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Resumo: A configuração de redes logísticas para serviços de emergência é questão estratégica de imensa importância, 
visto que pequenas variações no tempo de resposta podem implicar na morte do solicitante. Partindo dessa premissa, 
o trabalho propõe novas alternativas de posicionamento para as ambulâncias do sistema SAMU na cidade de 
Duque de Caxias, RJ, capazes de reduzir o tempo de resposta do serviço. Essas propostas de reposicionamento das 
ambulâncias foram construídas em duas etapas: na primeira, dois modelos de Programação Inteira foram aplicados 
para se obter soluções que provejam maior cobertura à população. Posteriormente, o Modelo do Hipercubo foi 
empregado para avaliar a disponibilidade dos servidores, dentre outros indicadores de desempenho relevantes, 
como o tempo médio de resposta e a taxa de ocupação das ambulâncias.
Palavras-chave: Localização de facilidades; Modelo do Hipercubo; Serviços de emergência.

Abstract: The configuration of emergency services logistic networks for is a paramount strategic issue since small 
deviations may lead to death of users. From this premise, the work proposes new alternatives for positioning the 
SAMU ambulance system in the city of Duque de Caxias / RJ, which are able to reduce the service response time. 
These ambulances repositioning proposals were built in two stages: at first two models of Integer Programming 
were used in order to obtaining solutions that maximizes coverage. Then, the Hypercube Model was applied for 
evaluating the server’s availability under randomness, as well as other relevant performance indicators, such as 
average time response, and servers’ workloads.
Keywords: Facility location; Hypercube Model; Emergency services.
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1 Introduction
When designing a logistic network it is essential 

to pay attention to the particularities inherent to an 
operation in the private or public sector. While the 
former searches for a network in which the products 
flow between points of supply and demand based 
on the inherent cost/profits, in the public sector 
the central issue is to optimize any function that 
measures the availability of the service for a given 
population (Ghiani et al., 2004).

Within the public administration, the three main 
objectives to be considered during the design of a 
network are: budget; operational cost reduction; and 
the increasing of the service level (Ghiani et al., 
2004). Particularly in healthcare, one of the logistical 
problems of greatest interest is the ambulance location 
that will attend emergency calls. The  location of 
these facilities is very sensitive to the required 

service level, mainly characterized by the service 
response time. A poor coverage may imply the 
death of the user.

The response time or, as will be discussed later, 
the coverage limit set by US law is 10 minutes 
maximum for urban areas within a service level of 
95%, and may be extended to 30 minutes for rural 
areas (Ball & Lin, 1993). In London, 95% of the 
requests must be met within 14 minutes (Galvão et al., 
2003a). In Montreal, the maximum response time 
must be less than or equal to 10 minutes for 70% of 
calls (Gendreau et al., 2001). However, according to 
Takeda et al. (2004), in Brazil there is no legislation 
to determine an upper limit for the response time 
of this kind of service.

In this paper, the repositioning of ambulances of 
the Mobile Emergency Service (SAMU), in Duque 
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de Caxias/RJ, is analyzed, using the combination 
of Integer Programming techniques (IP) and 
Queuing Theory. Although there is extensive 
use of deterministic optimization models in such 
problems as, for example, Schmid & Doerner (2010), 
Iannoni et al. (2009) and Gendreau et al. (1997), 
they do not properly evaluate the congestion effects 
on the servers. The current work is characterized by 
the use of a queuing model in order to evaluate the 
solutions generated by models of IP, used to locate 
SAMU ambulances. The use of Hypercube Model 
(HM) in congested systems can represent aspects 
fleeing to the above deterministic formulations 
(Larson, 1974).

This study also aims to evaluate the possibility 
of increase the number of users served within an 
acceptable time limit by just reposition the servers in 
locations that already have a minimum infrastructure. 
This idea is aligned with the concept of “decentralized 
basis” presented in the Ministerial Order No. 2657 
of the Ministry of Health, 16 December 2004, which 
allows for decentralized bases that act as outposts for 
ambulances and their teams, thus ensuring a quality 
response time to users of SAMU (Brasil, 2013).

This paper was divided into five sections. 
Section 2 presents a brief literature review on the 
facility location models for emergency services 
coverage. The  current performance of system was 
analyzed through coverage indicators, as shown in 
Section 3. Section 4 discusses the application of 
two IP models surveyed to the data of the SAMU 
– Duque de Caxias/RJ, and the obtained results are 
presented in Section 5. It also reports the proposals 
for positioning the SAMU ambulances in order to 
maximize service coverage. In this sense, the HM 
is used to assess part of the best solutions obtained 
by one optimization package for the IP. Conclusions 
and perspectives for future research are presented 
in Section 6.

2 Literature review
The Set Covering Problem (SCP) was one of 

the first discrete models for facility location used 
in emergency services (Toregas  et  al., 1971). 
It  considers a coverage constraint expressed by 
the maximum travel time or distance between 
facility/server and client in a logistic network. 
Such separation measure is sometimes referred as 
“critical distance”, S. The problem is defined over a 
network in which I is the set of demand nodes, and 
J is the set of candidates points to the allocation of 
servers. The node i ( )i I∈  is considered covered by 
the service if and only if the separation (measured 
in units of distance/time) between client node i and 
the nearest ambulance, located at some node ( )j J∈
, is less than or equal S.

Unlikely the SCP, the Maximum Coverage 
Problem proposed by Church & Revelle (1974) 
seeks to maximize the population covered within the 
“critical distance”, S, given a predefined number of 
facilities, p. In this model, the number of number of 
facilities/servers is determined exogenously by the 
existence of limited budget or managerial restrictions.

The TEAM model (Tandem Equipment Allocation 
Model) assumes the existence of two separate 
servers, each one with its respective critical distance. 
This premise is very common in emergency services, 
as there are servers with different equipment, which 
are able to attend different events (Schilling et al., 
1979).

There are situations in which the service 
provided by the basic units may also be provided 
by the advanced ones. So, a higher coverage can be 
achieved by allowing the servers to be positioned 
independently. Such adaptation was presented 
by Schilling et al. (1979) in the model known as 
FLEET (Facility-location, Equipment-emplacement 
Technique). This model requires that each client 
node is simultaneously covered by primary servers 
(or base) and special (or advanced). The sets 

{  | }p p
i jiN j J d S= ∈ ≤  and {  | }s s

i jiN j J d S= ∈ ≤  contain the 
nodes where the allocation of a server, primary and 
special, in this order, allows the coverage of node i. 

 jid  is the “distance” between nodes j and i, through 
some shortest path in the network, and pS  and sS  are 
the “critical distances” to ensure coverage by basic 
and special servers, respectively. The formulation 
also considers the parameters and variables below:

− ia  = population of node i;
− pP  = number of primary servers;
− sP  = number of special servers;
− zP  = number of facilities to be installed.
The decision variables are:

− 
1,  if a primary ambulance is allocated to node ;

0, otherwise.                                                                  
p
j

j
x 

= 


− 1,  if a special ambulance is allocated to node ;
0,  otherwise.

s
j

j
x 

= 


− 
1,  if a facility is opened at node ;
0, otherwise.j

j
z 
= 


− 
1, if  node  is covered; 
0,  otherwise.i

i
y 
= 


The mathematical formulation of FLEET is then 
given by Expressions 1-11:
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The objective Function 1 seeks to maximize the 
covered population, while the Constraints 2 and 3 
compute the coverage of node i only when it is 
covered by at least one basic and one advanced 
ambulance, respectively. The Equations 4 and 5 
defines the availability of servers of each kind. 
The set of nodes that are able to receive a facility is 

NJ , NJ J⊂ , and exactly zP  facilities must be installed, 
as indicated in (6). The Constraints 7 and 8 ensure 
that ambulances are allocated only to nodes which 
have a facility.

One of the first stochastic approaches to locate 
facilities/emergency call servers was the Maximum 
Availability Location Problem (MALP) proposed 
by Revelle & Hogan (1989). MALP seeks to model 
the uncertainty inherent the demand by simplifying 
assumptions. P servers must be located in order to 
maximize the population covered within S, with 
reliability q (Galvão et al., 2003b). It assumes that 
servers operate at the same busy fraction, ρ , which 
is formally defined in (12).

	   

 

  
  
24 24
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λ λ
ρ  	 (12)

such that:
− iλ  = arrival rate of calls at node i I∈ ;
− t  = average duration of a call (in hours);
−  P = number of servers.
The single group of decision variables is jy , 

such that:

− 
1, if a server is located at node ;
0, otherwise.j

j
y 

= 


The minimum number of servers, b, needed to 
cover a given node using the confidence level q can 
be obtained from (12). This is done by computing 
the probability of having at least one ambulance 
available to answer a call within “critical distance”, 
S, given the arrival rate of calls (Revelle & Hogan, 
1989). Expression 13 calculates this probability, 
such that jic  are the coefficients of the binary matrix, 
whose value is 1 if jid S≤ , and 0, otherwise.

( )
( )

  

if at least one server is within critical distance   

1 – none server is within  critical distance  
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The sum 
  

ji j
j J

c y
∈
∑  defines the number of servers 

available within “critical distance” S from a given 
demand node i I∈ . In order to cover a node with 
reliability q, there must be at least b servers able 
to answer this a call from this node. Computing 
the logarithms of both members in (13) it becomes 

  
 ji j

j J
c y b

∈

≥∑ , where ( )log 1
 

log
b

−
=

q
ρ

. That is, given the busy 

fraction ρ , we are able to compute the number of 
required facilities for guaranteeing coverage with 
reliability q.

The MALP variables are:

− 
1, if node i is covered by at least  ambulances;
0, otherwise.ik

k
y 

= 


− 1, if an ambulance is located at node ;
  

0, otherwise. j
j

x 
= 


The mathematical formulation of MALP is given 
by the Expressions 14-18:
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	 { },   0,1          ,  ,  2,...,j ikx y i I j J k b∈ ∀ ∈ ∀ ∈ =  	 (18)

The objective function (14) maximizes the 
population covered within critical distance S and 
reliability q, that is, only the nodes covered by k b=  
ambulances are computed. The left-hand side in (15) 
counts the number of servers within the “critical 
distance” S from the demand node i, thus ensuring 
coverage when there are b servers. Moreover, if k 
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ambulances cover node i, then it is true that i is also 
covered by 1k −  servers, as expressed by Constraint 
16. Finally, Constraint 17 defines the number of 
ambulances.

Although MALP considers the probability that 
the server is available when a call arrives, there 
is no guarantee that the uncertainty related to the 
arrival process has been well modeled, which can 
significantly affect the reliability of answering calls, 
causing the formation of queues and increasing the 
time of service. Furthermore, the assumption that the 
servers have the same busy fraction is unlikely in a 
real situation. Batta et al. (1989) also support this 
statement pointing causes as the disproportionate 
distribution of demand along the served region, and 
the dispatching policy that can prioritize certain 
servers, thus unbalancing the fraction of time they 
are occupied. Despite the existence of models that 
consider a specific busy fraction for each server, it 
is difficult to infer their values as they are output 
from the positioning computed by the location 
model. Brotcorne et al. (2003) suggest the usage 
of simulation or queuing theory to obtain them.

Therefore, given a solution obtained by one of 
the models just discussed above, it is interesting to 
evaluate it through indicators which are influenced 
by uncertainty (such as average answer time, average 
number of waiting users, among others). In this paper 
this evaluation is done by the Hypercube Model 
proposed by Larson (1974) and commonly used to 

model systems in which servers are dispatched to the 
customers in order to provide a service, and demand 
is geographically distributed by discrete atoms.

The area under study is divided into I geographic 
atoms (nodes) and the arrival of calls from atom 
i is a Markovian process with rate iλ . In order 
to answer these calls, the system has N servers 
distributed among the atoms, whose response 
time is exponentially distributed with attendance 
rate nµ (Chiyoshi et al., 2000). Every server can be 
in one of two states, free (0) or busy (1), and the 
combination of the states of all servers results in 
the system’s state. For example, for a system with 
three servers, the { }001  state indicates server #1 is 
occupied, while servers #2 and #3 are free. Hence, 
the number of possible states is 2N .

We assume only one server is dispatched to 
the same call, and there is a priority order among 
servers for answering a call originated from atom 
i. If the server of higher priority is busy, the second 
is dispatched, and so on until the last. In state { }11...1  
all servers are busy, and any new call must to wait 
in a queue, according to FCFS (First Come, First 
Served) policy. So, besides the 2N  states mentioned 
previously, there also are the states in which u  calls are 
in the system, such that { } { } { }1 2 31: , , ,N N Nu N S S S+ + +≥ + … 
These states may be represented by the vertices of 
a hypercube, which has inspired the model’s name 
(Chiyoshi et al., 2000). Figure 1 illustrates a system 
with N = 3 servers and queue limited to l calls.

Figure 1. Possible states for three servers and finite queue. Source: Elaborated by the authors.
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Larson (1974) defines two transition classes in a 
Hypercube: upward, in which the server goes from 
free to busy, and downward when the server changes 
from busy to free. It is assumed transitions only 
occur between adjacent vertices of the Hypercube, 
and the rate at which the system enters a particular 
state is equal to the rate it leaves this state, so the 
model’s equilibrium equations are built. By taking 
an example with N = 3 servers and I = 3 atoms and 
assuming Bp  as the probability of the system to be in 
state B the equilibrium equation around { }000B =  is 
then expressed in Equation 19, where λ is the total 
call rate of the system:

000 1 001 2 010 3 100   p p p p= + +λ µ µ µ  	 (19)

In Equation 19, 1 2 3   = + +λ λ λ λ , since from the state 
{ }000  the system can enter the states { }001 , { }010  or 
{ }100  by receiving a call originating from atom #1, 
#2 or #3, respectively. The right-hand side indicates 
the possibility of reaching the { }000  state from the 
answering of any call when the system is in one of the 
states { }001 , { }010  or { }100 , which occur, respectively, 
with rates iµ , 1, 2, 3i = . Considering that the server n 
is located at atom i n=  (so, it is preferred to serve 
itself), the state equation { }001  is constructed in a 
similar way:

( )1 001 1 000 2 011 3 101   p p p p+ = + +λ µ λ µ µ  	 (20)

State { }111  is obtained by receiving a call when the 
system is in the states { }011 , { }101  or { }110 , regardless 
the preference order, and also by the answering of 
any call when the system is in state 4S  in which 
there are three users being in service and one in 
the queue. Once a server completes the service, it 
becomes available and it is dispatched to answer 
the call that had been queued, bringing the system 
back to the state { }111 . Thus, the equation for the 
state { }111  is in (20):

( ) 111 011 101 110 4   p p p p p+ = + + +λ µ λ λ λ µ  	 (21)

Given the system’s equilibrium condition, the 
transition rates between the states { }111  and 4S  shall 
be equal, i.e., 111 4p p=λ µ . Likewise, transitions 

between states and { }lS  e { }1lS + , to l N≥  are equal 

and equivalent to =
λρ
µ

. The transition equations 
when all servers are busy forms a geometric 
progression, so ( )111 4 5 111 / 1p p p p+ + +…= − ρ . As the 
sum of the probabilities of all states of the system is 
equal to 1, it is possible to obtain the normalization 
Equation 22, resulting in a linear system that has a 
unique solution with 2N  equations.

( )000 001 010 111    / 1 1 p p p p+ + +…+ − =ρ  	 (22)

By solving this system, different performance 
metrics can be computed, as the average response 
time, the busy fraction and the probability of 
queuing, which allows one to analyze how the 
geographic arrangement react when subjected to 
stochastic demand.

Among the studies that used the Hypercube Model 
it is worth also mentioning the works of Larson 
(1975), Brandeau & Larson (1986), Galvão et al. 
(2003b), Takeda et al. (2004) and Souza et al. (2013).

3 Field research description
Duque de Caxias is a city of the metropolitan 

region of Rio de Janeiro, which according to the 
IBGE census had 855,048 inhabitants by 2010 
(IBGE, 2014). To serve this population, SAMU has 
seven basic life support (BLS) and two advanced life 
support ambulances (ALS). As in many Brazilian 
cities, the Health Department of Duque de Caxias does 
not have any computational tool for locating these 
ambulances, which is made empirically most times. 
The operational coordination of SAMU is located at 
Hospital Dr. Moacir Rodrigues do Carmo, where the 
two advanced units are positioned. Table 1 shows 
the current distribution of ambulances in the city.

3.1 Logistical network construction
At first, all public hospitals, health care centers 

and UPAs (emergency care units) in the city were 
considered as candidate locations to install a facility, 
resulting in the set J defined in the Formulations 1-11 
and 14-18. In addition, the geographical area of the 

Table 1. Ambulance distribution existing by the time of this research.

Facility Address ALS BLS
Hospital Municipal Dr. Moacir R. do Carmo 3200 Washington Luiz Hwy., Beira Mar 2 2
Posto Médico Sanitário de Campos Elíseos 333 Actura St., Campos Elíseos 0 1
Posto Médico Sanitário Parque Equitativa Automóvel Clube Ave., Parque Equitativa 0 1
Posto Médico Sanitário do Pilar Carlos Alves St., Pilar 0 1
Posto Médico Sanitário Saracuruna Presidente Roosevelt Ave., Saracuruna 0 1
Posto Médico Sanitário de Xerém Nóbrega Ribeiro St., Xerém 0 1
Source: Elaborated by the authors.
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Table 2. Network nodes.

Address Node Address Node
Pam 404 Doutor Fernando Gil 01 Duque de Caxias, CEP 25250-400 25
Posto de Saúde Alaide Cunha 02 Duque de Caxias, CEP 25271-350 26
Duque de Caxias, CEP 25235-460 03 Duque de Caxias, CEP 25036-600 27
Duque de Caxias, CEP 25015-415 04 Duque de Caxias, CEP 25272-410 28
Duque de Caxias, CEP 25267-390 05 Duque de Caxias, CEP 25265-232 29
Posto Médico Sanitário de Campos Elíseos 06 Hospital Municipal Dr. Moacir R. do Carmo 30
Duque de Caxias, CEP 25220-570 07 Duque de Caxias, CEP 25240-650 31
Duque de Caxias, CEP 25245-230 08 Duque de Caxias, CEP 25046-380 32
Centro Municipal de Saúde de Duque de Caxias 09 Posto de Saúde Sarapuí 33
Hospital Infantil Ismélia Silveira 10 UPA Sarapuí 34
UPA Infantil Walter Garcia 11 Duque de Caxias, CEP 25025-300 35
UPA Duque de Caxias 12 Posto Médico Sanitário do Pilar 36
Duque de Caxias, CEP 25251-100 13 Posto Médico Sanitário Santa Cruz da Serra 37
Duque de Caxias, CEP 25243-150 14 Duque de Caxias, CEP 25271-430 38
Duque de Caxias, CEP 25237-030 15 Duque de Caxias, CEP 25040-060 39
Posto Médico Sanitário Parque Equitativa 16 Duque de Caxias, CEP 25045-040 40
Duque de Caxias, CEP 25060-190 17 Posto Médico Sanitário Saracuruna 41
Duque de Caxias, CEP 25231-180 18 Duque de Caxias, CEP 25270-450 42
Posto Médico Sanitário Dr. Jorge R. Pereira 19 Duque de Caxias, CEP 25030-180 43
Posto de Saúde Doutor José de Freitas 20 Duque de Caxias, CEP 25040-610 44
Posto de Saúde Edna Salles 21 Duque de Caxias, CEP 25065-162 45
Posto de Saúde José Camilo dos Santos 22 Hospital Municipal Maternidade de Xerém 46
Hospital Estadual Adão Pereira Nunes 23 Unidade Pré-Hospitalar Álvaro Figueira 47
Duque de Caxias, CEP 25250-130 24 Posto Médico Sanitário de Xerém 48
Source: Elaborated by the authors.

Duque de Caxias was divided into sub regions as 
small as possible given the available data. In each 
of them, there was chosen arbitrarily a “center”, 
where all demand is assumed to be concentrated, 
originating the set I, in such a way that J I⊂ . Table 2 
describes the vertices I considered in the study, such 
that the shaded nodes are those belonging to set J, 
while the others belong only to set I. The location of 
each atoms in terms of latitude (LAT) and longitude 
(LONG) can be found in Table 3, as well as their 
population ia , which was obtained based on IBGE 
census in 2010 (IBGE, 2014).

At last, a directed network ( ),G V A=  was built, so 
that the arcs in the set A represent the possibilities 
of treks between pairs of vertices (through streets, 
avenues or alleys). These arcs are valued with 
the travel times among the pairs of nodes in V, 
V  = I. It  is assumed that when attending a call 
the ambulance uses the shortest route between its 
current location and user’s location. The travel 
times among facilities and the demand nodes were 
estimated based on the values corresponding to peak 
times, between 5pm and 7pm, by consulting the API 
(Application  Programming Interface) by Google 
Maps. Table 4 shows the travel times (in minutes), 

where the shaded values correspond to those which 
jic  = 1, while for others, 0jic = .

3.2 Current arragement analysis
According to Bertelli et al. (1999), the highest 

survival frequency of cardiac arrest victims occurs 
when the resuscitation maneuvers are carried out 
within 8 minutes. This parameter was used as 
response time limit for the advanced type servers, 
i.e., SS  = 8 minutes. For basic ambulances, it was 
adopted pS  = 12 minutes. Considering the positioning 
of ambulances and the estimated travel times, we 
used the HM to evaluate the performance parameters 
of the current logistic arrangement.

According to SAMU’s operational database, 
17,862 calls were received between January and 
June 2013. Using the assumptions adopted in HM, 
the number of arrivals during the time interval t 
follows a Poisson distribution with mean λ if and 
only if the time between arrivals is exponentially 
distributed with mean 1/ λ  (Taha, 2008). In order 
to verify this assumption, the mean interval times 
between successive calls were taken over 21 days, 
from the above mentioned database, as shown in 
Table 5.
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Kolmogorov-Smirnov test with a = 0.05, from which 
was computed a p-value greater than 0.7. Therefore, 
the service rates sµ  = 60/77 = 0.78 calls/hour and 

pµ  = 60/75 = 0.80 calls/hour were computed for 
the ASL and BSL units, respectively. At last, the 
preference order matrix was created, listing for each 
atom i the closest servers (in terms of travel time), 
in ascending order, with no distinction between the 
vehicle’s type (basic or advanced). The server in 
the first column of row i is then the preferred, and 
the others are used as backups.

The system allows queuing and even though it is 
unrestricted in practice, it was adopted a capacity 
of nine users (the number of servers) in order to 
calculate the probability of arriving a call when the 
queue is so large that it would be considered lost. 
The probability of receiving a tenth call when the 
queue already is at full capacity can be calculated 
as 10

1 1p …ρ . In the simulation of the current logistic 
arrangement, the probability of this event was 
0.03%, while in the proposed scenarios it was less 
than 610 , which indicates that this limitation does 
not bring significant changes to the performance 
indicators of HM.

The average travel times in this system ( )T  and 
to each atom ( )iT  are computed by expressions (23) 
and (24), respectively (Chiyoshi et al., 2000):

Using the Kolmogorov-Smirnov test for average 
with significance level a = 0.05, it was obtained a 
p-value = 0.9, which indicates that one cannot reject 
the null hypothesis that the interval between successive 
arrivals follows a negative exponential distribution and. 
Hence, the number of calls in t is a Poisson process 
with mean λ̂  = 1/2.39 = 0.42 calls/hour. Given the 
unavailability of data disaggregated by geographic 
atoms, the call rate of each atom ( )iλ  was estimated 
using the same approach adopted by Takeda et al. 
(2004). The authors suggest to approximate  iλ  by 
the multiplicative product between ip  (probability 
of a call is originated from atom i, i.e., the calls 
relative percentage of calls from that atom) and λ̂  
(the total call rate of the system). Table 6 shows the 
obtained estimates.

The total operational time is defined as the sum 
of: vehicle preparation time, travel to the demand 
node, victim attendance and return. The average 
over the 21 days was analyzed and the standard 
deviations (in minutes) are shown at Table 7 and 
distinguished by each server, where the first two 
are advanced units. According to Takeda  et  al. 
(2004), when deviations have the same magnitude 
order as the average, as this particular case, it can 
be inferred that the distribution is approximately 
exponential. This hypothesis was confirmed by the 

Table 3. Population distribution.

Node District LAT LONG ai Node District LAT LONG ai

01 25 de Agosto -22.793 -43.299 7,071 25 Mantiquira -22.596 -43.302 10,616
02 25 de Agosto -22.786 -43.297 7,071 26 Meio da Serra -22.626 -43.206 2,344
03 Amapá -22.676 -43.357 6,477 27 Olavo Bilac -22.766 -43.328 34,770
04 Bar dos Cavaleiros -22.795 -43.326 41,209 28 Parada Angélica -22.629 -43.210 14,458
05 Barro Branco -22.638 -43.244 15,700 29 Parada Morabi -22.657 -43.230 4,444
06 Campos Elíseos -22.660 -43.250 19,622 30 Parque Duque -22.799 -43.289 44,983
07 Cangulo -22.688 -43.236 13,053 31 Parque Eldorado -22.635 -43.307 8,161
08 Capivari -22.647 -43.328 1,489 32 Parque Fluminense -22.725 -43.319 34,969
09 Centro -22.787 -43.308 6,756 33 Parque Sarapuí -22.751 -43.296 1,009
10 Centro -22.788 -43.311 6,756 34 Parque Sarapuí -22.751 -43.299 1,009
11 Centro -22.793 -43.307 6,756 35 Periquitos -22.779 -43.324 17,898
12 Centro -22.786 -43.325 6,756 36 Pilar -22.711 -43.306 33,525
13 Chácaras Arcampo -22.657 -43.274 14,120 37 Santa Cruz da Serra -22.645 -43.274 25,698
14 Chácaras Rio-Petrópolis -22.665 -43.315 14,085 38 Santa Lúcia -22.625 -43.210 16,732
15 Cidade dos Meninos -22.630 -43.222 2,460 39 Santo Antônio -22.745 -43.317 11,420
16 Cidade Parque Paulista -22.635 -43.263 33,501 40 São Bento -22.728 -43.305 22,062
17 Doutor Laureano -22.764 -43.299 43,996 41 Saracuruna -22.676 -43.254 46,660
18 Figueira -22.680 -43.298 16,520 42 Taquara -22.627 -43.236 12,191
19 Imbariê -22.636 -43.217 34,332 43 Vila Centenário -22.774 -43.313 21,922
20 Jardim Anhangá -22.637 -43.231 12,867 44 Vila São José -22.742 -43.317 31,009
21 Jardim Gramacho -22.761 -43.278 53,731 45 Vila São Luís -22.773 -43.298 30,420
22 Jardim Primavera -22.695 -43.261 20,915 46 Xerém -22.599 -43.302 7,466
23 Jardim Primavera -22.670 -43.279 20,915 47 Xerém -22.600 -43.292 7,466
24 Lamarão -22.598 -43.293 192 48 Xerém -22.601 -43.292 7,466

Source: Elaborated by the authors.
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Table 4. Travel time jit  (minutes).

Node 01 02 06 09 10 11 12 16 19 20 21 22 23 30 33 34 36 37 41 46 47 48
01 2 4 24 3 8 5 13 23 24 23 12 20 16 7 11 12 16 22 23 23 22 22
02 4 4 22 5 8 7 10 21 22 21 10 18 14 9 9 10 14 20 21 22 20 20
03 27 26 28 25 23 24 27 23 28 27 27 29 20 28 19 19 15 22 29 16 16 16
04 10 11 27 8 6 8 4 26 27 26 16 23 19 13 15 16 19 25 26 26 25 25
05 27 26 9 29 29 30 33 6 10 5 22 22 13 23 24 25 23 8 14 17 15 15
06 18 18 29 20 20 21 25 13 18 18 14 11 10 15 15 16 15 12 5 13 12 11
07 27 26 30 29 29 30 34 24 30 29 22 10 23 23 24 25 23 23 10 25 23 23
08 26 26 20 28 29 29 33 15 20 19 21 21 13 23 23 25 19 14 21 13 13 12
09 4 5 26 3 8 7 10 25 26 25 14 22 19 9 13 13 19 25 25 26 25 24
10 7 8 28 5 1 4 6 27 28 27 16 24 21 12 13 13 19 26 27 28 26 26
11 9 11 25 7 4 2 9 24 25 24 14 21 18 10 13 14 17 23 24 25 23 23
12 9 9 29 8 5 8 7 28 29 28 17 25 21 14 15 15 22 27 28 28 27 27
13 18 18 12 20 20 21 25 7 12 11 14 14 4 15 15 17 15 3 13 12 10 10
14 25 25 19 27 27 28 32 14 19 18 21 20 11 22 22 23 18 13 20 15 13 13
15 26 26 8 28 28 29 33 9 2 6 22 20 16 23 23 24 23 11 13 20 18 18
16 25 24 11 27 27 28 32 5 10 6 20 20 12 21 22 23 21 6 16 15 14 13
17 12 8 21 9 11 11 13 20 21 20 9 17 14 10 6 6 14 19 20 21 19 19
18 21 21 15 23 25 26 29 14 15 14 17 16 7 18 18 19 13 13 16 15 13 13
19 25 24 6 27 26 27 31 11 4 5 20 18 18 21 22 23 21 13 11 19 18 18
20 25 24 6 27 26 27 31 7 5 4 20 18 14 21 22 23 21 9 11 18 16 16
21 12 11 21 14 14 14 19 20 22 21 3 17 14 8 8 9 14 20 21 21 20 20
22 21 20 24 23 22 23 27 20 24 23 16 9 16 17 18 19 16 19 8 21 19 19
23 17 16 9 19 19 20 24 11 9 8 13 13 16 14 14 15 13 7 11 13 11 11
24 25 25 19 27 27 28 32 13 19 19 21 20 12 22 22 23 22 13 20 3 2 2
25 26 26 21 29 28 29 33 14 21 20 22 22 13 23 24 25 23 14 21 2 3 3
26 27 26 8 29 28 29 33 12 4 8 22 20 19 23 24 25 23 14 13 21 20 20
27 15 14 33 14 11 14 8 32 33 32 22 29 25 20 14 14 21 31 32 32 31 31
28 26 25 8 28 28 29 33 12 3 7 21 19 19 22 23 24 22 14 13 20 19 19
29 23 22 5 25 25 26 30 13 6 7 18 16 15 20 20 21 19 15 10 18 16 16
30 5 8 22 7 8 8 13 21 22 21 11 18 15 6 10 11 14 20 21 22 20 20
31 27 27 22 29 29 30 34 13 22 18 23 23 14 24 25 26 25 12 22 8 7 7
32 15 15 22 14 12 13 16 21 23 22 16 23 15 17 8 8 8 20 23 21 20 20
33 13 13 18 11 10 10 14 17 18 17 8 14 11 9 2 2 11 17 18 18 17 16
34 13 13 20 11 9 10 14 19 21 20 9 16 13 10 2 1 13 19 20 20 19 19
35 11 10 30 10 7 10 4 29 30 29 18 26 23 16 16 16 24 29 30 30 29 28
36 20 20 18 19 17 17 21 16 18 17 20 20 11 21 13 13 5 16 19 17 16 16
37 21 20 13 23 22 24 27 5 13 11 16 16 7 17 18 19 17 2 15 12 11 10
38 27 27 9 29 29 30 34 11 4 9 22 20 19 24 24 25 23 14 14 22 21 21
39 14 13 25 13 10 11 15 24 25 24 14 21 18 15 7 7 14 24 24 25 24 23
40 16 15 25 14 13 13 16 23 25 24 16 23 17 17 8 8 10 22 25 23 22 22
41 21 20 21 23 23 24 28 15 21 20 16 8 13 17 18 19 17 14 6 15 14 14
42 28 28 13 30 30 31 35 7 8 7 24 23 15 25 25 26 25 10 17 18 17 17
43 9 6 27 6 5 6 7 26 27 26 15 23 20 13 11 11 18 25 26 27 25 25
44 15 15 28 13 12 13 16 26 28 27 15 22 20 16 8 8 13 25 26 27 25 25
45 9 5 21 6 8 9 11 20 21 20 9 17 13 9 8 9 13 19 20 21 19 19
46 26 26 20 28 28 29 33 14 20 20 21 21 13 23 23 24 22 13 21 1 3 3
47 25 24 19 27 27 28 32 13 19 18 20 20 11 21 22 23 21 13 19 3 4 1
48 24 24 18 26 26 27 31 12 18 18 20 19 11 21 21 22 20 11 19 3 1 4

Source: Elaborated by the authors.
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In the previously equations, [ ]1
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Table 5. Interval between successive calls.

Day Interval (hours) Day Interval (hours)
1 0.56 12 5.92
2 1.84 13 1.08
3 2.10 14 1.65
4 3.21 15 0.18
5 6.40 16 2.63
6 0.36 17 5.03
7 0.59 18 5.84
8 1.75 19 0.14
9 0.15 20 2.59
10 2.96 21 1.31
11 3.86 Average 2.39

Source: Elaborated by the authors.

Table 6. Arrival rate by atom λi (calls/hour).

Node Calls pi λi Node Calls pi λi

01 278 1.56% 0.007 25 274 1.53% 0.006
02 278 1.56% 0.007 26 274 1.53% 0.006
03 236 1.32% 0.006 27 706 3.95% 0.017
04 396 2.22% 0.009 28 336 1.88% 0.008
05 166 0.93% 0.004 29 256 1.43% 0.006
06 406 2.27% 0.010 30 376 2.11% 0.009
07 166 0.93% 0.004 31 136 0.76% 0.003
08 256 1.43% 0.006 32 506 2.83% 0.012
09 334 1.87% 0.008 33 248 1.39% 0.006
10 334 1.87% 0.008 34 248 1.39% 0.006
11 334 1.87% 0.008 35 146 0.82% 0.003
12 334 1.87% 0.008 36 496 2.78% 0.012
13 286 1.60% 0.007 37 746 4.18% 0.017
14 166 0.93% 0.004 38 386 2.16% 0.009
15 406 2.27% 0.010 39 186 1.04% 0.004
16 316 1.77% 0.007 40 356 1.99% 0.008
17 526 2.94% 0.012 41 666 3.73% 0.016
18 396 2.22% 0.009 42 316 1.77% 0.007
19 1186 6.64% 0.028 43 261 1.46% 0.006
20 686 3.84% 0.016 44 261 1.46% 0.006
21 536 3.00% 0.013 45 1126 6.30% 0.026
22 493 2.76% 0.012 46 91 0.51% 0.002
23 493 2.76% 0.012 47 91 0.51% 0.002
24 274 1.53% 0.006 48 91 0.51% 0.002

Source: Elaborated by the authors.

Table 7. Average service time per server (minutes).

Server Average service 
time

Standard 
deviation

1 59 41
2 95 67
3 81 65
4 156 94
5 18 14
6 86 77
7 43 30
8 114 68
9 29 23

ALS Average 77 54
BLS Average 75 53
Average 76 53
Source: Elaborated by the authors.
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where 1nmg =  when unit n is located at facility j i= , 
and 0, otherwise. On the other hand, sp  is de probability 
of saturation of the system, i.e., 11 1s Qp p p …= + , such 
that ( )00 0 00 10 11 11Qp p p p… … …= − + +…+  is the probability 
of queuing. Finally, QT  is the average travel time for 
a call which is already awaiting, obtained by:

	 2
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The application of HM to the data of the actual 
logistic arrangement leads to an average travel time 
of 13 minutes. Moreover, it was shown that only 
42.4% of population is covered within the chosen 
“critical distance”, i.e., 12 minutes.

4 Location model development
Two IP formulations from the literature review 

(FLEET and MALP) were used to locate the bases and 
position SAMU’s ambulances in order to maximize 
covered demand. The following assumptions were 
considered:

i.	 Facilities opening and server’s location: exactly 
one ambulance shall be placed at each open 
facility; although it is not a “hard” requirement, 
this approach is supported by the concept of 
decentralization, which tends to increase the 
covered population.

ii.	 Location constraints: primary and special 
ambulances can be located at any node, 
independently.

iii.	Resources availability: limited number of 
servers given the current Health Department 
availability: seven primary ambulances and 
two advanced ones.

By setting z p sP P P= +  in FLEET model, all the 
above premises are met. However, the use of backups 
is not considered, that is, the model does not take 
into account the redundancies that the system should 
have to avoid queuing and minimize service time 
in areas that have higher demands.

For this reason, the MALP was used as an 
alternative approach, once this model also meets 
the established premises. As seen, MALP deals with 
the stochastic nature of the problem by requiring 
a confidence level q, which is guaranteed by using 
backups. The drawback in this case is possibility of 
considering only one type of server, thus requiring 
a simplifying assumption: advanced units shall be 
treated as basic units.

Given the size of the mathematical programs 
corresponding to the studied scenarios, they all 
could be optimized at low computational cost. For a 

subset of the best solutions found with the IP models, 
the performance indicators were evaluate by the 
HM. Obviously, such approach consists only of the 
analysis of some specific scenarios, and the use of 
Stochastic Optimization and Robust Optimization 
tend to offer better solutions. However, this bi-level 
strategy was able to identify some aspects that are 
likely to be part of an optimum stochastic solution. 
More precisely, facilities that have great chance 
to be opened, as well as the types of ambulances 
allocated to them.

5 Computational experiments
All tests were run on a Dell Inspiron 14R 3350 

notebook with Intel Core™ i5 processor, under 
operating system Windows 7 Ultimate 64bit, powered 
with 6GB of RAM. AIMMS 3.13 was employed for 
coding the two IP models and the optimization of the 
mathematical programs was done through CPLEX 
12.6. The best 200 solutions found by CPLEX for 
each program were exported to Microsoft Excel 
2010, where a VBA code was used to implement 
the equations of the HM, thereby generating its 
respective performance indicators.

At first, FLEET was applied with pre-defined 
existing servers, that is, considering two advanced 
servers ( 2sP = ) and seven basic servers ( 7)pP = , 
and nine facilities ( 9zP = ). By applying the HM, 
the best solution covered 66.3% of the population 
and resulted in an average time of 11.4 minutes per 
trip. The vehicles were positioned as follows: the 
advanced support ambulances at nodes 01 and 34, 
while the basic support at nodes 06, 12, 19, 20, 33, 41, 
and 46, one per location. Note that only the medical 
centers of Campos Elíseos and Saracuruna (nodes 
06 and 41, respectively) which operate facilities at 
the time of this research are also locations provided 
by FLEET. This indicates how different the current 
arrangement is from that proposed by this approach, 
confirming the importance of using computational 
methods for solving this problem.

In turn, PLMD was solved considering P = 9 servers 
and no distinction among basic and advanced 
ambulances, in order to keep the homogeneity 
proposed by the model. For a confidence level 
q = 93%, which corresponds to a coverage by at 
least b = 5 servers, there was obtained a solution in 
which 43.8% of the population is covered, within 
the response time defined by HM. This result can be 
explained by the higher level of reliability required, 
which tends to concentrate servers in more populous 
regions. The average travel time of the system was 
14.8  minutes and ambulances were allocated to 
01, 02, 09, 10, 11, 12, 30, 33, and 34. For q = 88% 
of reliability, a coverage by at least four servers 
is required. The best solution evaluated by HM 
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predicts a coverage of 62.6% of the population with 
median time to onset of care 10.9 minutes, and the 
ambulances positioned at the nodes 01, 02, 06, 16, 
19, 20, 23, 33, and 34. Finally, for q = 80%, three 
servers are required, and HM produces a solution 
in which 72% of the population is covered up to 
12 minutes, and servers were allocated to the nodes 
02, 06, 09, 10, 16, 19, 20, 33, and 34. Interestingly, 
the ambulances were geographically grouped into 
two clusters along the network and the average 
travel time for system was 11 minutes. Table  8 
summarizes the metrics discussed for each of the 
analyzed scenarios.

At this point, it is worth to point some considerations 
made by Chiyoshi et al. (2003) about the possibility 
of comparing coverage metrics calculated by different 
models. Metrics are not always comparable, especially 
in stochastic formulations, since the premises adopted 
are different incurring into practical implications. 
The same happens between IP models used in this 
paper, which differ in their underlying assumptions. 
To enable comparisons, the coverage metrics were 

computed by the HM, so all solutions could be 
evaluated by the same methodology.

Despite the similarity among the mean times, the 
percentage of coverage varies considerably, because 
few changes in the location of the facilities may 
change the average. For example, when q = 93%, 
MALP concentrates servers in order to reduce 
response time in specific regions of the network, 
which, in turn, increases the travel time to other 
network nodes, leaving them uncovered. However, 
the average time remains balanced. The same is 
true for system’s configuration by the time of this 
research, whose average time value is close to those 
ones obtained by the optimization models. But it 
covers a significantly smaller population.

Graphic  1 shows the percentage of covered 
population according to response time. It is important 
to note that the solutions proposed by MALP provide 
smaller response times than the existing scenario 
at the time of this research and the FLEET model. 
Furthermore, for q = 80% and q = 88%, the results 
are always better than those of the current scenario. 

Table 8. Results comparing obtained by the model Hypercube.

Case Covered demand (%) Average travel time (min)
Current 42.4 13.0
FLEET 66.3 11.4
PLMD (q = 93%) 43.8 14.8
PLMD (q = 88%) 62.6 10.9
PLMD (q = 80%) 72.0 11.0
Source: Elaborated by the authors.

Graphic 1. Covered population according to critical time. Source: Elaborated by the authors.
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While in existing configuration at the time of this 
research there were facilities only at six nodes, because 
of the concentration of four servers in the same node, 
the other models distribute ambulances along the 
network, according to demand, thence ensuring that 
more users are covered. Another important remark 
is the concentration of ambulances in the south, 
as shown in Figures 2b and 2d. This is the Duque 
de Caxias’s downtown, its most populous region, 
from where the largest number of calls emerged. 
Finally, it is important to mention that Figures 2d 
and 2e use exactly nine facilities, but due to the 
limitations of map scale two geographically close 
locations were overlapping. Nevertheless, the scale 
was kept to ease comparisons among the images, 
and the overlapping facilities were highlighted with 
the mark “”.

Moreover, one can also notice how MALP varies 
the geographic distribution of the ambulances as 
the confidence level q increases. At Figures 2c and 
2e, for q = 88% and q = 80%, respectively, we can 
see a trend forming two clusters, one in the south 
and another one in the northeast. At Figure 2d, it 
is seen that the highest level of reliability required 
(q = 93%) yields a single cluster at south. Most 
likely, the availability of only nine ambulances does 
not stimulate the model to create other clusters, 
since there would be no gains in terms of coverage 
because the remaining nodes would not have five 
or more remote servers to answer their calls within 
12 minutes.

6 Conclusion
In this work Optimization techniques and Queuing 

Theory were combined in order to analyze the SAMU’s 
ambulance positioning in Duque de Caxias/RJ. 
It  led to a significant increase in the coverage of 
the population and also provided a smaller response 
time for the same number of existing servers. 
The proposed solutions are significantly different 
from those used in existing configuration by the 
time of this research, reiterating the importance of 
mathematical-computational methods in location 
studies.

The solutions obtained by the IP models were used 
in HM aiming to evaluate the dispatch of ambulances 
and the system performance under congestion. 
The analyses indicate that MALP provides a better 
modeling of the stochastic behavior of the problem, 
thus leading to solutions with higher service level for 
the same values of service time. The results suggest 
a tendency to equilibrium between dispersion of 
servers and clustering in the network as an attempt 
to maximize coverage, while increases the chance 
of service by using backups.

Their corresponding critical times for covering are 
almost the same, suggesting that the location has 
an important effect as the number of servers used 
as backups. It is also seen that for an upper critical 
time of 14 minutes, FLEET covers a percentage of 
the population bigger than than those covered by 
MALP. However, there must be paid attention to 
the fact that the first does not consider the effects 
of backup, which tends to reduce the chance of 
answering a call.

Figure  2 shows a comparison of the spatial 
distribution of ambulances in which: 2a shows 
the current logistic arrangement; 2b illustrates the 
solution obtained by applying the FLEET model; 
2c, 2d and 2e illustrate the solutions obtained 
by MALP, for q = 88%, θ = 93% and θ = 80%, 
respectively. In cases 2a and 2b, the marker with 
an asterisk (“*”) indicates advanced ambulances. 
In the remaining cases there are no marks once they 
illustrate solutions of MALP, whose assumptions 
does not make distinction among servers.

Figure 2. Geographical distribution of servers. Source: 
Elaborated by the authors.
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It advisable that in future studies make a more 
extensive and accurate data collection, since this 
was one of the main difficulties found out during 
our investigation. Another important direction for 
further researches is the use of stochastic models, 
given the development of this area in recent years, 
particularly the Stochastic and Robust Optimization 
techniques. It would also be interesting to compare 
the quality and complexity of obtaining solutions 
for these models against a bi-level approach like 
the ones used in this paper.
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