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Resumo: Este trabalho tem como objetivo principal discutir o uso de métodos sistemáticos para geração de designs 
de experimentos com boas propriedades estatísticas e custos baixos. O foco da pesquisa é o sequenciamento dos 
experimentos, de maneira que são analisados os resultados de três diferentes abordagens para construção de designs 
fatoriais (ortogonais e não ortogonais) com dois níveis, em que o sequenciamento é feito de forma aleatória ou 
sistemática. Em particular, simulou-se a condução do design gerado por cada abordagem no contexto de um processo 
real de fabricação de embalagens de vidro, sem a presença de efeitos de tendências lineares e com a presença 
desses efeitos. Os resultados das análises indicam que em relação à ordem aleatória, sequências sistemáticas podem 
resultar em menor número de mudanças de níveis dos fatores e maior robustez a efeitos de tendências lineares, 
compatibilizando, portanto, o custo e a qualidade do design.
Palavras-chave: Projeto fatorial de experimentos; Sequências aleatórias e sistemáticas; Tendências lineares; 
Custo; Simulação.

Abstract: The current study aims to discuss the use of systematic methods to generate experimental designs with 
good statistical properties and low costs. The research focuses on the sequence of experiments and on analysis the 
results of three different approaches used to build (orthogonal and non-orthogonal) two-level factorial designs, wherein 
sequencing is randomly or systematically performed. The study simulated the design generated by each approach 
in the context of an actual glass container manufacturing process, with and without the presence of linear trend 
effects. The results indicate that, in comparison to the random order, systematic sequences may lead to fewer factor 
level changes and to increased robustness to linear trend effects. Therefore, they may attach design cost and quality.
Keywords: Factorial design of experiments; Random and systematic sequences; Linear trends; Cost; Simulation.
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1 Introduction
The design of experiments (DoE) is one of the 

most used statistical techniques in projects involving 
the improvement and development of products and 
processes, and it is widely disseminated due to the 
Total Quality Movement. Its disclosure took place 
in Brazil in the late 1980s and early 1990s, when the 
first concepts of quality emerged according to the 
Japanese model. There are several books (Toledo, 
1986; Imai, 1997; Kume, 1993) and articles on 
this topic, which relate the use of these techniques 

to continuous improvement (Marin-Garcia  et  al., 
2008; Oprime et al., 2010) and the effects of these 
activities on productivity (Bessant & Caffyn, 1997; 
Savolainen, 1999; Harrison, 2000; Bessant et al., 
2001; Delbridge & Barton, 2002; Hyland et al., 2003).

DoE is generally defined as a combination 
of planned experiments (treatments) that allow 
relating the effect of a set of independent factors’ 
(variables) levels (values) to one or more dependent 
response variables deemed of interest. Based on 
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these experiments, it is possible to statistically test 
the significance of the factors’ effects, as well as to 
develop empirical models that allow predicting the 
effects certain combinations of factors have on the 
system response variables, according to the testing 
interval that was took into consideration (Davis, 
1956; Box et al., 1978; Montgomery, 1991).

Since the pioneering study by Fisher (1926), the 
specialized literature has been showing the constant 
evolution of the DoE techniques. The researches 
focused on orthogonal arrangements and there was 
little progress on non-orthogonal arrangements until 
1950 (Addelman, 1972). From 1965 on, a large number 
of studies on DoE addressed aspects related to the 
fractioning of regular experiments (associated with 
the classical concept of orthogonal experiments). 
Studies using irregular experiments were introduced 
in the early 1970s in order to engage the planning 
quality and the associated experimental costs. Thus, 
more attention has been given to irregular fractional 
designs (associated with non-orthogonal experiments) 
and to studies about the execution order (sequencing) 
of treatments (Atkinson & Bailey, 2001)

Overall, it is possible to identify three basic issues 
related to the DoE research, namely: (i) selecting 
experiments to compose optimal designs, i.e., 
experiments producing lesser error in the estimates 
of the effects and statistical parameters of the 
empirical model; (ii) setting the sequencing of 
previously defined experiments in order to minimize 
their implementation cost; and (iii) planning the 
design (selection and sequencing) of experiments 
that present robustness to linear trend effects (i.e., 
to time effects).

Regarding the generation of optimal designs, it 
is sought to minimize the variance associated with 
errors in estimating the effects of the treatments by 
maximizing the determinant X X′ , wherein X is the 
design matrix. The larger the determinant is, the 
lower the error estimating the effects and statistical 
parameters of the multiple regression models used 
in the application of the response surface technique. 
Further details on the construction of optimal 
experiments can be found in Dykstra (1971), Galil 
& Kiefer (1980), Aggarwal et al. (2003), Street & 
Burgess (2008), Wilmut & Zhou (2011), Alonso et al. 
(2011), and in Suen & Midha (2013).

According to the other two research issues, the 
experiment execution order affects not only the cost 
of the transition between experiments (Daniel & 
Wilcoxon, 1966; Draper & Stoneman, 1968; Cheng, 
1990; Wang, 1991;Wang & Jan, 1995; Wang & 
Chen, 1998; Garroi et al., 2009), but also the design 
robustness, since the estimates of the main effects 
and of the interactions along the experiments may 
be susceptible to non-controlled variables and lead 

to biases in the estimates (Hilow, 2013). Therefore, 
the (non-random) systematic experiment execution 
order has great practical relevance due to its impact on 
these two aspects. In addition, the systematization of 
the experiment execution order is directly confronted 
with one of the main DoE paradigms: the sequencing 
randomization (Box et al., 1978; Montgomery, 1991; 
Montgomery et al., 2009).

Thus, the current research presents a comparative 
study of three approaches that generate two-level 
factorial experimental designs: (i) the generation of 
orthogonal and non-orthogonal designs using DETMAX 
technique (see Cook & Nachtsheim (1980) for the 
mathematical details of the technique), followed by 
the random sequencing of the experiments; (ii) the 
systematic construction of orthogonal designs that 
present robustness to linear trend effects, using 
the algorithm by Angelopoulos et al. (2009); and 
(iii) the systematic sequencing of orthogonal and 
non-orthogonal designs generated by DETMAX 
technique, by solving a mathematical programming 
model using an accurate optimization method.

The approaches were applied to six examples 
comprising from 12 to 28 experiments and 
4 and 5 factors, and the resulting designs were 
analyzed according to four criteria: D-efficiency, 
time count, correlation between the factors, and 
the time and number of factor changes. Then, the 
absence and the presence of linear trend effects 
were simulated by an actual DoE application with 
16  experiments and 5 factors, according to the 
designs of the 3 approaches. Type I and II errors 
were then evaluated for each design.

The rest of the current article is organized as follows. 
Section 2 presents a brief theoretical framework of 
two-level factorial experiments in the presence of 
linear trend effects as well as a literature review. 
Section  3 describes the systematic and random 
approaches addressed in the study. Section 4 discusses 
the results of these approaches in the six examples. 
Section 5 describes the simulation procedure and 
analyzes the results of the approaches in the real case. 
Finally, Section 6 presents the study conclusions 
and the perspective for future researches.

2 Two-level factorial experimental 
designs in the presence of linear 
trend effects
Creating factorial designs is a practical way to 

plan experiments. It allows simultaneously analyzing 
a large number of factors as well as identifying the 
effect each factor has on the response variable and 
the effect of interactions among factors. Regarding 
factorial experiments, the experimenter selects a 
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fixed number of levels for each k factor and performs 
experiments using all level combinations.

The 2k factorial experiments (two-level experiments 
with k factors) belong to an experimental design 
class, which is widely used in the industry, and 
its mathematical model is given by the following 
general Equation 1:

	 0 1 1 ' 1   p p p
k k kk k kk k ky x x xβ β β ε= ′ ′= == + Σ +Σ Σ +  	 (1)

wherein the 0β  parameter is the global mean, kβ  are the 
parameters related to the main effects,  kkβ ′ are the 
parameters related to interactions between each 
two factors (second order) and ε is the random 
experimental error. In cases holding a large number of 
factors, one fractioning of the full planning becomes 
convenient, although it is done at the expense of the 
main effects overlap and of second order interactions. 
The confounding levels (overlap) of the effects 
determine the resolution planning degree. Thus, the 
higher the confounding factor is, the lower the design 
resolution (Box et  al., 1978; Montgomery, 1991). 
A two-level fractional factorial design is denoted as 
2k p−  factorials, wherein p indicates the experiment 
fractioning.

Three core properties are used to build experiments 
with good statistical properties, namely: the 
orthogonality and the balancing of the experimental 
design X matrix and the robustness to the linear trend 
effects. As for the orthogonal (or semi-orthogonal) 
designs, the 'X X  matrix is diagonal, i.e., its elements 
have values equal to zero (or near zero) outside the 
diagonal. Thus, the variance in the estimates of the 
model parameters (1) (this  estimate is given by 

( ) 1ˆ ' ' )X X X yβ −=  is minimized and the correlation 
among the X  factors is zero (or near zero) (Dykstra, 
1971; Mitchell, 1974; Galil & Kiefer, 1980). 
A balanced matrix, in turn, has the same number 
of levels in each factor (Addelman, 1972; Adekeye 
& Kunert, 2005).

The maximum efficiency occurs when X  is 
balanced and orthogonal, which defines different 
efficiency measures that provide information on 
the quality of the model parameters estimates. 
The so-called D-efficiency used by Atkinson (1996), 
Tack & Vandebroek (2004), Atkinson et al. (2007), 
Triefenbach (2008) and Alonso  et  al. (2011) is 
calculated by Equation 2
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wherein N is the number of experiments in the design 
and p is the number of model parameters. Note that 

 0 1effD ≤≤  and the ideal is that  effD s equals to 1.
As for the minimization of possible linear trend 

effects, conventional approaches say that the sequence 

of the experiments should be randomly produced. 
In addition to randomization, the model diagnosis 
is another key procedure used to check the residua 
distribution behavior (possible linear trend effects) 
and the model adequacy to the experimental data 
(Box et al., 1978).

As an alternative to randomization, the sequencing 
of experiments may be set in a systematic way, by 
taking into consideration the time count (TC) criterion 
(Draper & Stoneman, 1968). This criterion explicitly 
measures the correlation between the X X′  matrix factors 
and the time (or treatment execution order). As for a 
two-level design with k factors and N experiments, 
the time count criterion is given by Equation 3

	 1 {| * |}N
ij ijTC iMa ux == Σ  	 (3)

wherein uij ∈ {−1, +1} denotes the j factor level 
(upper and lower, respectively) in the i-th conducted 
experiment. When the time count for a given factor 
equals to zero, there is no correlation between this factor 
and the temporal execution order of the experiments; 
i.e., the factor is not susceptible to linear trend effects. 
In other words, there is no bias in the estimate of 
the regression model parameter associated with the 
factor. The correlation ρ  is obtained from TC in the 
following Equation 4 (Angelopoulos et al., 2009):
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i.e., the greater the TC value is, the greater the 
correlation ρ .

Besides the statistical quality, the experiment cost 
is clearly a criterion that influences the experimental 
design definition in practical contexts. In the general 
case, the cost is given by the number of changes 
in the factors levels (NFC) as the experiments are 
performed (Draper & Stoneman, 1968). Although, in 
practice, the transition cost may be different in each 
factor, it is believed that the higher the NFC is, the 
more expensive the design. As for a two-level design 
with k factors and N experiments, this criterion is 
formalized by Equation 5

	 ( )
1

1 1 1 | |N k
i j ij i jNFC u u−
= = +=Σ Σ −  	 (5)

wherein, again, uij ∈ {−1, +1} denotes the j factor 
level (upper and lower, respectively) in the i-th 
performed experiment.

Over the past 50 years, a great deal of research 
efforts has been observed in the study or proposal of 
methods to produce designs that take into account 
one or more criteria among the aforementioned 
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ones. The article by Daniel and Wilcoxon (1966), 
in particular, was one of the first studies that 
discussed the effect that sequencing two-factorial 
experiments had on the number of changes in the 
factors levels and on the maximum time count. It is 
worth highlighting that using explicit enumeration 
to select the best sequence according to any of these 
criteria has limited application, since the number of 
sequences geometrically increases with the number 
of factors, thus making it impossible to obtain 
optimal solutions for larger designs. The solutions 
for such a barrier are discussed by Dickinson (1974) 
and Joiner & Campbell (1976) who suggested 
algorithms that seek to generate viable sequences 
for designs comprising up to 16 experiments. High 
quality solutions for larger designs were actually 
developed since the XX century, due to the computer 
technology evolution.

Addelman (1972) presents a literature review on 
the sequencing of factorial designs and fractional 
factorials involving issues such as cost and robustness 
to linear trend effects. Although the studies conducted 
by Draper and Stoneman (1968), Dickinson (1974) 
and Joiner and Campbell (1976) already considered 
linear trend effects through maximum time count, 
only in the late twentieth century these criteria 
were actually used to develop factorial designs, 
especially in the studies by Cheng and Jacroux (1988), 
Bailey et al. (1992) and Atkinson & Donev (1996). 
Coster & Cheng (1988), Jacroux (1994), Githinji 
& Jacroux (1998), and Tsao & Liu (2008), in turn, 
approached the issue either based on time count or 
on the number of factor level changes.

Since the 1990s, several authors have suggested 
procedures to develop optimal and low cost designs 
as well as those robust to linear trends. Cheng (1985) 
developed the generalized foldover scheme in order 
to build sequences of experiments robust to the linear 
trend effects of full factorial and fractional factorial 
designs. Subsequently, Cheng & Jacroux (1988) 
generalize the scheme by minimizing the biases in 
the estimates of the main effects as well as in the 
estimates of double interactions in 2k  experiments. 
Tack & Vandebroek (2004) innovated the research 
in the field when they simultaneously studied the 
robustness and cost of two-factorial orthogonal and 
semi-orthogonal experiments. Angelopoulos et al. 
(2009), in turn, suggested a constructive procedure, 
which produces two-factorial orthogonal designs of 
minimum cost, with maximum D-efficiency, and 
that are robust to linear trend effects. More recently, 
Hilow (2013) extended the analyses by studying four 
algorithms to sequence 2k  designs and he targeted 
two criteria: i) minimizing the number of factor 
changes, and ii) minimizing the main effects and the 
second order interactions of the linear trend effects.

The analysis of the traditional randomization 
approach and of the experiment-sequencing 
systematization approach is formally addressed by 
Adekeye & Kunert (2005). According to the authors, 
as the linear trend effects are theoretically diluted 
in the experimental error during randomization 
(the presence of non-controlled variables increases 
the random error), using a systematic experimentation 
order seems to be more appropriate. However, the 
results obtained from the application of simulation 
methods showed no advantage in the systematic 
order in comparison to the randomized one.

However, such a conclusion is questioned by other 
authors who claim that randomization is not necessarily 
the best practice. Cheng & Jacroux (1988) presented 
mathematical evidences that the randomization is 
inadequate for experiments subjected to linear trend 
effects. They suggested developing plans that are 
robust to time effects in order to obtain null covariance 
between variables and time. Bertsimas et al. (2015) 
also showed the benefits of the systematic approach 
in experiments with “guinea pigs”, by applying 
mathematical optimization techniques. Ganju & 
Lucas (2004) studied the systematic sequencing 
of the experiments’ order, and they indicated the 
inadequacy of the randomization as a practice to 
be followed in any situation.

3 Study approaches
This section discusses three two-factorial design 

generating approaches, which solutions were analyzed 
in terms of cost and statistical quality.

The first approach (hereinafter called RAN) consists 
of applying the DETMAX technique (Mitchell, 1974) 
using Statistica commercial software. The design 
matrix is built aiming at maximum efficiency, whereas 
the sequencing of its experiments is randomly done.

The second approach (called AEK09) is the 
algorithm suggested by Angelopoulos et al. (2009), 
and it is designed to build orthogonal and balanced 
designs, which are free from linear trend effects on 
the main effects, with high D-efficiency and minimum 
number of variable changes. Thus, a set of columns 
describing all possible level combinations that result 
in null time count by considering N experiments is 
initially listed. The columns are divided into conjoint 
N-1, disjoint Sj with j factor changes, and they are 
arranged in ascending order of j. In other words, 
the columns of the 1S  set have one change of factor; 
the 2S  columns have two changes of factor, and so 
forth. All possible orthogonal matrices are built for a 
number of k factors, by selecting k columns from the 
first non-empty k sets in ascending order. The most 
efficient matrix is chosen among the generated ones, 
and if its efficiency is equal to the maximum value 
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known for the application, the procedure is finalized 
by returning to the matrix and to the sequencing of 
experiments. Otherwise, the research is extended to 
the first 1k +  sets. The matrix construction implicitly 
defines the sequencing aiming at the minimal number 
of factor changes.

Finally, the third approach (hereinafter called 
POC) consists in applying the branch and cut 
integer linear optimization method (Cordier et al., 
1999) - included in the GAMS/CPLEX commercial 
software - to the mixed integer programming model 
by Pureza et al. (2014). This model formalizes the 
two-factor N  experiments sequencing problem. 
Specifically, the aim of the model is to find an 
execution sequence with minimum number of 
factor level changes and minimal time count for a 
given matrix of experiments. Different weights are 
attributed to these measures, so that the minimization 
of the number of factor changes dominates the time 
count minimization. The sequencing of treatments is 
given by ijx  binary variables, wherein i and j denote 
experiments different from the matrix. The variable 
equals to 1 when the experiment i precedes the 
experiment j, otherwise it is set to 0.

Therefore, when the model is solved, the values 
of the variables define the path from the first to the 
last experiment (i.e., the execution order). The model 
includes a restriction that calculates the number of 
factor level changes, three restriction families that 

account for the time count, two restriction families 
that dictate that only one experiment can precede 
and succeed each experiment, and one restriction 
family that eliminates the sub-cycles. The model 
was used in the current study in order to sequence 
the designs generated by the RAN approach.

4 Comparative analysis of the 
systematic and random approaches 
in six examples
Table 1 shows the solutions obtained using the 

three approaches in six examples. The numbers 
in the first column characterize the example input 
data, indicating the number of experiments and the 
desired number of factors in the design; for example, 
12.4  indicates designs with 12 experiments and 
4 factors. The second column shows the used approach 
and the third column shows the experiments of each 
design in order of execution. A concise notation was 
used to present the sequence of experiments; taking 
into consideration that the first factor is denoted by 
the letter “a”, the second factor is denoted by the 
letter “b”, and so forth, only the top level factors 
are pointed at each experiment of the sequence. 
Experiments showing all factors in the lower level 
are denoted by the symbol (1).

Table  2 shows the relevant measures of the 
obtained designs (D-efficiency ( effD  column), the 

Table 1. Results of the approaches.
Exemplo Abordagem Experimentos em ordem de execução

12.4
RAN d b abcd 1 a bd abc acd abd c cd bc

AEK09 (1) abcd ac ad bcd bd ab bc c d ab acd
POC abc ac a bd b d cd c bcd ab abcd ad

16.5
RAN d cde c ace abcde a bcd acd abe be ade b abd abc e bde

AEK09 (1) ab abcd abce acde de ce cd bd bcde be ae abde ad ac bc
POC c b bde cde ade abe abc acd abcde ace a abd d bcd bce e

20.4
RAN abcd cd bd bc a acd abd d ac ab (1) bcd abc ad b c abd bcd d ac

AEK09 (1) (1) bd bcd bcd abc ac acd acd ad a abc abd abd ab b bc c cd d
POC ad acd cd bcd bc b ab a a ac c c (1) d d bd abd abcd abcd abc

24.4
RAN d abcd cd c bd bc ac acd abcd abc d bcd abd a cd bc ac a b abd ab ad b (1)

AEK09 (1) (1) a abd abd abcd acd acd cd c bc bc bcd bcd bd b ab ab abc ac ac ad d d
POC ab ab abc bc c c cd d d ad ad abd bd bcd bcd abcd abcd acd ac ac a (1) b b

28.4

RAN ad bc ac acd abcd cd d d ab bcd c c abcd bc a d bcd (1) ab ac ad b (1) ab bd acd abd bd

AEK09 (1) a ac cd c bc bcd bcd bd bd abd abd ad a ab ab abc abc abcd acd acd acd d d (1) c 
bc b

POC d d ad ad ab ab b b bc bc abc abcd abcd bcd cd cd acd a a ac ac c c (1) bd bd abd abd

28.5

RAN cd de ce ac bc bcde ab ad abde (1) bcde be abde abce abcd ce bd bc acde ac (1) ab ae 
abcd ae ad de

AEK09 (1), ac,ab,ade,de,ac,cd,cde,bc,bcde,bd,abcde,abce,abcd,abd,abde,ae,ae, be, 
be,bce,ce,(1),cd,bd,ad,abc,acde

POC a ad abd ab b bc bce ce cde de ade abde abcde abcd abc ac c (1) e ae abe abce ace acd 
d bde bd bcd
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time count (TC column), the number of level changes 
of each factor (FC column), the total number of 
factor level changes (NFC column), the mean 
correlation (ρ  column) and the maximum correlation 
( maxρ  column). These measures were calculated by 
Equations 2-5, using the Maple software.

By analyzing Table 2, it is possible to see that 
the maximum correlation between the columns of 
interest (main effects and second order interactions) 
and the time is lower when the random experiment 
execution order is employed. As for the treated 
examples, the percentage deviations of this measure 
is approximately -28% in comparison to the results 
of the systematic approaches. On the other hand, the 
mean correlation of the randomized sequences is, 
on average, 10% higher than that of the AEK09 and 
POC sequences. Another negative aspect of RAN 
is the fact that it resulted in a substantially higher 
number of factor level changes, with obvious effects 
on the cost and time of execution of the experimental 
designs. As for the systematic approaches, the number 
of level changes represents a mean increase of 115%.

Regarding the systematic approaches, the 
AEK09 sequences showed lower mean and maximum 
correlations than those observed in the POC 
sequences (on average, 27% and 11%, respectively). 
However, they presented, on average, a 7% higher 
mean number of factor level changes. As for the 
D-efficiency criterion, the POC sequences were 
slightly higher than the AEK09 sequences, a fact 
that was justified by the fact that the designs were 

not limited to the orthogonal type. The sequences 
produced by RAN and POC, in turn, showed the 
same D-efficiency value, which was expected 
since the set of experiments was the same in both 
the RAN and the POC, and the sequencing did not 
affect this measure.

5 Analysis of the systematic and 
random sequences in a real case
The analysis of the maximum correlations for 

the six examples of the previous section indicates 
some advantages of the sequencing randomization 
over its systematization. However, the correlation is 
not a definitive indicator, since it does not evaluate 
the effects of the biases caused by the linear trends 
on each factor alone.

One way to assess such effects is by reproducing 
the experiments via simulation. In fact, Gibbons & 
Chakraborti (2011) indicate the simulation as an 
efficient method to determine type I (false positives) 
and type II errors (false negatives). The standard 
error of the type I (also known as α error) and type 
II error (β error) estimates are respectively given 
by Equations 6 and 7

	 ( )1
      α

α α
σ

η
−

=  	 (6)

	 ( )1
    β

β β
σ

η
−

=  	 (7)

Table 2. Measures of the obtained designs.

Exemplo Abordagem Deff
(%) FC NFC ρ ρmax

12.4
RAN 85.473 6 7 5 9 27 0.311 0.435

AEK09 79.750 5 6 7 7 25 0.155 0.628
POC 85.473 2 5 5 5 17 0.193 0.483

16.5
RAN 100 8 9 8 10 7 42 0.208 0.461

AEK09 100 4 4 7 7 8 30 0.147 0.651
POC 100 2 10 7 5 6 30 0.130 0.705

20.4
RAN 96.750 10 13 14 9 46 0.147 0.434

AEK09 93.950 2 4 6 7 19 0.169 0.468
POC 96.750 4 3 5 3 15 0.277 0.763

24.4
RAN 96.530 10 14 8 13 45 0.195 0.494

AEK09 96.840 4 4 4 5 17 0.171 0.554
POC 96.530 5 4 4 2 15 0.209 0.506

28.4
RAN 97.920 15 17 14 12 58 0.129 0.274

AEK09 96.840 4 5 6 6 21 0.120 0.451
POC 97.920 7 3 4 4 18 0.182 0.787

28.5
RAN 96.420 12 14 11 18 17 72 0.164 0.424

AEK09 94.090 5 6 7 7 7 32 0.126 0.557
POC 96.420 5 7 7 5 6 30 0.218 0.478
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wherein α  is the probability of false positives, β  is 
the probability of false negatives and η is the number 
of simulations.

Thus, design conduction simulations with 
16 treatments and 5 factors (16.5) generated by each 
approach were carried out, both under stationary 
condition and subjected to linear trends. This example 
was selected because it had the same number of 
experiments and factors of a design applied in a 
case study in the industry. The iµ  parameters of each 
i and σ  treatment of the random error (experimental 
error) considered in the simulations were, therefore, 
obtained from the experimental data collected in 
the case study.

5.1 Simulation procedure description
The simulations involve a glass container 

manufacturing process used in the food industry. 
A brief description of this process indicates four 
macro-stages: i) the merging stage, in which the 
chemical properties of the molten liquid has great 
influence on the quality of the final product; ii) the 
hot-forming stage, which key elements are mechanical 
components and operating procedures; iii) the product 
cooling stage, which final quality depends on the 
cooling cycle; and finally, iv) the final inspection 
of 100% products stage, which critical variable is 
the inspection equipment instability. This stage is 
a factor that may produce linear trend effects due 
to the loss of accuracy in the measurement system 
over time.

In order to analyze the 16.5 designs of the three 
approaches, a routine was developed in Maple 13. 
The study followed the following steps for each 
design: i) the design execution was simulated 
η times, the model parameters of Equation 1 were 
estimated, and the values of each experiment were 
generated according to the normal distribution with 

iµ  and σ ; ii) the ˆ 2β σ±  confidence interval of the 
statistical parameters of the model was set; iii) if the 

confidence interval did not contain the value zero, 
there would be evidence for the decision-maker to 
state that the parameter was statistically significant, 
otherwise, nothing could be said. The α error was 
estimated according to the frequency in which 
the event occurred, and it could be expressed by 

( )1 0 2 ;2Pα σ σ= − ∈ −  .
The simulated model is represented by Equation 1, 

with terms referring to the main effects and to the 
second order interactions considered to be relevant 
to the case study (i.e., not all the possible double 
interactions of the Equation 1 model were taken into 
consideration). The study simulated 1000η =  design 
executions under stationary condition (i.e., without 
linear trend effects) and under dynamic condition (i.e., 
with linear trend effects derived from non-controlled 
variables). Since the occurrence of a point outside 
the confidence interval ( 2 ;2σ σ− ) follows the binomial 
distribution, it is possible to estimate the 95% 
confidence interval for α and β errors ( ,1,96 α βσ ) and, 
thus, infer the impact the linear trend effects have 
on type I and type II errors in the statistical tests 
in order to determine the significance of the model 
parameters of Equation 1. The complete procedure 
simulation is shown in Figure 1.

Five factors (defined as A, B, C, D and E) related 
to the manufacturing process were selected: i) melting 
process parameters; ii) lubrication of melting molds; 
iii) features of the raw materials used in the fusion; 
iv) shaping process parameters; v) lifecycle of the 
equipment used in the shaping stage. The response 
variable is the process yield (number of defectless 
bottles), and it is expressed in percentage.

The parameters related to the main effects are 
identified by the relative order of their respective 
factors, i.e., as β1 (factor A), β2 (factor B), ..., 
β5 (factor E), whereas β0 is the global average. 
The parameters of the second order interactions ( )kkβ ′  
are identified by combining the orders of the involved 
factors; for example, the number 12 represents the 

Figure 1. Synthesis of the simulation procedure.
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interaction between factors A and B, and β12 is its 
respective parameter.

The model parameter values used in the simulation 
are: 70;  2.79; 2.27; 0.17; 0;0 1 2 3 4

 3.80; 1.74; 1.0; 0; 2.41;5 12 13 14 15
0.5; 0; 0; 0; 0  and 0.23 24 25 34 35 45

β β β β β

β β β β β

β β β β β β

= = − = − = − =

= − = = = =

= = = = = =

 

These parameters were used to generate the estimated 
response values in each experiment, and 0.2145eσ =  
was the standard deviation of the experimental error 
adopted in the simulations. The linear trend effect 
was 1% accumulated throughout the experiments; 
i.e., the first experiment showed 1% bias in the 
population mean ( 10.01µ ), the second experiment 
showed 2% bias ( 20.02µ ), and so forth, up to the 
sixteenth experiment, which showed 16% bias 
( 160.16µ ). This bias is reasonable to the studied case, 
since the measuring system instability leads to an 
approximately linear effect.

5.2 Analyzing the simulations

Table  3 shows the simulation results for each 
treatment of 16.5 design resulting from the RAN 
approach (random sequencing) without linear trend 
effects (Normal) and with linear trend effects (LT). 
It also shows the number of occurrences in which the 
column effect is detected as statistically significant 
(column: Statistical significance detection). Factor A 
was considered to be statistically significant in the 
1000 performed significance tests, both under the 
Normal condition and under the LT condition. This result 
was expected since 1 2.79β = −  and 1 2.7 6 5ˆ 9 0β = −  showed 
no linear trend effects, and

1 2.7 3 5ˆ 2 7β = −  showed linear trend effects. As for 
Factor D (wherein 4 0β = ), 69 tests were statistically 
significant (error 69 0.0690

1000
α = = ) under the Normal 

condition. Regarding the LT condition, 427 false 
positives ( 42.7%α = ) were obtained. Thus, this result 
shows the impact the linear trend effects had on 
the tests that were statistically significant to the 
randomized sequence.

The estimate bias is shown in column Dif of 
Table 3 and it indicates that the occurrence of LT 
effects increases the type I error (α), which postulates 
that a variable is statistically significant when it 
is not. It can be seen, for instance, in the results 
of variable  D and of AD interaction. As for AD 
interaction, the false positive error is 0.315; under 
Normal condition, this error is below 0.07.

Table 4 shows the time count and the correlation for 
each of the main effects and second order interactions 
columns (those considered to be relevant to the real 
case study) of the 16.5 design produced by RAN. 
This analysis is important because it indicates the 
column showing greater bias when the experiments 
are subjected to linear trend effects. Thus, it is 
observed that the highest correlation under this type 
of effect occurs in column B, followed by column 
D. This result is significant for the planning of 
industrial experiments; disregarding it may lead to 
wrong conclusions about the process, thus affecting 
quality and productivity.

A similar analysis was performed in the AEK09 
approach sequence (Tables 5 and 6). Table 6 shows 
that the columns A, B, C, D, E, and AE have time 
count equal to zero, which means null correlation 
with time (columns factors orthogonal to time). 
The robustness of columns A-E dues to the very 
nature of AEK04, since the approach was designed 
to exclusively build designs with linear-trend-free 
main effects. This property has not been observed 
in the columns of the design produced by RAN. 
As it was identified in the simulations, the AEK09 

Table 3. Estimate of the main effects and second order interactions for the 16.5 design produced by RAN approach.

Factors Estimated Dif Statistical significance
Normal TL Normal TL

A –2.79605 –2.72375 -–0.0723 1000 1000
B –2.27672 –2.48656 0.209839 1000 1000
C –0.16492 –0.10071 -0.06421 384 142
D –0.00299 –0.18243 0.179438 69 427
E –3.79776 –3.97455 0.176787 1000 1000

AB 1.734983 1.719464 0.015519 1000 1000
AC 1.004719 0.988173 0.016546 1000 1000
AD 0.002595 0.153406 –0.15081 63 315
AE 2.411162 2.535522 –0.12436 1000 1000
BC 0.501172 0.407948 0.093224 992 964
BD 0.0045 –0.02836 0.032861 65 59
BE 0.00219 –0.15005 0.152237 62 78

Average 0.03873
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designs have lower biases in the parameter estimates 
of Equation 1 model (observe and compare column 
Dif of Tables 3 and 5); consequently, there are lesser 
α and β errors in the systematic AEK09 approach 
than in RAN designs in the presence of linear trends. 
For example, Table 3 shows that, in the presence of 
linear trend effects, the false positive α of variable D 
is 42.7%, against 6.9% under normal conditions.

The results of POC approach analyses are 
shown in Tables 7 and 8. Table 8 shows robustness 
in columns A, B, C, D, E, AB, AC and AD. 
Regarding the AEK09 sequence, the mean bias is 
lower (from 0.020156 to 0.00499). By comparing 
the systematic approach designs and random 
approach ones, it is possible to see the lower number 
of false positives in POC and AEK09 designs 
(see Tables 3, 5 and 7 in the column named statistical 
significance detection). These results motivate the 
search for systematic methods able to generate low 

cost experimental designs that are more robust to 
linear trend effects.

Regarding example 16.5, Figure  2 shows that 
the design produced by RAN approach has higher 
mean correlation and lower maximum correlation 
than the AEK09 and POC designs. It also shows that 
estimation errors (ε ), number of factor changes and 
time count are smaller in the systematic approaches. 
These results implied lesser types I and II errors and 
lower correlation with time, i.e., more robustness 
to the linear trend effects in AEK09 and POC. 
The differences among the three approaches in terms 
of type I and II errors are shown in Tables 9 and 10.

Table 9 shows, for each approach, the estimate 
of type I error at 95% confidence interval (95% CI) 
and the probability of making the correct decision 
(1-α) when the factor has effect on the response 
variable. Note that there is no intersection between 
the confidence intervals under LT and Normal 
conditions for factor D and the AD interaction 

Table 4. Time count and correlation between the columns in the 16.5 design produced by RAN approach.
Factors TC ρ

A 0 0.136
B 34 0.461
C 12 0.163
D 30 0.407
E 6 0.081

AB 4 0.054
AC 2 0.027
AD 24 0.325
AE 20 0.271
BC 14 0.190
BD 4 0.054
BE 24 0.325

Average (ρ) 0.208

Table 5. Estimate of the main effects and second order interactions for the 16.5 design produced by the AEK09 approach.

Factors Estimated Dif Statistical significance
Normal TL Normal TL

A –2.79605 –2.76683 –0.02922 1000 1000
B –2.27672 –2.17525 –0.10147 1000 1000
C –0.16492 –0.16587 0.000952 384 355
D –0.00299 –0.00769 0.004698 69 69
E –3.79776 –3.76686 –0.0309 1000 1000

AB 1.734983 1.767742 –0.03276 1000 1000
AC 1.004719 1.001869 0.00285 1000 1000
AD 0.002595 -0.00023 0.00282 63 72
AE 2.411162 2.381798 0.029364 1000 1000
BC 0.501172 0.502724 –0.00155 992 994
BD 0.0045 0.001125 0.003375 65 65
BE 0.00219 0.004117 –0.00193 62 63

Average 0.020156
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for RAN approach (for example, the upper limit 
of variable D under normal condition, α = 8.47%, 
is lesser than the lower limit under LT condition, 
α = 39.63%). As for AEK09, the variable D interval 

under normal condition is [5.33%; 8.47%]; under 
LT condition, the confidence interval is equal to 
[5.33%; 8.47%]; as for AD, BD and BE interactions 
under normal condition, they are, respectively: 

Table 7. Estimate of the main effects and second order interactions in the 16.5 design produced by the POC approach.
Factors Estimated Dif Statistical significance

Normal TL Normal TL
A –2.7879 –2.7888 0.0009 1000 1000
B –2.2779 –2.268 –0.0099 1000 1000
C –0.1679 –0.16 –0.0079 329 353
D –0.0021 0.0021 –0.0042 82 67
E –3.7992 –3.8 0.0008 1000 1000

AB 1.7371 1.7395 –0.0024 1000 1000
AC 1.0004 0.9999 0.0005 1000 1000
AD 0.0079 0.0011 0.0068 56 66
AE 2.4135 2.3907 0.0228 1000 1000
BC 0.4988 0.5523 –0.0535 995 1000
BD 0.0037 0.0214 –0.0177 58 68
BE 0.0003 –0.0036 0.0039 53 52

Average –0.00499167

Table 6. Count time and correlation in the 16.5 design produced by the AEK09 approach.
Factors TC ρ

A 0 0.000
B 0 0.000
C 0 0.000
D 0 0.000
E 0 0.000

AB 48 0.651
AC 28 0.380
AD 4 0.054
AE 0 0.000
BC 4 0.054
BD 4 0.054
BE 16 0.217

Average (ρ) 0.118

Table 8. Time count and correlation between the columns in the 16.5 design produced by the POC approach.
Factors TC ρ

A 0 0.000
B 0 0.000
C 0 0.000
D 0 0.000
E 0 0.000

AB 0 0.000
AC 0 0.000
AD 0 0.000
AE 16 0.217
BC 44 0.597
BD 16 0.217
BE 4 0.054

Average (ρ) 0.090
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[4.49%, 7.81%], [4.97%, 8.03%] and [4.71%, 7.69%]. 
Regarding LT condition, still considering the AEK09 
approach, the confidence intervals are [5.60%, 8.88%], 
[4.97%, 8.03%] and [4.79%; 7.81%]. By comparing 
the CI of these variables between LT and Normal 
conditions, there is intersection between the intervals, 
with no statistically significant difference between 
the two conditions. The POC approach showed 
the same result, and it indicates that the systematic 
approach was more robust than the random approach 
in the presence of linear trend effects. Therefore, the 
systematic approach shows lesser false positives than 
the classical experiment‑sequence-randomization 
approach in the presence of linear trend effects.

Table 10 shows the results of the estimate of type 
II errors and of the power of the test given by (1-β) 
at 95% confidence interval (95% CI). As for the 
main effect C and BC interaction, it was possible 
to see that the type II error was greater when the 
design was subjected to linear trend effects and the 
execution order was randomized (RAN procedure). 
However, it was not observed in the AEK09 and POC 
procedures. Statistical evidences were obtained by 
comparing the confidence intervals. Regarding the 
AEK09 approach under LT condition, it was observed 
that the CI of variable C was [61.53%; 67.47%]; 
under the normal condition, it was [58.59%; 64.61%]; 
therefore, there was intersection between the two 
conditions, a fact that did not occur in the random 
approach. Thus, there were strong statistical evidences 
that the two systematic approaches generated lesser 
type II error and better power of the test than the 
random approach.

The analyses show statistical evidence that the 
systematic experiment execution order may have 
advantages over randomization. In the case of 
example 16.5, the advantages were related to statistical 
properties, in terms of type I and II errors, as well as 
to the number of factor changes in the experiments. 
It was also possible to observe that the POC approach 

in this example had the best performance in terms 
of the number of factor changes and in the mean 
and maximum correlations in comparison to the 
AEK09 approach, whereas AEK09 ensured designs 
that were robust in the main effects.

6 Conclusions and future research 
perspectives
The classic DoE books recommend randomizing 

the experiments execution order to minimize possible 
linear trend effects. However, Daniel & Wilcoxon 
(1966) and Draper & Stoneman (1968) questioned 
this practice since the 1960s. More recently, several 
authors have been emphatically exposing the 
inadequate experiment randomization issue and 
they suggest using algorithms to generate designs 
according to different criteria.

The current study sought to contribute to this debate 
by taking into consideration two design-generating 
approaches in which the sequencing of experiments is 
systematically done and one approach that randomizes 
the sequencing. The three proposals were compared 
based on six examples of two-level factorial design, 
and it was possible to see that systematic approaches 
had advantages over randomization in most of the 
analyzed criteria. In particular, the simulation of a 
real case statistically proved that the randomization 
increased the type I and II errors, which reduced the 
power of the experiment to detect important process 
factors and to make correct assumptions about the 
significance of factors.

As for the future research perspective, the good 
results obtained by the mathematical programming 
model for the sequencing of experiments motivate the 
research extension in order to include the decision 
about the set of experiments to form the matrix. Such 
extension must simultaneously take into consideration 
criteria such as D-efficiency, time count and number 
of factor changes at the time the experiments are 
chosen. Given the greater complexity of the involved 

Figure 2. Estimation errors, mean correlation, maximum correlation and number of factor changes in the designs of the 
approaches for example 16.5.
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decisions, the major challenge will be to develop a 
well-settled formulation by optimization methods.
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