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Resumo: Este trabalho trata do problema de roteamento e programação de navios que transportam óleo cru das 
plataformas offshore (localizadas no oceano) até os terminais costeiros, motivado por um estudo de caso feito em 
uma empresa brasileira que realiza essa operação. Com base nesse estudo, propõe-se um modelo de programação 
inteira mista que é uma extensão do problema clássico de coleta e entrega com janelas de tempo. Esse problema 
pertence à classe NP-difícil, sendo sua resolução bastante desafiadora na prática. Ao problema da literatura 
foram agregadas outras restrições práticas relacionadas ao caso em estudo, o que torna a formulação ainda mais 
desafiadora para resolução direta por meio de softwares de otimização. Em vista disso, dois métodos de solução 
exatos do tipo branch-and-cut são propostos neste trabalho, os quais usam desigualdades válidas específicas para 
o problema em estudo. Os resultados de experimentos computacionais realizados com instâncias reais fornecidas 
pela empresa mostram que os métodos branch-and-cut propostos resolveram uma quantidade maior de instâncias 
em comparação com a resolução direta do modelo por meio de software de otimização.
Palavras-chave: Problema de coleta e entrega; Roteamento e programação de navios; Indústria petrolífera; 
Método branch-and-cut.

Abstract: This paper addresses the routing and scheduling problem of vessels that collect crude oil from offshore 
platforms (located in the ocean) and transport it to terminals on the coast. This problem is motivated by a case study 
carried out in an oil company that operates in Brazil. Based on this study, we propose a mixed integer programming 
model that extends the classical pickup and delivery problem with time windows. This problem belongs to the 
NP-hard class and its solution is very challenging in practice. To model specific features of the addressed case, we 
include new constraints in the classical formulation, which makes it even more challenging for general purpose 
optimization solvers. To overcome this, we propose two branch-and-cut methods that use valid inequalities especially 
developed for the oil company case. Computational results performed with a real data set provided by the company 
show that the proposed branch-and-cut methods are effective and able to solve more instances than a state of the 
art general purpose optimization solver.
Keywords: Pickup and delivery problem; Ship routing and scheduling; Oil industry; Branch-and-cut method.
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1 Introduction
Maritime transportation has grown considerably 

in recent years and the maritime industry is receiving 
more investment and greater attention from academics 
(Christiansen  et  al., 2004). In particular, the oil 
industry was one of the maritime areas that has 
been the focus of attention in recent years. In Brazil, 
the oil production capacity is almost 2.78 million 
barrels per day. The crude oil exports reach a total 

of 3.54 million tons (Brasil, 2011) and the largest 
reserves are in continental platforms in deep water.

This study addresses the routing and scheduling 
problem of vessels with pickup and delivery and 
time windows, based on a case study carried out 
with a Brazilian company that extracts crude oil. 
The vessels collect the oil from offshore platforms 
and transport it to terminals located on the Brazilian 



Furtado, M. G. S. et al.502 Gest. Prod., São Carlos, v. 24, n. 3, p. 501-513, 2017

coast. It must be transported within deadlines defined 
by time windows at the platforms and terminals.

In this paper, we propose a mixed integer 
programming model to represent the problem of 
the oil company case. The proposed model is an 
extension of the classical pickup and delivery 
problem with time windows (Desaulniers et al., 
2002; Ropke & Cordeau, 2009). This extension 
differs from other literature problems because of 
specific requirements related to the routing and 
scheduling problem of oil tankers and the policies 
of the company. Due to the difficulty in solving 
the resulting model directly by general-purpose 
optimization software, two branch-and-cut methods 
were proposed, using specialized valid inequalities 
that improve the lower bounds provided by the 
linear relaxation of the model and that ensure the 
satisfaction of additional requirements concerning 
the vessels, platforms and terminals. As the total 
number of valid inequalities is exponential in 
relation to the number of pickup and delivery 
requests, it is impractical to generate them a priori. 
Hence, separation procedures are used in the 
branch-and-cut methods to analyze when a valid 
inequality is violated and then add the violated 
ones in an ad-hoc way.

Therefore, the main contributions of this paper 
are a mathematical programming model able to 
represent the company’s problem and solution 
methods to solve the model more effectively when 
compared to its solution directly by general-purpose 
optimization software.

The remainder of this paper is organized as 
follows. In Section 2, we present a brief literature 
review regarding the pickup and delivery problem 
in the oil industry and related branch-and-cut 
methods. In  Section 3, we describe the features 
of the problem concerning the oil company case 
and propose a mixed integer programming model. 
The proposed branch-and-cut methods are described 
in Section 4, followed by the computational tests 
in Section 5. Finally, we present the conclusions 
and future research in Section 6.

2 Literature review
In the pickup and delivery problem, customers are 

represented by nodes of a network and partitioned 
as either pickup or delivery nodes. Each node i has a 
demand qi that must be collected and then delivered 
to node n+i, with qn+i=-qi (corresponding delivery 
demand). Hence, the number of pickups and 
deliveries must be the same. Every pickup node 
must be visited before the corresponding delivery 
node (precedence constraints) and both nodes must 
be in the same route (pairing constraints). Further 

details regarding pickup and delivery problems and 
its applications can be found, e.g. in Berbeglia et al. 
(2007), Ropke et al. (2007), Nowak et al. (2008), 
Ropke & Cordeau (2009) and Hennig et al. (2012).

For the pickup and delivery problem with time 
windows (PDPTW), time window requirements 
are imposed on the nodes. Dumas  et  al. (1991) 
proposed an exact algorithm for the PDPTW, 
based on column generation, with the shortest path 
constraints in the subproblem. Lu & Dessouky 
(2004) proposed a new type of formulation and a 
branch-and-cut algorithm that uses four classes of 
valid inequalities. Baldacci et al. (2011) presented 
an exact algorithm, based on the set partitioning 
formulation and route relaxation strategy, known 
as ng-routes. Interesting literature reviews have 
been presented by Savelsbergh & Sol (1995), 
Desaulniers et al. (2002), Berbeglia et al. (2007), 
Cordeau et al. (2008), Parragh et al. (2008a, b).

Ropke et al. (2007) proposed two models for 
the PDPTW with 2-index variables. The fleet is 
unlimited and homogeneous, and it must respect 
capacity and time window constraints. The objective 
is to minimize the travel costs. In the proposed 
models, the number of constraints is exponential 
with respect to the number of requests, so it is not 
practical to enumerate them. Therefore, the models 
were solved by a branch-and-cut algorithm in which 
some families of valid inequalities were specifically 
proposed for the PDPTW. Ropke & Cordeau (2009) 
proposed a branch-cut-and-price method for the 
pickup and delivery problem with time windows. 
The method uses the valid inequalities presented 
in Cordeau (2006), Ruland & Rodin (1997) and 
Ropke et al. (2007), and the computational results 
showed that the method solved several large-scale 
instances in a reasonable amount of time. It is worth 
mentioning that the classical model presented 
by Ropke & Cordeau (2009) for the PDPTW is 
used as a basis for the model we propose for the 
oil company case, to which we incorporate new 
constraints and a different objective function.

There are many studies in the literature related to 
vehicle routing and scheduling problems, regarding 
mathematical models and solution methods. 
However, the literature is not extensive for studies 
specifically involving the routing and scheduling 
of vessels. According to Christiansen et al. (2007), 
this is due to several factors, such as lower visibility 
and structuring maritime transportation, higher 
uncertainty in decision-making, the difficulty of 
introducing new ideas into the industry as it is older 
than the other transportation, among other factors.

One of the first papers to address the scheduling 
problem of vessels was by Dantzig & Fulkerson 
(1954), in which the authors studied a case in 
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the United States Navy for fuel transportation. 
They  proposed a linear programming model in 
which the objective was to minimize the number of 
used vessels. They also developed an exact solution 
method for the problem. In Christiansen (1999), 
the routing and scheduling problem of vessels 
with time windows was studied in a company that 
transports ammonia. The goal was to find routes 
with minimal transport costs that satisfy minimum 
and maximum inventory levels. Sherali  et  al. 
(1999) studied the scheduling problem of vessels 
which transport crude oil and refined products from 
Kuwait to Japan and countries in North America 
and Europe. The fleet was heterogeneous, the 
vessels were able to transport different products 
and time windows were imposed for pickup and 
delivery nodes. They proposed a heuristic to solve 
the problem with a rolling horizon time.

Christiansen et al. (2004) reviewed problems 
related to vessel routing and scheduling, focusing 
on literature from the 1990s. The paper addresses 
strategic, tactical and operational decision problems 
together with a few applications. Rocha  et  al. 
(2009) proposed a mathematical model for the oil 
allocation problem at Petrobras, which involves 
decisions related to fleet assignment, transporting 
different types of oils and the terminal assignment. 
The objective was to minimize the total costs. 
This problem differs from the study case problem 
addressed in this paper, because it involves decisions 
in a higher hierarchical level and hence their 
solutions can be used as input data for our problem.

Hoff et al. (2010) presented a literature review 
that describes the industrial aspects, routing 
characteristics, problem classification and some 
strategies presented in the literature to solve the 
routing and scheduling problem of vessels. Another 
literature review in maritime transportation is 
presented in Andersson et al. (2010) that emphasized 
the decisions and process related to inventory levels, 
and the combination of these actives in operational 
research. Formulations and exact methods for the 
routing and scheduling problem of vessels have also 
been presented by Hwang et al. (2008), Brønmo et al. 
(2010), Stålhane et al. (2012), Hennig et al. (2012) 
and Fagerholt & Ronen (2013).

3 The pickup and delivery problem 
in the oil industry
This section describes the routing and scheduling 

problem of vessels in the oil industry and its main 
differences regarding classical problems presented 
in the literature. The focus of this study is crude 
oil transportation from platforms to terminals. 
The routing and scheduling problem of vessels 

can be found in a context in which the origins 
and destinations are fixed. Hence, in a previous 
plan, the company decided the quantity of crude 
oil that must be transported from each platform to 
each terminal. Therefore, the problem addresses 
the decision of which vessel should pickup and 
deliver the crude oil and when this must happen.

3.1 Problem description
Each vessel starts and finishes its route at a 

specific depot, which is the latitude and longitude 
coordinates at the beginning and the end of the time 
horizon. In practice, the problem involves multiple 
products, as each platform produces a different 
crude oil and each terminal requests amounts of 
oil from specific platforms. Due to the fact that in 
the pickup and delivery problem formulation, each 
pickup node is paired with a single delivery node, 
it is not necessary to consider the multiple products 
explicitly. Indeed, each terminal demands a specific 
quantity of each platform and the nodes are paired. 
Therefore, the problem can be formulated without 
requiring an additional index for the product type 
in the decision variable.

Routes describe which vessel is chosen to pickup 
and deliver each demand, having to fulfill some 
specific operations. Figure 1 shows an illustrative 
example of a vessel route on the Brazilian coast. 
Nodes 1 and 6 represent the initial and final depots, 
respectively, which are artificial nodes. Note that 
nodes 2 and 4 represent the same platform, with the 
same latitude and longitude coordinates, but with 
different time windows and demands. Therefore, 
the route of this vessel starts in artificial node 1, 
goes to platform 2 to collect the crude oil and 
delivers it to terminal 3. Then, the vessel collects 
the oil from platform 4 and delivers it to terminal 5. 
Finally, the route ends at artificial node 6.

Regarding the case study, the company has 
50 offshore platforms and approximately 10 terminals 
with different berths for mooring the vessels. The fleet 
is heterogeneous, and therefore the vessels have 
different characteristics, which are described later 
in this section. Furthermore, a vessel cannot moor 
on certain platforms or terminals, due to physical 
issues such as the draft (which is the submerged 
part of a vessel) and LOA (length overall). Further 
information about the physical characteristics of 
the vessels considered in this study can be found 
in Rodrigues et al. (2016).

The inventory levels on platforms and terminals 
must satisfy some requirements. For example, the 
platforms must have a minimum stock (generally 
related to ballast) and a maximum stock (due to 
platform capacity). A platform should never stop 
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the crude oil production due to an inventory level 
out of these bounds, as it implies in additional high 
costs to the company. To control inventory levels, 
the proposed formulation relies on time windows 
for each node. The time horizon corresponds to a 
few weeks, which is related to approximately a few 
dozen requests. The problem is then modeled as a 
pickup and delivery problem with time windows, 
multiple depots and a heterogeneous fleet. In addition 
to the classical constraints related to the PDPTW, 
there are specific constraints concerning the case 
study, which are described as follows:

•	 	Mooring restrictions: some vessels cannot 
moor at specific platforms or terminals, due 
to physical characteristics (e.g. draft and 
LOA);

•	 	Flexible draft: even when there is a requirement 
that a vessel k cannot moor at a specific node 
i (platform or terminal), it may still be possible 
to moor if the vessel load is smaller than a 
given percentage of its capacity. This is called 
flexible draft;

•	 	Dynamic positioning: some vessels and some 
adapted vessels for oil exploration have an 
operating system called dynamic positioning (DP). 
This system controls the vessel positioning, 
allowing for quick changes due to weather 
conditions. The platforms and terminals that 
have this system must respect the following 
rules:

➢	If the platform has DP:

✓	If the vessel has DP, then it can moor 
at this platform only with a maximum 
of 50% of cargo on board;

✓	If the vessel does not have DP, then it 
can moor at this platform only with a 
maximum of 30% of cargo on board;

➢	Otherwise (platform is without DP):

✓	If the vessel has DP, then it can moor 
with a maximum of 50% of cargo on 
board;

✓	If the vessel does not have DP, then 
it cannot moor at this platform.

•	 	Each vessel must start its route from the 
vessel´s initial depot and end its route at 
the vessel´s final depot. Therefore, there 
are pre-defined departure and arrival nodes, 
which are artificial points corresponding to 
the latitude and longitude coordinates at the 
beginning and at the end of the planning 
horizon;

•	 	Penalty for consecutive visits: if a vessel 
visits a node of a given platform and goes 
immediately to a node of a different platform, 
then this must be penalized in the objective 
function. This penalty is to avoid sequential 

Figure 1. Example of a vessel route. Source: Rodrigues et al. (2016).
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pickup visits to different platforms, as 
required by the company for safety reasons 
and organizational matters. This requirement 
is not modeled as a hard constraint, because 
an instance can be infeasible if we prohibit 
consecutive visits to different platforms.

3.2 Mathematical model
The aim of this subsection is to describe the 

mathematical model proposed for the problem 
described above. A preliminary study was carried 
out addressing this problem in Rodrigues (2014), in 
which the author proposed a mathematical model, 
which is the basis of this study. The problem is 
represented by a graph ( ),G N A , in which N represents 
the node set and A the arc set. The sets, parameters 
and variables are given as follows:

Sets
K number of vessels;

{ }1, 2, , = …P n  pickup node set (origins);

{ }1, 2, , 2= + + …D n n n delivery node set (destinations);

{ }1 2, , ,= … nST s s s  node set containing the initial 
depot of each vessel;

{ }1 2, , ,= … nEN en en en  node set containing the 
final depot of each vessel;

= ∪ ∪ ∪N P D ST EN  node set of the graph;

( ){ }, : ,= ∈A i j i j N  arc set of the graph.

Parameters
= =n P D total number of pickups (or deliveries);

ijt  travel time in hours from node i to node j;

id  service time in hours for node i;

ie  the earliest time at which the service may 
start at node i (in hours);

il  the latest time at which the service may start 
at node i (in hours);

kCap  capacity of vessel k in 3m ;

iq  demand of node i in 3m ;

 kcm  fuel consumption of the vessel k when it 
is moving;

 kcs  fuel consumption of the vessel k when it 
is in stand-by;

 jca  cost per mooring in node j;

v average velocity of the vessel (we consider 
that all vessels have the same average velocity);

ijdist  distance between node i and node j;

ikA  equal to 1 if vessel k cannot moor in node i, 
and 0 otherwise;

ikCF  maximum percentage of cargo on board 
for vessel k to be allowed to moor at platform i 
(flexible draft);

iDPC  is equal to 1 when a platform i is conventional 
(without DP) and 0 if the platform has DP;

kDPK  is equal to 1 if vessel k has DP and 0, 
otherwise;

1α  percentage of cargo on board in a vessel 
with DP to be allowed to moor at a platform;

2α  percentage of cargo on board in a vessel 
without DP to be allowed to moor at a platform 
with DP;

β  penalty for consecutive visits to different 
platforms;

  ijM e M  sufficiently large numbers.

Variables
ijkx  is equal to 1 if a vessel ∈k K  visits node 

i and then travels directly to node j, and 0, 
otherwise;

ikB  time that vessel ∈k K  starts servicing node 
∈i N ;

 ikQ  load of vessel ∈k K after servicing node ∈i N;

ijkVC  is equal to 1 if a vessel ∈k K  visits the 
platform ∈j P  after visiting platform ∈i P  
(with 0>ijdist ) and 0, otherwise.

The proposed model for the pickup and delivery 
problem with time windows and heterogeneous fleet 
in the oil industry can be formulated as follows:
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The objective function (1) follows the company’s 
policy, given by minimizing the fuel consumption 
(considering the time periods in which the vessel 
moves and is in stand-by), the number of berthing 
operations and consecutive visits to different 
platforms. More details about this function can be 
obtained in Rodrigues et al. (2016). Constraints (2) 
ensure that exactly one arc leaves from node i and 
constraints (3) guarantee that there is exactly one 
arc that enters j; both ensure that each node is 
visited exactly once. Constraints (4) and (5) ensure 
that each vessel route starts and ends at the initial 
and final vessel depots, respectively. Each vessel 
leaves the initial depot and cannot return to this 
node, as imposed by constraints (6). Analogously, 
each vessel cannot leave the final depot, which is 
imposed by constraints (7). Constraints (8) ensure 
flow consistency for the vessels.

Constraints (9) and (10) impose time windows at 
the nodes. Constraints (11) require that the starting 
time of the service at node j has to be greater or 
equal to the starting time of the service at node i, 
plus the service time required at node i plus the 
travel time between these nodes, only if vessel k 
travels directly from i to j. Constraints (12) guarantee 
that the visit to the delivery node n+h must happen 
later than the visit to the corresponding pickup 
node h. Constraints (13) ensure consistency in the 
load of the vessels according to the visited nodes. 
Constraints (14) impose that the vessel cannot 
moor at nodes with some physical restriction. 
Constraints (15) ensure that if vessel k visits the 
pickup node h, then it must visit the corresponding 
delivery node n+h. Constraints (16) impose the 
capacity of the vessels and (17) ensure that the vessel 
starts and finishes empty. Constraints (18) ensure 
flexible draft and (19)-(21) guarantee the dynamic 
positioning. Constraints (22) count consecutive 
visits to different platforms. Finally, constraints 
(23)-(26) define the decision variables domains.

This formulation is nonlinear because of 
constraints (11) and (13). They can be linearized 
as follows:
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4 Branch-and-cut methods for the 
case study problem
The model presented in the previous section 

corresponds to a compact formulation, i.e. a formulation 
that can be solved directly by a general-purpose 
optimization solver, without requiring the user to 
develop specific methods. The main optimization 
solvers currently available are based on branch‑and-cut 
methods, which rely on general-purpose cuts. 
These cuts are generated and added to the problem 
automatically by the solver, to improve the bounds 
provided by the linear relaxations.

Although the general cuts available in optimization 
solvers can be effective in practice, implementing 
additional cuts that are specific to the problem can 
significantly contribute to a better performance. 
As pointed out in many papers, for vehicle routing 
problems, specific valid inequalities are crucial 
to obtain more effective branch-and-cut methods. 
However, specific cuts typically require the user to 
implement the separation algorithms and manage 
their addition to the problem, which typically 
require additional effort for the computational 
implementation.

In this section, we propose two branch-and-cut 
methods based on specific valid inequalities for 
the pickup and delivery problem described in this 
paper. These valid inequalities are added to the 
model (1)-(26), with the aim of improving the lower 
bound provided by the linear relaxation and, hence, 
contributing to solve the problem more effectively. 
Furthermore, we also rely on valid inequalities 
that have the purpose of ensuring the feasibility of 
integer solutions, when combinatorial relaxations 
of the model are used. It is impractical to insert 
all these valid inequalities a priori in the problem, 
as the number of cuts is exponential with respect 
to the number of requests (this can be observed 
further in this section). Thus, these cuts are inserted 
in an ad-hoc way, i.e., separation procedures are 
used to examine whether a cut is violated for a 
given solution, for each valid inequality family. 
Consequently, the cuts are generated and inserted 
only if they are necessary.

4.1 Description of the proposed methods

The first proposed method is based on an adaptation 
of the model (1)-(26), which results in a model 
called Model 1. In this adaptation, all vessels start 
the route at a common initial depot (s0) and end the 
route in another common depot (en0). The motivation 
for adding these two common depots is that the 
classical cuts proposed in the literature become 
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valid for this model as well. Therefore, beyond the 
artificial depots of each vessel represented by sets 
ST and EN, we have two more artificial nodes, s0 and 
en0: one representing the initial depot and the other 
representing the final depot, which are common for 
all vessels. Model 1 is given as follows:

Minimize (1)
s.t.

(2)-(26)

0
1

∈

=∑ s jk
j ST

x                                             ∀ ∈k K 	 (29)

0, , 1
∈

=∑ i en k
i EN

x                                           ∀ ∈k K 	 (30)

1
∈ ∈

− =∑ ∑jik ijk
j N j N

x x                   ;∀ ∈ ∀ ∈∪i P D k K 	 (31)

Constraints (29)-(31) allow for the use of valid 
inequalities that require all vessels to leave a 
common initial depot (s0) and return to a common 
final depot (en0).

The second proposed method is based on another 
model (Model 2), which is also an adaptation of 
the model (1)-(26). As in Model 1, all vessels start 
the route from a common depot and end the route 
at another common depot. The difference lies in 
eliminating all constraints related to mooring, 
flexible drafts and dynamic positioning from the 
model, so that they are added in an ad-hoc way as 
cuts, which are now required to ensure the feasibility 
of the solution. Therefore, Model 2 is based on a 
combinatorial relaxation of the model (1)-(26), 
defined by:

Minimize (1)
s.t.

( ) ( )2 13−

( ) ( )15 17−

( ) ( )22 26−

( ) ( )29 31−

4.2 Valid inequalities
The valid inequalities described in this subsection 

are specific for the problem described in this paper 
and they are the basis of the proposed branch-and-cut 

methods. Note that the valid inequalities related with 
mooring, flexible draft and dynamic positioning 
are obligatory for Model 2 to ensure a feasible 
solution. Model 1 does not have any inequality 
that is mandatory to guarantee a feasible integer 
solution, and therefore cuts are added only to 
improve the lower bounds.

The following valid inequalities are considered: 
precedence constraints, capacity, subtour elimination, 
generalized order constraints, infeasible path 
constraints and reachability. For all the valid 
inequalities, we consider that. 

∈

= ∑ij ijk
k K

x x .. Thus, we 

adapted the classical valid inequalities presented in 
the literature, proposed for two-index models of the 
pickup and delivery problem (Ropke & Cordeau, 
2009), in order to be valid for the branch-and-cut 
methods based on three-index formulations.

4.2.1 Precedence constraints

These constraints were proposed for a PDPTW 
formulation with two-index variables in Ropke et al. 
(2007). Before presenting this valid inequality, it 
is important to describe some definitions. Define 
the set   of all node subsets ⊂S N  such that 0 ∈s S , 

0 ∉en S  and there is at least one pickup node i in 
which ∉i S  and + ∈n i S , i.e., there is a request in 
which the corresponding delivery node belongs to 
S, but the pickup node is not in S. Set   imposes 
the precedence relations for the model presented 
in Ropke et al. (2007). Therefore, the precedence 
constraints are given by:

,
 2

∈

≤ −∑ ij
i j S

x S                                         ∀ ∈S 	 (32)

4.2.2 Capacity constraints

Ropke et al. (2007) proposed the capacity constraints 
for the two-index formulation of the PDPTW. 
Consider the subset ⊆ ∪S P D, in which ( )

∈

= ∑ i
i S

q S q . 

We denote by ( )r S , for any set { }0 0\ ,⊆S N s en , the 
minimum number of vehicles required to attend all 
the nodes in S , excluding the initial and final depots. 
The solution of ( )r S  can be replaced by the lower 

bound ( )
max 1,

  
 
  

q S
Cap

. Then, the capacity constraints 

for the PDPTW are given by:

( )
,

 max 1,
∈

  ≤ −  
  

∑ ij
i j S

q S
x S

Cap
 { }0 0\ , , 2 ∀ ⊆ ≥S N s en S 	 (33)
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4.2.3 Subtour elimination constraint

Consider the classical subtour eliminations 
constraints proposed for the Traveling Salesman 
Problem (TSP) by Fisher & Jaikumar (1981):

( ) 1≤ −x S S 		  (34)

in which ⊆ ∪S P D and ( )
, ∈

= ∑ ij
i j S

x S x . This inequality 

is valid for the VRP and also for the PDPTW 
(Cordeau, 2006). Besides that, this constraint can 
be lifted considering that each node i has only one 
successor and one predecessor. Furthermore, node 
i must be visited before node n+i and by the same 
vehicle. For any set ⊆ ∪S P D  and its complementary 

\N S , let ( ) { | }= ∈ + ∈S i P n i Sπ  and ( ) { | }= + ∈ ∈S n i D i Sσ  
denote the predecessor set of S and the successor set 
of S, respectively. Cordeau (2006) proved that these 
inequalities are valid for the PDPTW:

( )
( )

( ) ( )

\

\ \
1

∈ ∈

∈ ∈

+ +
∩

≤ −
∩

∑ ∑

∑ ∑

ij
i N S S j S

ij
i N S S j S S

x S x

x S
σ

σ σ

                  ⊂ ∪S P D 	 (35)

( )
( )

( ) ( )

\

\ \
1

∈ ∈

∈ ∈

+ +
∩

≤ −
∩

∑ ∑

∑ ∑

ij
i S j N S S

ij
i S S j N S S

x S x

x S
π

π π

                   ⊂ ∪S P D 	 (36)

4.2.4 Generalized order constraints

The generalized order constraints were proposed 
by Ruland & Rodin (1997) for the pickup and 
delivery problem. Cordeau (2006) proved that 
these inequalities are also valid for the PDPTW. 
Let 1, ,… ⊂sU U N  be mutually disjoint subsets and let 
1, ,… ∈si i P be pickup nodes in which 0 0, ∉ ls en U  (initial 
and final depots, respectively) and 1, ++ ∈l l li n i U  for 

1, ,= …l s , in which 1 1+ =si i . Therefore, the following 
inequalities are valid for the PDPTW:

( )
1 1

1
= =

≤ − −∑ ∑
s s

l l
l l

x U U s 		  (37)

These inequalities can be lifted by the precedence 
cycle breaking constraints, proposed by Balas et al. 
(1995) for the asymmetric TSP. Cordeau (2006) 
proved that the next inequalities are also valid for 
the PDPTW:

( )
1 1

1

, ,
1 2 3 1

1
−

+
= = = =

+ + ≤ − −∑ ∑ ∑ ∑l l

s s s s

l i i i n i l
l l l l

x U x x U s 	 (38)

( )
1 1 1

2 1 1

, , ,
1 2 3 1 1

1
− − −

+ + + +
= = = = =

+ + + ≤ − −∑ ∑ ∑ ∑ ∑l l l

s s s s s

l n i i n i i n i n i l
l l l l l

x U x x x U s 	(39)

4.2.5 Infeasible path constraints

Denote by   the set of the infeasible paths 
related to time windows. For any set ∈R , let ( )A R  
and ( )N R  be the arc set and node set, respectively. 
( )A R  corresponds to arcs in this path. The following 

infeasible path constraints were proposed by 
Ropke et al. (2007):

( ) ( )
( )

,
1

∈

≤ −∑ ij
i j A R

x A R                               ∀ ∈R 	 (40)

These inequalities guarantee the time windows 
for a PDPTW (Ropke et al., 2007). For each path 
in the solution, the time windows are verified. 
If  the constraint is violated, then a new cut (40) 
is generated. For the case study considered in this 
paper, these inequalities are verified related to time 
windows, mooring constraints, flexible drafts and 
dynamic positioning. Therefore, we adapted the 
presented Model 2 to ensure all constraints related 
to the case study (mooring constraints, flexible 
drafts and dynamic positioning), i.e., ensuring that 
any integer solution is feasible.

4.2.6 Reachability constraints

The reachability constraints were proposed by 
Lysgaard (2006) for the vehicle routing problem 
with time windows. Ropke et al. (2007) asserted 
that these inequalities are also valid for the 
PDPTW. Consider ( ) ( ) ( )+ −= ∪S S Sδ δ δ , in which 

( ) ( ){ , | , }+ = ∈ ∈ ∉S i j A i S j Sδ  and ( ) ( ){ , | , }− = ∈ ∉ ∈S i j A i S j Sδ . 
For any node ∈i N , let − ⊂iA A be the minimum arc set, 
in which any feasible path from s0 to i uses only arcs 
from −

iA . Let +
iA be the minimum arc set, in which 

any feasible path from i to en0, uses only arcs from 
+
iA . Considerer the node set T, in which any node of 

T must be visited by a different vehicle (define T as 
a conflicting node set). Thus, for each set T, define 
− −

∈

=
T i
i T

A A  and + +

∈

=
T i
i T

A A . For any set ⊆ ∪S P D and 

any set ⊆T S , the following constraints are valid:

( )( )− − ≥∩ Tx S A Tδ 		  (41)

( )( )+ + ≥∩ Tx S A Tδ 		  (42)
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5 Computational results
In this section, we compare the results of solving 

the mathematical model proposed in Section 3 to the 
results obtained with the branch-and-cut methods 
proposed in Section 4. In the proposed methods, 
we include six families of valid inequalities, 
as described in Subsection 4.2. The separation 
procedures regarding the subtour elimination and 
generalized order constraints were implemented as 
described by Cordeau (2006), while the separation 
of the remaining valid inequalities follow the 
description presented by Ropke et al. (2007).

The computational experiments use a real data 
set provided by the company of the case study. 
These data were separated into two cases, Case 1 
and Case 2, briefly described as follows. The first 
case refers to oil production during July 2013, 
while the second case refers to oil production 
during January, 2013. Case 1 has 25 vessels and 
a total of 142 pairs of pickup and delivery. Case 2 
has 31 vessels and a total of 83 pairs of pickup 
and delivery. These cases were divided into 
smaller cases, giving rise to instances used in the 
computational experiments. These instances are 
called CxNy, in which x indicates the case and y 
indicates the number of pairs of pickup and delivery 
nodes. For example, instance C1N10 corresponds 
to 10 pairs of pickup and delivery of Case 1, which 
are the first 10 requests in the time horizon.

Each instance was solved in three different ways: 
(i) using model (1)-(26) directly in an optimization 
solver (Model); (ii) using the branch-and-cut 
method based on Model 1, defined in Section 4.1 
(Method 1); and (iii) using the branch-and-cut 

method based on Model 2, defined in Section 4.1 
(Method 2). As described in Subsection 4.2, the 
two methods include the valid inequalities in an 
ad-hoc way, with the purpose of improving the 
lower bounds and/or ensuring the feasibility of 
the integer solutions. The optimization solver IBM 
CPLEX version 12.6 with the default parameter 
settings was used to solve the model (1)-(26) and in 
the implementation of the branch-and-cut methods 
(Method 1 and 2). The separation procedures were 
implemented in C and the valid inequalities were 
inserted using Callback functions available in 
the Concert library of the solver. The search for 
violated cuts were made only in the 10 first nodes 
of the search tree, and up to 100 cuts of each type 
were added to the model per iteration (the most 
violated ones). Branching was made automatically 
by the optimization solver. Preprocessing was 
performed in all methods to eliminate arcs that 
cannot be in an optimal solution. The adopted rules 
can be found in Dumas et al. (1991) and Cordeau 
(2006). The computer used was a Dell Precision 
T7600 CPU E5-2680 2.70GHz with 192GB of 
memory RAM and operational system Windows 7 
Professional. The time limit for all instances was 
set at 18,000 seconds (5 hours).

Tables 1 and 2 show the results with the model 
and with the proposed branch-and-cut methods 
for instances with different sizes. The first column 
presents the name of each instance and the second 
shows the approach used. The third column shows the 
upper bound (UB) and the fourth column gives the 
difference between the best solution and the lower 
bound (Gap), which is computed as −

=
UB LBGap

UB
 

Table 1. Computational results for instances of Case 1.
Instance Method UB Gap (%) Time (s) LR

C1N10
Model 1677.84 0 6.49 1012.56

Method 1 1677.84 0 10.76 1012.53
Method 2 1677.84 0 8.84 1012.52

C1N15
Model 2311.98 0 20.62 1237.91

Method 1 2311.98 0 16.17 1636.91
Method 2 2311.98 0 14.99 1587.42

C1N20
Model 2748.36 0 2191.53 1364.30

Method 1 2748.36 0 24.19 2100.76
Method 2 2748.36 0 27.33 2069.51

C1N25
Model 3694.58 61.04 – 1288.23

Method 1 3522.90 16.19 – 1930.27
Method 2 3522.90 17.34 – 1906.81

C1N30
Model – 1445.61

Method 1 4818.55 28.13 – 2021.22
Method 2 – 1992.46
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and given in percentage. In the last two columns, 
we show the computational time (in  seconds), 
followed by the linear relaxation (LR). The symbol 
‘–‘ indicates that time limit was reached and an 
empty space represents that no feasible solution 
was found within 5 hours.

For Case 1, the proposed methods performed 
better compared to the model solved directly by the 
optimization solver, for instances with up to 30 pairs 
of pickup and delivery. For instance C1N10, the 
performance of the model and the methods were 
similar, because they found the optimal solution in a 
few seconds. For instance C1N15, the performance of 
the three approaches were also similar. For instance 
C1N20, the methods found the optimal solutions 
in less time (20 seconds) compared to the model, 
which found them in approximately 2000 seconds. 
For C1N25, the methods found a better solution with 
a lower relative gap compared to the model solved 
directly by optimization software. For  C2N30, 
Method 1 was the only one which found a feasible 
solution in 5 hours with 28% of relative gap. 
Compared to the linear relaxation, the methods 
have better results.

For Case 2, the proposed methods have a better 
performance compared to the model for instances with 
up to 25 pairs of pickup and delivery. For instance 
C2N10, the performance of the three approaches were 
similar. For instance C2N15, methods 1 and 2 found 
the optimal solution in a few seconds (approximately 
20 seconds), while the model could not prove 
optimality within 5 hours (17% of relative gap). 
For C2N20, methods 1 and 2 proved the optimal 
solution in approximately 450 seconds. The model 
found an optimal solution, but could not prove its 
optimality within 5 hours, finishing with a relative 
gap equal to 47%. For C2N25, the model did not 
find the optimal solution in the time limited and 

stopped with a 59% of relative gap, while the 
methods found a better solution with a smaller gap. 
For other instances, in the time limited, no feasible 
integer solution was found.

For both cases, the results indicate that the 
branch-and-cut methods have a better overall 
performance compared to solving the model directly 
by the solver. The computational times were better 
for instances C2N15 and C2N20, in which only the 
methods were able to prove optimality within the 
time limit. For instances with more than 30 pairs of 
pickup and delivery, none of the approaches found 
feasible solutions within 5 hours of processing time.

Figures 2 and 3 illustrate the routes of two vessels 
in the optimal solution of C2N25, with Method 1. 

Table 2. Computational results for instances of Case 2.
Instance Method UB Gap (%) Time (s) LR

C2N10
Model 1402.63 0 16.34 699.72

Method 1 1402.63 0 16.38 1309.59
Method 2 1402.63 0 16.72 1309.59

C2N15
Model 1708.51 17.13 – 607.31

Method 1 1708.51 0 29.45 1225.55
Method 2 1708.51 0 24.78 1225.55

C2N20
Model 2452.90 47.71 – 837.73

Method 1 2452.90 0 445.33 1537.12
Method 2 2452.90 0 498.23 1565.97

C2N25
Model 3300.28 59.84 – 1189.53

Method 1 3240.60 0.93 – 2193.10
Method 2 3240.60 1.46 – 2221.14

Figure 3. Route of a vessel 24 for instance C2N25 for 
Method 1.

Figure 2. Route of a vessel 14 for instance C2N25 for 
Method 1.
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6 Conclusion
This paper studied the transport of crude oil from 

offshore platforms to terminals located on the Brazilian 
coast. A case study was carried out in a Brazilian 
company that performs this operation, which motivated 
the proposed mathematical model. The model is based 
on the classical pickup and delivery problem with 
time windows, which was extended in order to cover 
specific characteristics of the case study. In addition 
to the model, we propose two branch-and-cut methods 
with specific valid inequalities to solve the problem.

The model proposed for the case study involves 
practical features of the case study, such as multiple 
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positioning, among others. The proposed branch‑and-cut 
methods were based on variations of this model, 
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As future research, we aim at improving the 
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the branch-and-cut methods proposed in this paper.
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