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Resumo: Os gráficos de controle clássicos para variáveis contínuas monitoram, separadamente, as medidas de 
posição central e de dispersão, conhecidas também como medidas de locação e escala. O monitoramento desses 
parâmetros tem como pressuposto que a distribuição de probabilidade dos dados seja conhecida e siga o padrão 
normal, o que, em situações práticas, nem sempre ocorre. Para isso foram desenvolvidos os chamados gráficos de 
controle não paramétricos. Este trabalho tem como objetivo desenvolver um método para determinar os limites 
de controle estatístico de gráficos de controle com distribuição de probabilidade desconhecida e que monitore 
simultaneamente as medidas de locação e escala. O método de pesquisa utilizado integra técnicas de experimentos 
computacionais com técnicas de planejamento de experimentos. Assim, foi possível: i) determinar os limites de 
controle de gráficos não paramétricos que monitorem simultaneamente as medidas de posição e escala para 
situações particulares; ii) a partir dos limites de controle calculados, estimar os erros tipo I e tipo II; e iii) comparar 
o desempenho desses gráficos com as cartas de controle estatístico de Shewhart para diferentes combinações de 
amostras (m, n) nas fases I e II. O método proposto foi aplicado em um processo de manufatura com o objetivo de 
identificar a combinação que minimize os erros tipo I e II. Com base nos resultados, observou-se que o gráfico de 
controle não paramétrico tem desempenho superior aos gráficos tradicionais de Shewhart quando a distribuição 
de probabilidade dos dados é assimétrica.
Palavras-chave: Controle estatístico de processo; Carta de controle não paramétrica; Determinação de limites 
de controle.

Abstract: Classic control charts for continuous variables monitor, separately, the central position and dispersion 
measures, which are also known as lease and scale measures. The monitoring of these parameters presupposes 
that the data probability distribution is known and follows the normal pattern, which, in practical situations, does 
not always occur. For this reason, the so-called nonparametric control graphics have been developed. This work 
aims to develop a method to determine the limits of statistical control of control charts with unknown probabilistic 
distribution and, simultaneously, monitor the mean and variance parameters. The proposed method is not exact and 
allows us to estimate the limits of control charts for combinations of values of m and n. Control limits were estimated 
and the properties of the statistics used were analyzed to determine whether they meet the theoretical assumptions; 
the empirical models obtained were validated by residual analysis. An empirical application of the method was 
performed to test different combinations of sample sizes (m, n), respectively in phases I and II, with the goal of 
identifying the best performing combination for detecting special causes acting in the process. Subsequently, we 
tested the performance of control charts obtained using simulation methods, estimating the ARL and α and β errors. 
The results were compared with other designs of control charts.
Keywords: Statistical process control; Nonparametric control chart; Control chart limits.
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1 Introduction
The importance of the statistical process control 

(SPC) as a research topic can be seen in Figure 1, 
which shows the growth in the number of indexed 
publications in the Web of Science database, from 
1956 to 2013. For over fifty years, SPC has played 
a key role in monitoring and improving the quality 
and productivity of industrial processes (Baker & 
Brobst, 1996; Graves et al., 1999; Duarte & Saraiva, 
2008), initially based on the classical Shewhart control 
chart, which assumes that the statistical parameters 
of the process, such as mean and standard deviation, 
are known. The primary issue related to SPC lies on 
understanding the variability of a quality characteristic, 
establishing process control and promoting its 
improvement (Woodall, 2000).

Process parameters are usually unknown, and it 
affects the efficiency in the use of control charts to 
detect a special cause, since the control limits are 
usually calculated based on the estimates of these 
parameters (Jensen et al., 2006; Castagliola et al., 
2009; Castagliola & Maravelakis, 2011). When the 
process parameters are unknown, they are typically 
estimated and the control limits are determined from 
k samples of n size, obtained from retrospective data 
called phase I analysis In phase II, n-size samples are 
extracted from the process in order to check whether 
it is under control. If the plotting statistic is not within 
the control limits, the process is considered to be out 
of control, and a probable considerable cause must 
be identified and corrective actions must be taken to 
restore the status quo (Montgomery, 1992).

Recent studies have evaluated the performance 
of control charts, in both phase I and II, when the 
parameters are unknown, proposed in order to 
establish new procedures to improve the performance 
of these charts and thus minimize α (type I error) 

and β risks (type II error) (Chen, 1997; Jones et al., 
2001; Epprecht et al., 2005; Chakraborti & Human, 
2006; Chakraborti, 2006; Castagliola et al., 2009; 
Costa et al., 2009; Ozsan et al., 2009; Costa et al., 
2010; Trovato et al., 2010; Zhang & Castagliola, 2010; 
Boone & Chakraborti, 2011; Castagliola & Maravelakis, 
2011; Costa & Machado, 2011; Zhang et al., 2011; 
Castagliola & Wu, 2012; Lee, 2013).

ARL (Average Run Length) is commonly used 
to measure the control chart performance in phase 
II and it indicates the mean number of samples 
required to detect a change in the process parameters. 
Thus, a control chart type is considered better than 
the others when it shows lower ARL during the 
monitoring phase. However, if the process is under 
control, it is desirable that the ARL is as high as 
possible. A practical problem in applying the classical 
Shewhart control charts is that its efficiency (ARL) 
is affected by the probability distribution governing 
the process. Non-parametric methods are more 
efficient when the data distribution is unknown or 
asymmetrical, (Montgomery, 2004; Chakraborti & 
Human, 2006). According to Boone & Chakraborti 
(2011), non-parametric methods have the advantage 
of requiring fewer statistical assumptions about the 
data distribution and of being relatively easy to be 
applied to the shop floor.

Traditional control charts have been designed to 
monitor two parameters, one, the measure of central 
tendency and two, the dispersion, usually measured 
by the mean and the standard deviation. The reasons 
for monitoring these two parameters are found in 
Box et al. (1978), Montgomery & Runger (2003), 
and McCracken & Chakraborti (2013). However, 
proposals for simultaneous.

y monitoring these two parameters in a single chart, 
especially the non-parametric control chart, have been 
highlighted in scientific publications (Mccracken & 

Figure 1. Publications on statistical process control extracted from the Web of Science database, of 1956 - 2013 (Thomson 
Reuters, 2013).
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Chakraborti, 2013). This chart is easy to be used by 
managers and operators on the shop floor, because a 
single chart is used to identify the presence of special 
causes in the process.

The combined monitoring of location and scale 
measurements with a nonparametric chart was 
analyzed by Mukherjee & Chakraborti (2012), who 
used computer simulations to find the control limits 
(H, H1 and H2) of a set of sample size combinations 
for phases I (m) and II (n). However, the results as 
tabulated by the authors are restricted to a set of values 
m and n, which restrict its practical use.

A bibliometric research conducted at the Web of Science 
database indicates that there are few studies about the 
use of non-parametric techniques to monitor processes. 
Figure 2 shows, by means of cumulative frequency, 
the records of articles published in the last thirty 
years. The relationships between keywords relevant 
to studies about non-parametric methods are found 

in Figure 3; for example, the co-occurrence between 
the keyword “NON-PARAMETRIC” and the words 
“CUSUM”, “RUN LENGTH” and “DISTRIBUTION 
FREE”. Figure  2 shows the increased number of 
researches on the subject since 2006, thus indicating 
that it is relatively new in the study about process 
statistical control. Figure 4 shows the main authors 
who publish on non-parametric control charts. It is 
possible to see that Chakraborty is the author nucleating 
the “non-parametric” theme. The current article 
relies on the studies by Mukherjee & Chakraborti 
(2012) in order to develop a framework for the use 
of non-parametric control charts.

The next section of the current article presents a 
literature review on statistical process control and on 
the non-parametric Shewhart-Lepage (SL) chart of of 
Mukherjee & Chakraborti (2012). Section 3 presents 
the search procedure. The fourth section presents an 
empirical model to estimate the SL control limits 
and illustrates the application of the non-parametric 
control chart and discusses the model validation. 
The following sections compare the performance of 
the SL control chart, in comparison to the Shewhart 
charts, and examines the best combinations of m and 
n through the response surface technique.

2 Theoretical foundation
2.1 Basic concepts of SPC

According to Montgomery (2004), statistical 
quality control is a set of statistical techniques used 
to measure, monitor, control, and improve quality. 
The SPC is one of the classical statistical quality 
control techniques and it assumes that there is a 

Figure 2. Cumulative number of publications on non-
parametric control charts. Source: Research Data.

Figure 3. Co-occurrence of keywords on non-parametric statistical control. Source: Research Data.
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process-inherent variation called natural variation, 
which is usually caused by many variables that 
individually produce small effects and are difficult to 
be detected and eliminated. On the other hand, there 
are special causes that produce great effects, and they 
are fewer and easier to be detected (Woodall, 2000; 
Michel & Fogliatto, 2002; Montgomery & Runger, 
2003). The distinction between common and special 
cause is context-dependent - a common cause today 
may be a common cause tomorrow – and it could 
affect the sampling process (Woodall, 2000). From 
a practical perspective, one must act on the cause 
when it has enough economic impact on the quality 
(Woodall, 1985, 2000)

A process is considered to be in steady state or 
under control when only natural variations act on 
it. On the other hand, when the process is under, 
in addition to natural variations, the presence of 
special or assignable causes, it is out of control. 
The implementation of control charts is done in two 
phases: phase I, in which the statistical parameters 
are estimated and the control limits are established; 
and phase II, in which one monitors the process. 
In phase II, samples are collected from the process, 
some plotting statistic is calculated and their values 
are compared to the control limits set in phase I 
(Montgomery, 2004).

The control chart performance is generally assessed 
by different metrics depending on the phase. As it 
was previously mentioned, the ARL is the metric used 
to assess the control chart performance in phase II. 
The ARL value is given by 0

1
α

=ARL  in a process 
under control and by 1

1 β
=

−
ARL  in a process out of 

control; wherein α and β are the type I and II errors, 
respectively (Montgomery, 2004).

2.2 Non-parametric control chart with 
simultaneous monitoring of location 
and scale

Having the study by Mukherjee & Chakraborti 
(2012) as reference and based on the classic WRS 
(Wilcoxon Rank-Sum) non-parametric test (see, 
Gibbons & Chakraborti, 2011), which is a defined by 
a test statistic for the location, T1, for a sample size m 
in phase I and size n in phase II, given by Equation 1.

	 1
1

N

k
k

T kZ
=

= ∑ 	 (1)

Wherein Zk = 1 when the N (where N = m + n) 
data derive from independent samples in phase II; 
and Zk = 0 when the data derive from independent 
samples in phase I.

Figure 4. Networks of researchers who publish on non-parametric control charts. Source: Research Data.
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The non-parametric statistical test used to measure 
the scale is the AB - Freund-Ansari-Bradley-David-
Barton, T2, (see Gibbons & Chakraborti, 2011) and 
calculated by Equation 2

	 ( )2
1

1 1
2

N

k
k

T k N Z
=

= − +∑ 	 (2)

A process is said to be under control when F (x) - the 
probability distribution of phase I - and G(y) - the 
probability distribution of phase II - are the same (F = G) 
for the location and scale parameters. Otherwise, the 
process is said to be out of control. Based on these 
statistical tests (T1 and T2), Mukherjee & Chakraborti 
(2012) determined the H, H1 and H2. control limits 
for some value combinations for m and n.

The mathematical expectation and the variance of 
T1 statistics for a process under control are obtained 
by Equations 3 and 4:

	 ( ) ( )1
1| 1
2

E T IC n N= + 	 (3)
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12
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As for T2 statistics, the mathematical expectation 
and the variance are give by Equations 5, 6, 7 and 8:
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IC (In Control) indicates that the process is under 
control.

By using the Shewhart-Lepage control chart, 
Mukherjee & Chakraborti (2012) proposed an eight-step 
procedure to build a non-parametric control chart. 
This procedure uses the standardized statistics of the 
WRS and AB (Equations 9, 10 and 11) tests as well 
as the S 2

i statistics (Equation 12):
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	 2 2 2
i 1i 2iS S S= + 	 (12)

The S 2
i statistics is plotted and compared to the 

control limit H. If it is below the control limit, the 
process is considered to be under control; if it is 
above the control limit, the process is considered to 
be out of control, and the S1i and S2i statistics are 
compared to the H1 location and H2 scale limits, 
respectively. If both statistics are above the control 
limits, the process is considered to be out of control 
for both location and scale. If it is above one of the 
limits (H1 or H2), the process is considered to be 
out of control for location (S1i2 > H1) or for scale 
(S1i2 > H2) .

mits were determined by Mukherjee & Chakraborti 
(2012) for ARL0=500 and with different values (m, n) 
through computer simulation methods. Table 1 shows 
the limits found by the authors for some (m, n) value 
combinations.

The H = H1 + H2 relationship is a feature of these 
limits. Another feature is that P(S2i  > H|IC) = α 
0.0027, which is partitioned into three exclusive events 
for a process under control, namely: A- Probability 
of the S1i2 > H1  location and of the S1i2 > H2  
scale; B -Probability of the S1i2 > H1  location and 
of the S1i2 > H2 scale; C - Probability of the S2i2 
> H2  location and of the S2i

2 > H2  scale. Thus, the 
probability of a false alarm α follows the following 
relationship between these events: γ1 + γ2 - γ1γ2 = α, 
wherein γ1is the probability of a false positive for 
location, γ2 is the probability of a false positive for 
scale, and γ1γ2 is the probability of a false positive 
for location and scale, simultaneously.

Table 1. Location and scale control combination (m, n) and 
limits.

m n H H1 H2
30 5 9.4 5.75 3.65
30 11 9.24 5 4.24
30 25 8.4 4.3 4.1
50 5 10.32 6.52 3.8
50 11 10.1 6.1 4
50 25 9.5 5 4.5
100 5 11.25 7.25 4
100 11 11.07 6.35 4.72
100 25 10.74 5.4 5.34
150 5 11.5 7.65 3.85
150 11 11.45 6.8 4.65
150 25 11.17 5.61 5.56

Source: Mukherjee & Chakraborti (2012).
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3 Research procedure
The research procedure shown in Figure 5 was 

followed in order to develop the application of 
non-parametric control charts. Stage 1 begins after 
the definition of the product or process features and 
quality parameters; this stage defines the test statistics 
used to measure location and scale, in the current 
case, the WRS and AB tests presented in Section 2.

Stage 2 proposes and analyzes a multiple regression 
model type y = β0 + β1m + β2n + β11m2 + β22n2 + β12mn 
and stage 3 estimates the H, H1 and H2control limits. 
Stage 4 estimates the statistical control limits for 
different (m, n) values in order to enlarge the set of 
sample combination options in phases I and II, when 
the proposed non-parametric control chart is deployed. 
Stage 5 validates the proposed empirical model that 
estimates the control limits through residuals analysis; 
evaluates the control chart performance by ARL, 
determined by simulation methods; and compares 
the performance of this chart to Shewhart charts 
with normal and exponential distributions in order 
to identify possible advantages over other control 
chart types.

The best combination of samples from phases I and II 
were obtained in stage 6 by using response surface 
techniques. The goal was to adjust the parameters 
(m, n) that reflect the best ARL values in terms of 
m and n. Simulation methods (Maple Software) are 
also used in this stage to obtain the ARL value with 
different m and n values. Stage 7 estimated the type I 
and II errors (α, β) and the ARL around the optimum 
solution obtained in stage 6. Stage 8 analyzed and 

compared the chart performance in terms of ARL, 
m and n, in order to find a solution that combines 
good statistical properties and lower sampling cost 
(m, n). Finally, stage 9 defined the sample sizes in 
phase I (m) and in phase II (n) for the non-parametric 
control chart.

4 Estimates of the control limits: H, 
H1 and H2

4.1 Control limits estimates
By fitting a multiple linear regression model 

(Equation 13) to the data in Table 1 using the least 
squares method, it is possible to establish a relationship 
between the (m, n) parameters and the H = H1 + H2 
control limits. The following model was tested in 
the present study:

	 2 2
0 1 2 11 22 12y m n m n mnβ β β β β β ε= + + + + + + 	 (13)

The control limit H has statistically significant 
relationship only to β1, β11 and β12, according to the 
results in Table 2. However, it is possible to see that 
H is significantly dependent on the sample size in 
phase I. The residuals analysis and the R2 value are 
described in section five and indicate the suitability 
of the proposed model to the data in Table 1.

A similar approach showed that β1, β11, and β2 
were statistically significant for H1. Regarding this 
limit, m is significant in its two parameters - simple 
linear and linear quadratic - and n is significant in the 
simple linear term. The results are shown in Table 3.

As for H2, the parameters of m were not identified 
as statistically significant (according to Table  4). 

Figure 5. Research procedure. Source: Research Data.
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The  parameters of n and those of the interaction 
between m and n were identified as significant.

The estimates of the second-order regression 
parameters are provided in Table  2 in order to 
determine the H limit. Table 2 also shows the 95% 
confidence interval for these parameters. The H1 and 
H2 control limit estimates were obtained by using 
the same procedure, and the results are presented in 
Tables 3 and 4.

In the case of the H, H1 and H2 estimates, the 
following regression models were found:

	
2

2

8.332 0.0500 0.000195

0.0399 0.000560 0.000284

Ĥ m m

n n mn

= + − −

− +
	 (14)

	
2

1
2

5.4997 0.03833 0.000125

0.1423 0.002565 0.000247

Ĥ m m

n n mn

= + − −

+ −
	 (15)

	
2

2
2

2.8325 0.01170 0.00007

0.1024 0.003125 0.000531

Ĥ m m

n n mn

= + − +

− +
	 (16)

The results of the estimates of the H, H1 and H2 
control limits, according to the proposed model, 
are shown in Table 5. It appears that the proposed 
method of estimating the control limits can be quite 
satisfactory in practice.

4.2 Illustrating the use of non-parametric 
control chart

A real case comprised a sample of 125 rubber 
products used in automotive components manufactured 
by hot forming process. The thickness of the pieces was 

measured, whose specification rate is 1.17 to 1.37 mm 
with tolerance of ± 0.10 mm regarding the nominal 
value of 1.26. The goal is to apply the mathematical 
models obtained from the results found by Mukherjee 
& Chakraborti (2012) (Equations 14, 15 and 16) and 
to determine the sample size in phase I (m) in order to 
build a non-parametric control chart to simultaneously 
monitor the location and scale measures.

The literature (Mukherjee & Chakraborti, 2012) and 
the results in Tables 2, 3 and 4 indicate that m is the 
most important parameter used to estimate the control 
limits in phase I, and n is important in phase II. Thus, 
four statistical process control strategies - for the use 
non-parametric control charts - were tested for the 
following m values (5, 14, 25 and 50), setting n = 5 . 
The H, H1 and H2 control limits were estimated from 
the proposed regression model. Next, these m and n 
combinations for the four strategies will be analyzed.

a)	 Combinations (m = 5, n = 5) and (m = 14, n = 5) 

A five-size sample (m = 5) was taken in phase I. 
Subsequently, fourteen five-size samples (n = 5) 
were taken in phase II. The eight-step procedure 
by Mukherjee & Chakraborti (2012) was applied. 
The control limits were calculated from the proposed 
mathematical model.

The results are shown in Figure 6. The dashed 
line refers to the control limit H estimated by the 
mathematical model. The results of the S 2

i  statistics 
obtained for each of the fifteen samples in phase II 
were plotted in the charts of Figure 6a. The S 2

i   statistics 

Table 2. Estimate of the regression model parameters for H of the (m,n) combination.

βij STD Error t(6) p -95.% +95.%
mean 8.332189 0.251530 33.12608 0.000000 7.716718 8.947660

m 0.050031 0.004590 10.89993 0.000035 0.038800 0.061263
m2 -0.000195 0.000024 -8.06600 0.000194 -0.000254 -0.000136
n -0.039910 0.029886 -1.33539 0.230175 -0.113039 0.033219
n2 -0.000560 0.000921 -0.60742 0.565836 -0.002813 0.001694

m x n 0.000284 0.000091 3.12055 0.020571 0.000061 0.000507
Source: Results obtained using Statistica 11 software (StatSoft, 2013).

Table 3. Estimate of the regression model parameters for H1 of the (m, n) combination.

βij STD Error t(6) p -95.% +95.%
mean 5.499655 0.468467 11.73968 0.000023 4.353357 6.645953

m 0.038328 0.008549 4.48344 0.004177 0.017410 0.059247
m2 -0.000125 0.000045 -2.77765 0.032097 -0.000235 -0.000015
n -0.142341 0.055662 -2.55722 0.043070 -0.278543 -0.006140
n2 0.002565 0.001716 1.49537 0.185447 -0.001632 0.006763

m x n -0.000247 0.000170 -1.45590 0.195669 -0.000662 0.000168
Source: Research Data.
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shown in Figure 6b was obtained by increasing the 
sample size of phase I to m = 14. From a theoretical 
perspective, the size of the largest sample in phase I 
improves the detection capability in phase II.

b) Combinations (m = 25, n = 5) and (m = 50, n = 5)

The S 2
i  statistics results of m = 25 are presented in 

Figure 7a and those of m = 50 are shown in Figure 7b. 
The last configuration detects one point out of control, 
which could indicate better capability to detect an 
unstable process, i.e., the capability to detect special 
causes in the control chart when m increases. It would 

meet the theory, which, by mathematical means, shows 
the effects of increasing the number of samples in 
phase I on the control charts’ performance in phase II.

The analysis of the data frequency distribution in 
phases I and II of the (m = 50, n = 5) combination was 
performed, as shown in Figure 8. Figure 8a refers to 
the data distribution obtained in phase I and Figure 8b 
shows the data obtained in phase II. It is possible to 
see in phase II that the data are distributed in a more 
dispersed and less symmetrical way in comparison 
to the data of phase I. This behavior shows that this 

Table 4. Estimate of the regression model parameters for H2 of the (m, n) combination.

βij STD Error t(6) p -95.% +95.%
mean 2.832534 0.312140 9.07455 0.000100 2.068754 3.596314

m 0.011703 0.005696 2.05455 0.085700 -0.002235 0.025641
m2 -0.000070 0.000030 -2.33101 0.058560 -0.000143 0.000003
n 0.102431 0.037088 2.76185 0.032774 0.011680 0.193182
n2 -0.003125 0.001143 -2.73375 0.034016 -0.005922 -0.000328

m x n 0.000531 0.000113 4.69966 0.003327 0.000255 0.000808
Source: Research Data.

Table 5. Comparing the estimated results and the exact values.

Obtained from Table 1 Estimates Error
m n H H1 H2 H H1 H2 H H1 H2
50 5 10.32 6.52 3.80 10.205 6.395 3.810 -0.115 -0.125 0.01
50 11 10.10 6.10 4.00 9.997 5.713 4.284 -0.103 -0.387 0.284
50 25 9.50 5.00 4.50 9.355 4.840 4.515 -0.145 -0.16 0.015
100 5 11.25 7.25 4.00 11.319 7.314 4.005 0.069 0.064 0.005
100 11 11.07 6.35 4.72 11.196 6.558 4.638 0.126 0.208 -0.082
100 25 10.74 5.40 5.34 10.753 5.512 5.241 0.013 0.112 -0.099
150 5 11.50 7.65 3.85 11.459 7.609 3.851 -0.041 -0.041 0.001
150 11 11.45 6.80 4.65 11.422 6.779 4.643 -0.028 -0.021 -0.007
150 25 11.17 5.61 5.56 11.178 5.560 5.618 0.008 -0.05 0.058
30 5 9.40 5.75 3.65 9.487 5.853 3.635 0.087 0.103 -0.015
30 11 9.24 5.00 4.24 9.245 5.200 4.045 0.005 0.2 -0.195
30 25 8.40 4.30 4.10 8.524 4.397 4.127 0.124 0.097 0.027

Source: Research Data.

Figure 6. a) Si
2 statistics obtained by the (m = 5, n = 5) combination; b) Si

2 statistics obtained by the (m = 14, n = 5) 
combination. Source: Research Data.
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process is not under control, as shown by the control 
chart of Figure 7b.

The same sampled data (125) shown in Appendix 
A were used to build the Shewhart charts for mean 

and range; 25 samples of size n = 5 were extracted. 
These charts, shown in Figure 9, correspond to the 
phase I of the classical procedure used to build control 
charts. There was increased dispersion, which may 

Figure 7. a) Si
2 statistics obtained by the (m = 25, n = 5) combination; b) Si

2  statistics obtained by the (m = 50, n = 5)  
combination. Source: Research Data.

Figure 8. (a) Histogram of the sample of phase I; (b) Histogram of the samples of phase II. Source: Research Data.

Figure 9. Shewhart-type control chart considering 25 samples of size 5. Source: Research Data.



Method for determining the control limits of nonparametric... 155

be seen in the middle of the chart from sample 13. 
However, no point was detected outside the control 
limits, differently from what was observed in the 
chart of Figure 7b.

4.3 Statistical validation of the model and 
optimal combination of m, n

According to Gibbons & Chakraborti (2011), 
regarding large samples subjected to certain 
conditions, the statistic [TN – E(TN)/σ(TN) has an 
approximate standard normal probability distribution 
(it is the standardization used to calculate S1 and S2). 
Figures 10 and 11 show the probability distribution 
of these statistics, which have roughly symmetrical 
distributions (Gibbons & Chakraborti, 2011). Figure 12 
shows the residuals analysis of the model that estimates 
H. Figure 12 shows that the residuals are stable and 
follow the normal probability distribution; this result 
is required to validate the estimation model of the 
proposed control limit.

One of the important aspects of the response surface 
analysis technique consists of finding the optimal 
value of m,n to find the best H estimate. The herein 
found value was m = 82 and n = 12. These values are 
shown in Figure 13. Results similar to m = 82 and 
n = 12 were obtained for H1 and H2. These results 
are shown in Figures 14 and 15.

The residual analyses for H1 - shown in Figure 16 
- and for H2 - shown in Figure 17 - indicate slight 
deviation in the residuals normality, especially 
for H2. Unlike H, in which the residuals showed 
symmetrical behavior in the normal probability 
distribution, the limit estimation methods for location 
(H1) and scale (H2) should be carefully analyzed to 
assess the impact of these deviations on the control 
chart performance. It is worth emphasizing that the 
estimated H limit helps monitor the location and scale 
parameters in process monitoring. In addition, H1 
and H2 are objects of analysis for the effects on the 
central position or dispersion measurements. Then, 
studying the performance is important to check the 
performance level obtained in this type of chart, and 
it is presented in the next section.

5 Analysis of the non-parametric 
control chart performance obtained 
by the proposed model and 
compared to Shewhart charts
The performance analysis of different types of 

control charts is traditionally based on the ARL 
parameter. Table  6 and Figure  18 show the ARL 
results for different combinations of (m,n) values.

Computer simulation – in MAPLE – was used to 
estimate the ARL values for τ = 0.01 to 0.07. Fifty 
thousand (50,000) control chart simulations were 
performed for the combinations shown in Table 6. 
The  results show that the ARL decreases as m 
increases. For example, for τ = 0.01 the (m = 14, n = 5) 
combination needs, on average, 50.84 samples to 
detect one point out of control; whereas 32.26 samples 
are necessary for the (m = 30, n = 5) combination, 
which means a better performance for a sample size 
m = 30 for phase I in comparison to m = 14.

The results shown in Table 6 and in Figure 18 
indicate that, regarding an out-of-control process, the 
non-parametric control chart performance improves 
as the sample size (m) increases. The performance of 
the non-parametric control charts is worse than that 
of the Shewhart-type charts with normal distribution, 
which means higher α and β errors. However, they 
perform better than the Shewhart-type control 
charts with exponential distribution. Therefore, the 
non-parametric control chart performs better than 
the classic control chart when the data probability 
distribution is unknown or when there is no normal 
probability distribution.

Figure 10. Probability distribution of S1 statistics. Source: 
Research Data.

Figure 11. Probability distribution of S2 statistics. Source: 
Research Data.
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Figure 13. Optimal values of m, n for H.

Figure 12. Analysis of H residuals. Source: Research Data.
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Figure 14. Optimal values of m, n for H1. Source: Research Data.

Figure 15. Optimal values of *m, n for H2. Source: Research Data.
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Figure 16. Analysis of H1 residuals. Source: Research Data.

Figure 17. Analysis of H2 residuals. Source: Research Data
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previous sections. Ten thousand (10,000) cycles 
were performed for each combination shown in 
Table 7 - τ = 0, when the process was under control, 
and τ = 0.01 ..0.07 when the process was out of control.

As for the condition of the (m = 80, n = 10) variables 
obtained in the previous section, a good control chart 
performance was obtained when τ ≥ 0.03; for example, 
for τ = 0.03, the ARL = 1.39; however, when the 

6 Analyzing the best conditions of 
(m, n) variables
This section evaluates the type I and II errors (α and β) 

and the ARL performance of the non-parametric 
control chart, whose control limits were obtained by 
Equations 14, 15 and 16. The results of the analysis 
are shown in Table 7, whose values were obtained 
by simulating the industrial process analyzed in the 

Table 7. Type (I, II) errors and ARL for the non-parametric control chart whose limits were obtained from mathematical 
models.

Combination α error/ ARL0

β error / ARL
Synthetic Chart

(m,n) τ = 0 0.01 0.02 0.03 0.04 0.045 0.048 0.05 0.06 0.07
(40. 5) 0.005 0.99 0.88 0.61 0.33 0.32 0.16 0.18 0.03 0.00

200.000 100.00 8.33 2.59 1.48 1.46 1.19 1.22 1.03 1.00
(50. 5) 0.007 0.99 0.87 0.62 0.39 0.21 0.13 0.09 0.05 0.00

140.845 100.00 7.58 2.60 1.65 1.27 1.15 1.10 1.05 1.00
(50. 10) 0.003 0.96 0.74 0.31 0.05 0.03 0.02 0.00 0.00 0.00

322.581 24.39 3.82 1.45 1.05 1.03 1.02 1.00 1.00 1.00
(50. 20) 0.003 0.88 0.56 0.04 0.00 0.00 0.00 0.00 0.00 0.00

333.333 8.26 2.25 1.04 1.00 1.00 1.00 1.00 1.00 1.00
(60. 5) 0.004 0.98 0.93 0.68 0.35 0.25 0.19 0.13 0.02 0.00

250.000 50.00 14.29 3.08 1.55 1.33 1.24 1.15 1.02 1.00
(60. 10) 0.002 0.97 0.73 0.34 0.03 0.01 0.00 0.00 0.00 0.00

500.000 33.33 3.68 1.52 1.03 1.01 1.00 1.00 1.00 1.00
(70. 5) 0.003 0.97 0.94 0.73 0.35 0.24 0.16 0.08 0.03 0.00

333.333 33.33 16.13 3.65 1.54 1.32 1.19 1.09 1.03 1.00
(70. 10) 0.007 0.99 0.98 0.78 0.37 0.16 0.06 0.06 0.02 0.00

142.857 100.00 50.00 4.46 1.60 1.19 1.07 1.06 1.02 1.00
(80. 5) 0.002 0.95 0.89 0.71 0.31 0.19 0.11 0.12 0.02 0.00

500.000 19.61 9.01 3.41 1.44 1.24 1.12 1.14 1.02 1.00
(80. 10) 0.006 0.98 0.71 0.28 0.06 0.02 0.01 0.00 0.00 0.00

166.667 50.00 3.44 1.39 1.06 1.02 1.01 1.00 1.00 1.00
Source: Research Data.

Table 6. Performance between the non-parametric control chart and the Shewhart-type control chart (T-S).

Combination ARL0

ARL
Proposed non-parametric chart

(m,n) τ = 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
(10.5) 175.41 68.97 21.28 6.62 3.26 1.92 1.32 1.14
(14.5) 161.80 50.84 12.58 4.28 2.16 1.37 1.11 1.03
(20.5) 145.25 46.51 11.30 3.77 1.83 1.25 1.07 1.01
(30.5) 209.02 32.26 10.00 3.13 1.61 1.16 1.03 1.00

T-S chart (Normal)
(10.5) 250.67 41.20 7.33 2.48 1.36 1.06 1.01 1.00
(14.5) 363.83 54.40 7.82 2.53 1.35 1.06 1.01 1.00
(20.5) 387.18 53.73 8.52 2.40 1.32 1.07 1.01 1.00
(30.5) 466.07 58.36 8.37 2.32 1.34 1.06 1.01 1.00

T-S chart (Exponential)
(10.5) 77.52 73.53 69.93 62.23 62.50 58.64 68.49 51.81
(14.5) 101.01 92.59 75.75 74.07 86.58 76.63 65.36 61.54
(20.5) 129.87 92.59 105.26 89.29 81.97 72.46 76.92 89.69
(30.5) 117.00 97.09 95.24 89.69 84.75 83.33 76.34 80.00

Source: Research Data.
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By comparing the performance of the non-parametric 
synthetic control chart - with the estimated control 
limits - and the classical Shewhart control chart, it is 
possible to see the better performance of the latter. 
However, the results showed better performance of 
the non-parametric synthetic chart when the data 
distribution was asymmetric.

The results also show that the m parameter is 
more important in the non-parametric control chart 
performance, as shown in Table 7. The search methods 
applied for optimal solutions indicate m = 82 and n 
= 12; however, by simulating several combinations, 
it was possible to find a satisfactory control chart 
performance for m = 50 and n = 20, which was 
suggested for this type of chart.

The literature shows that there is a theoretical rule 
for the use of control charts, which consists in phases 
I and II, in which hypothesis tests are associated as 
an essential ingredient for the successful application 
of these charts. According to Woodall (2000), the 
form of the underlying distribution and the data 
autocorrelation degree have become an important 
component in the interpretation of control charts, in 
phase I, when the control limits are estimated, and in 
Phase II, when their performance is evaluated. Thus, 
studying the control chart performance is important 
as an insight of how control charts behave in practice.

Traditional control chart methods are still applicable 
to many industrial practical situations; however, it is 
worth considering new developments of control chart 
methods that suit the new environmental conditions 
of the manufacturing industry.
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Appendix A. Sampled data in a real case: 25 samples of size n = 5.

Cavity Value Cavity Value
1 1.31 64 1.23
2 1.26 65 1.25
3 1.22 66 1.28
4 1.26 67 1.31
5 1.22 68 1.30
6 1.25 69 1.24
7 1.24 70 1.22
8 1.30 71 1.28
9 1.25 72 1.23
10 1.26 73 1.23
11 1.24 74 1.29
12 1.25 75 1.22
13 1.25 76 1.24
14 1.27 77 1.32
15 1.26 78 1.27
16 1.26 79 1.28
17 1.28 80 1.24
18 1.24 81 1.24
19 1.28 82 1.27
20 1.23 83 1.27
21 1.27 84 1.27
22 1.23 85 1.28
23 1.32 86 1.28
24 1.24 87 1.22
25 1.25 88 1.30
26 1.23 89 1.30
27 1.25 90 1.22
28 1.26 91 1.32
29 1.26 92 1.30
30 1.25 93 1.23
31 1.30 94 1.25
32 1.28 95 1.30
33 1.25 96 1.25
34 1.24 97 1.22
35 1.24 98 1.17
36 1.26 99 1.29
37 1.28 100 1.21
38 1.25 101 1.32
39 1.24 102 1.29
40 1.21 103 1.26
41 1.26 104 1.31
42 1.25 105 1.28
43 1.28 106 1.26
44 1.26 107 1.33
45 1.27 108 1.23
46 1.28 109 1.24
47 1.26 110 1.25
48 1.19 111 1.23
49 1.32 112 1.22
50 1.26 113 1.25
51 1.27 114 1.23
52 1.24 115 1.22

Source: Research Data.
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Appendix A. Continued...

Cavity Value Cavity Value
53 1.25 116 1.30
54 1.29 117 1.24
55 1.27 118 1.23
56 1.28 119 1.23
57 1.29 120 1.23
58 1.26 121 1.29
59 1.27 122 1.26
60 1.26 123 1.24
61 1.23 124 1.28
62 1.25 125 1.25
63 1.25

Source: Research Data.


