray value and the average gray value of its neighbors within dis-
tance3,4. Contrast is a measure of a spatial intensity change, but it 
is also dependent on the overall gray-level dynamic range15,17,21. 
Contrast is high when both the dynamic range and the spatial 
change rate are high, i.e., an image with a large range of gray lev-
els, with large changes between voxels and their neighborhood15,21. 
From a mathematical point of view, NGLDM_Contrast reflects 
how much the gray levels of neighboring regions differ15,21. In our 

Figure 3. Receiver-operating characteristics curve of texture analysis parameters for differentiating affected ovary from nonaffected ovary.
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study, torsioned ovaries showed lower contrast. We could, therefore, 
hypothesize that OT presents a more homogeneous parenchymal 
texture. This may be associated with edema caused by venous con-
gestion in the torsed ovaries. Edema caused by congestion develops 
in almost all torsed ovaries, and this finding is consistent with the 
pathophysiological and morphological features of OT.

This study has some limitations. The first limitation is the 
relatively small number of cases examined. Second, we used only 
T2-weighted images for TA. Using or combining other MRI 
sequences, such as contrast-enhanced or diffusion-weighted 
images, may expand the feature pool and improve the diag-
nostic performance of texture features. Additionally, combin-
ing conventional features with texture features and to calculate 
added value might be useful. Third, we did not study interob-
server agreement to test the reproducibility of the method. In 
the future, it is necessary to study using multisequence texture 
features and conventional features of OT with larger samples.

CONCLUSIONS
Our study results show that MRI-based TA can be used to 
differentiate affected and nonaffected ovaries in OT. A set of 

parameters, especially NGLDM_Contrast, can predict tor-
sioned ovaries with high accuracy. By implementing the defined 
parameter with high diagnostic accuracy into artificial intelli-
gence applications, early diagnosis and treatment of OT can 
be enabled in emergency settings. The data we obtained in our 
study should be supported by new studies and the feasibility of 
using it in the diagnosis of OT should be evaluated by using 
it in artificial intelligence applications in further studies. TA 
may be an important part of diagnosis of OT in daily practice.
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