
-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

13

6WRUDJH�DQG�0DQDJHPHQW�RI�6LPLODU�,PDJHV∗

-KTK\Ot\K�0USOKX�GTJ�3G[JK�3GTU[\XOKX

2'39'*+���;TO\KXYOZ_�6GXOY�*G[VNOTK
6RGIK�J[�3GX��JK�2GZZXK�JK�:GYYOMT_
������6GXOY�)KJK^����¤�,XGTIK
,G^��������������������
K�SGOR �aPUSOKX�SGTU[\XOKXc&RGSYGJK�JG[VNOTK�LX

3GXZG�8[QU`
�

;TO\KXYOZ_�UL�)KTZXGR�,RUXOJG
9INUUR�UL�)USV[ZKX�9IOKTIK���6�5��(U^�������
5XRGTJU�,R������������¤�;9'
,G^����������������
K�SGOR �SX[QU`&LR_TT�IOKTY�[I\�\K

Abstract Numerical images are becoming more and more important and an increasing emphasis on mul-
timedia applications has resulted in large volumes of images. However, images need a large
memory space to be stored, so their efficient storage and retrieval generate challenges to the
database community. This paper proposes a new algorithm for an efficient storage of sets of im-
ages. It is based on a version approach used in databases. It shows how to store and operate on
similar images; two images are defined as similar if the quad-trees encoding them have only few
different nodes. A data structure called Generic Quad-Tree (GQT) is proposed. It optimizes the
memory space required to store similar images and allows an efficient navigation among them.
An Image Tree stores the ancestors and descendants of an image, like a version hierarchy. Us-
ing the Image Tree, the Generic Quad-Tree allows an image to share common parts with its an-
cestors and descendants. The GQT approach and some algorithms for reading, modifying or
removing images from the Generic Quad-Tree are described. Examples using black and white
images and gray scale images are presented.

Keywords: Generic Quad-Tree, operations on quad-trees, image representation, image com-
parison, optimization of memory space, image processing application.

∗ This work was supported by the CNRS in France and by CONICIT
 (accord numbers 5485 and 7202) and CDCH in Venezuela.
§ On leave from Centro de Computación Paralela y Distribuida –
 Fac. de Ciencias - Universidad Central de Venezuela.

1 Introduction

It is commonly required in image processing and
management systems to store different similar images
representing the same “reality”. Measures on image
similarity have been proposed on color [19, 4, 25, 28],
texture [30, 31, 32] or shape [29, 7, 8]. These similarity
measures are mainly used in image databases to retrieve
the images which are the most similar to an image exam-
ple.

In this paper, a new measure is defined on image
similarity. It is based on a distance computed from the
differences between the quad-trees encoding images.
This measure on image similarity, called Q-similarity, is

defined in order to optimize the memory space required
to store images. Such similar images appear in image
processing systems [1], where new images are generated
as the result of an operation or a sequence of operations
applied on an initial image where only few areas are
modified [16]. In Geographic Information Systems [32],
similar images occur when pictures of an area are taken
from time to time or at fixed dates to follow its global
evolution, or the evolution of some of its parts. In medi-
cal domain, images representing the same kind of pathol-
ogy may be considered as similar [29]. For instance [27]
shows the result of retrieval by similarity of brain images
obtained using MRI (Magnetic Resonance Image).

Image storage and retrieval are big challenges be-
cause of the increasing number of images, particularly in
the medical domain. For instance, a typical radiology

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

14

department currently generates between 100,000 and
10,000,000 images per year, requiring about 1.5 terabytes
[15]. As the size of an image is large or very large [11],
in kilo or megabytes, and as the number of images to be
managed may be large too, various processes of com-
pression and compacting have been proposed. They use
different kinds of coding [39, 38, 40] or wavelets [9, 23].
As opposed to these approaches where the compression
or compacting process is applied to each image sepa-
rately, the data structure proposed in this paper, called
Generic Quad-Tree (GQT) [12], uses its own similarity
concept - Q-similarity between images - to improve their
storage. The Generic Quad-Tree considers images or-
ganized in quad-trees. A quad-tree is an efficient data
structure used for representing 2D images [33, 34]. The
GQT approach allows an efficient memory space optimi-
zation by sharing common parts of images. It allows
operations on similar images, like comparison of images,
or comparison of the same region in different images, for
instance to follow sequences of processing different im-
ages or on the same area in different images. Moreover,
the set of images is not supposed to be organized in a
total order.

This paper is organized in the following way. Section
2 describes a medical application where the present work
takes place and briefly recalls the principles of quad-trees
for image representation. Section 3 describes the princi-
ples of the Generic Quad-Tree approach. Section 4 de-
scribes the primitive operations on images stored in a
Generic Quad-Tree. Section 5 presents examples of Ge-
neric Quad-Tree implementations. Section 6 compares
this approach with other proposals. Section 7 concludes
and gives some further research directions.

2 Work context

This paper proposes a structure to manage and to
store images commonly occurring in image processing
applications. To be more precise, let us describe a medi-
cal application, which is used as a reference in the SIMA
project1 [21]. The purpose of the processing is to “im-
prove” images according to criteria predefined by biolo-
gists. It comes down to make some elements appear more
distinctly, to show some characteristics or salient fea-
tures, or emphasize differences. Figures 1 to 4 present
examples of image processing operations. The quadrants
cut up in images are recursively identified according to a
Z function as shown in Figure 5.

Figure 1 presents an image (on the left) containing

1 SIMA Project number S1-9500710 CONICIT Venezuela.

cells observed in a microscope. In the right topmost area
of this image (beginning of the arrow), biologists cannot
correctly determine the presence of cells. In order to
improve the quality of this area, the quadrant is cut in
four parts. Each sub-quadrant is darkened differently
(Figure 1, right).

Figure 1: Modification of an image area.

Figures 2, 3 and 4 represent different steps of an im-
age processing procedure. First, the image is recursively
subdivided in four quadrants (see figure 2). A dilatation
[35] is applied to areas identified by 012 and 013, in
order to close irregular cell shapes. Then, a sharpening
algorithm is applied to the image. A zoom on areas 012
and 013 allows biologists to see more distinctly some
elements (see arrows on figure 4) which are not visible in
the initial image.

Figure 2: Example of image area dilatation.

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

15

Figure 3: Sharpened images and areas dilatation.

Figure 4: Objects detection after area dilatation in sharp-
ened images of figure 3.

In order to succeed, biologists work in a trial and er-
ror process, using operations which generate a new image
as a result. These operations can be applied to the whole
image or to a well chosen part of it (see figures 1-2) be-
cause an operation can improve some parts of an image
and damage some others. Thus it is better to improve
locally some parts of an image and to recompose the
entire image using its improved parts. Moreover, it is
common to modify some image elements manually. At
the end of the process of “improving” an image, a fair
number of images have been created, especially when
different experts have been processing in parallel from
the same initial image. Throughout the process, the cre-
ated images must be saved in order to allow starting
again from an intermediate image if the result of a se-
quence of operations is satisfying, or if trying another
sequence of operations could generate a better result.

Biologists “use” a quad-tree to cut images in regions
(or quadrants). A quad-tree is a hierarchical structure
built by recursive divisions of the space in four disjoint
quadrants. H. Samet [33] gives a detailed description of
this structure. Quad-trees are used for different types of
data, like curves, surfaces or volumes [34]. The most
widely known quad-tree allows to cut an image in re-
gions (or quadrants) according to a criterion (see figure

5). An image is recursively cut in four disjoint quadrants
or squares of the same size so that a node of the quad-tree
represents each quadrant. The root node represents the
initial quadrant containing the whole image. If an image
is not homogeneous - according to the criterion - the
quad-tree root has four descendant nodes representing the
four first level image quadrants: northwestern, northeast-
ern, southwestern and southeastern. A node is a leaf
when its corresponding image quadrant is homogeneous;
otherwise the node is internal. As a consequence, the leaf
nodes of a quad-tree are not all at the same level. Each
internal node has exactly four sons.

Different functions are used for associating an identi-
fier with a quadrant [33]. Here we use a Z function, as
shown on figure 5. A quad-tree node uses the identifier of
the quadrant it represents. For example, in figure 5, the
number 0 identifies the initial quadrant representing the
whole image. Numbers 0, 1, 2 or 3, following their parent
node identifier 0, identify the four first level image quad-
rants. Recursively, sub-quadrants of an image quadrant n
are identified by nk where k ∈ [0,3].

Quad-trees can be implemented using pointers to
nodes. This kind of implementation, called hierarchical,
is costly in memory space. To avoid this problem, differ-
ent techniques of linear storage of quad-tree have been
proposed. A linear representation of a quad-tree is a list
of values, which saves the hierarchical tree structure. It is
generally used for black and white images. Node values,
and particularly leaf node values, are encoded following
depth-first order [14] or width-first order [39].

Figure 5: An example of image quad-tree.

3 The Generic Quad-Tree approach

A Generic Quad-Tree (GQT) is a new tool for repre-
senting and managing similar images [12, 13]. It is based
on the Database Version Approach [6]. This structure
minimizes the memory space of a set of images and

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

16

speeds up several operations applied to image, such as
image comparison. In fact, GQT is more than a storage
structure. It is designed to be inserted in an environment
for image management and processing [20, 21], because
it allows users to extract one or several images easily and
to work on them using their image processing tools in
their working environment. Users can modify preexisting
images, insert new images or delete some of them, com-
pare images, extract images, to build image sequences,
etc.

In this section and in the following one, the Generic
Quad-Tree approach is presented in a simple particular
case where each point has only two values: black and
white. This choice of simplification is to make clear the
description of the approach. However, it may be applied
to any other case of storage of sets of images using quad-
trees.

The GQT approach is based on a principle of sharing
parts of image quad-trees, which is presented in subsec-
tion 3.1. The similarity between images, used in this
paper, is defined in subsection 3.2. The images of the
database are organized in a special structure defined in
subsection 3.3. Then, the Generic Quad-Tree is presented
in subsection 3.4 and the end user view of images is
described in subsection 3.5.

In this text, when no confusion is possible, the terms
image and image identifier are indifferently used.

3.1 Sharing parts of image quad-trees

The Generic Quad-Tree approach is based on a prin-
ciple of sharing of quadrant values between images. Let S
be a set of images. If a quadrant q has the same value in a
set of images S' ⊂ S, this value is stored only once and is
associated with the set of image identifiers of S'. In that
case the sharing is called explicit, because the identifier
of each image sharing the value is explicitly present in
the list.

If a tree order is introduced in the set of images S,
each image, except the tree root, has a unique parent and
an indefinite number of children. Thus the following rule
of implicit sharing may be introduced: except if the iden-
tifier of an image i is explicitly associated with another
value v, image i shares the value of its parent image.

If the image tree is stored, this implicit rule of sharing
allows a very compact representation of a set of images
when a large number of images share quadrant values
along the Image Tree branches.

3.2 Similarity between images

The Q-similarity between two images is defined as

the number of nodes having the same identifier but dif-
ferent values, divided by the cardinality of the set con-
taining the union of their nodes.

More formally, let S(i, i') be the set of nodes having
the same identifier but different values in quad-trees of
images i and i'. Let U(i, i') be the union of the set of
node identifiers existing in the quad-tree of image i and
the set of nodes identifiers existing in the quad-tree of
image i'. Let Card(S(i, i')) (resp. Card(U(i, i'))) be the
cardinality of S(i, i') (resp. of U(i, i')), Card(U(i, i')) ≠ 0.
The Q-similarity between images i and i', d(i,i'), is com-
puted according to equation 1.

• d(i, i') ∈ [0,1], it is a distance [24].

• d(i, i') = 0 ⇔ image i and image i' share all their
nodes.

• d(i, i') = 1 ⇔ image i and image i' don't share any
node.

For example, the Q-similarity between image a and
image b (whose quad-trees are represented in figure 6) is
equal to: d(a,b)=Card(S(a, b)) / Card(U(a, b)) = 5/9

• Card(S(a, b)) = 5 because nodes 03, 030 to 033
have the same identifier but a different value in
the quad-trees of image a and image b. Nodes
030 to 033 have a special value, doesn't exist, in
the quad-tree of image a.

• Card(U(a, b)) = 9 because nodes 0, 00 to 03 and
030 to 033 appear in the union of node identifiers
of both quad-trees.

Figure 6: The Q-similarity computation between images a and b.

3.3 Image Tree

Common values of quad-tree nodes are stored once
only in the Generic Quad-Tree and are associated with a
set of image identifiers. The explicit sharing of node
values optimizes the memory space used for image stor-
age. The implicit sharing diminishes the number of image

)1(
))',((

))',((
)',(

iiUCard

iiSCard
iid =

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

17

identifiers associated with the stored values.

To use the rule of implicit sharing, explained in sec-
tion 3.1, all the images represented using the Generic
Quad-Tree approach are organized in a tree structure
called Image Tree. An image j is inserted in the Image
Tree as a child of an image i if the Q-similarity between i
and j has the smallest value in the database: ∀i' ∈, i ≠ i',
d(i,j) ≤ d(i',j). Image insertion is detailed in section 4.3.

As the Image Tree is only devoted to save memory
space, it is transparent to end users. The way end users
view the image set is explained below in section 3.5.

Figure 7 represents an Image Tree with four images a,
b, c and d.

Figure 7: Images are organized in an Image Tree.

3.4 Generic Nodes

Similar images are stored in a Generic Quad-Tree. Its
nodes are called generic nodes or fat nodes. For each
node appearing in an image quad-tree and representing a
quadrant, there is a node with the same identifier in the
Generic Quad-Tree. A generic node n represents all
nodes n of the quad-trees of images belonging to the
database. It contains all the information necessary to
rebuild the value of the node with the same identifier n in
each image quad-tree.

Each generic node may be seen as a table with two
columns and one or several lines (see Figure 8). Each line
l of a generic node n contains a list of image identifiers
and a value v of quad-tree node. The meaning is: v is the
value of node n in each image quad-tree whose identifier
i appears in line l. (See generic node 02 in Figure 8; it
contains two lines, while generic node 01 has only one
line).

Moreover, applying the sharing rule (see section 3.1),
all the nodes n of the quad-trees representing images
descendant of image i implicitly share the value v; this
implicit sharing is stopped by a descendant image identi-
fier appearing in another line of generic node n, i.e. asso-
ciated with another value v' (see generic node 01 in figure
8, all the images share the value black).

The value of a generic node is either ⊥, meaning the
node does not exist in quad-trees of images appearing in

the corresponding line (see generic node 030 in Figure
8), or I, meaning the node is internal - it has four sons -
(see generic node 0 in figure 8), or a black square if it is a
black leaf, or finally a white square if it is a white leaf.

Figure 8 represents the Image Tree and the Generic
Quad-Tree of the images represented in Figure 7. Generic
node 0 contains only one line with value I. This means
that all nodes 0 are internal in the quad-trees of images a,
b, c and d. Value I is explicitly associated with image a .
This value is implicitly associated with images b, c and d,
descendants of a in the Image Tree, because they don't
appear in any other line of generic node 0. On the other
hand, generic node 02 contains two lines. The first line
means: node 02 is black in the quad-tree of image a. By
implicit sharing, as image b is not appearing in any line
and is child of image a in the Image Tree, node 02 is
black in the quad-tree of image b. However, the quad-
trees of images c and d do not share this value, because
identifiers c and d appear in the second line of generic
node 02. The value of node 02 in the quad-trees of im-
ages c and d is white. Nodes 03k, k ∈ [0,3], do not exist
in the quad-tree of image a and image c. The value ex-
plicitly associated with image a in generic nodes 03k is
⊥. The quad-tree of image c, child of image a in the
Image Tree, implicitly shares this value.

Figure 8: The Image Tree and the Generic Quad-Tree of the

images represented in figure 7.

3.5 End user view of images

At this point it must be stressed that end users identify
images in a way relevant to their applications. The exter-
nal identification (a, b, c and d on the preceding exam-
ples) which is the only one known by end users, is trans-
lated to internal identifiers optimizing search through the
Generic Quad-Tree. To optimize Generic Quad-Tree
algorithms, the internal identification is built in such a
way that from the identifier of an image in the Image
Tree, all its ancestors can immediately be deduced [6,
17].

This point is very important because the physical im-
plementation of similar images is completely separated

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

18

from the way end users see their images. More precisely,
end users can read images and their corresponding quad-
trees from the Generic Quad-Tree and order them in the
way they want. For instance they can build sequences of
images ordered according to specific criteria. As a conse-
quence, it is useful to associate meta-data with each im-
age, containing information on each image, e.g., date of
creation, author, process of creation. Image meta-data are
used for image retrieval in several contexts, for instance,
digital libraries.

4 Operations on images

The primitive operations on images stored in a Ge-
neric Quad-Tree are:

1. Image reading,

2. Image modification,

3. Image insertion,

4. Deletion of an image,

5. Comparison, union and intersection of images.

4.1 Image reading

To read an image i from a Generic Quad-Tree, the
Generic Quad-Tree is read from its generic root node,
identified by 0. The value of this node for image quad-
tree i is determined according to the sharing rule pre-
sented in section 3.1. If the value of a node n is I for
image quad-tree i, the node is internal in the quad-tree of
i and the generic nodes, children of n, are read. Other-
wise, the node n is a leaf of image quad-tree i and the
value found out is its color.

For example, the following steps describe the reading
of image c in the Generic Quad-Tree of figure 8:

• Generic root node 0 is read. Image c identifier
does not appear in node 0. Thus image c shares
the value of node 0 with image a, parent of c in
the Image Tree. Value I, meaning internal node,
is associated with image a. As a consequence,
node 0 is internal in the quad-tree of c. The four
nodes, children of node 0are read (see following
items).

• Implicit sharing appears in nodes 00 and 01. The
system deduces, using the sharing rule, that nodes
00 and 01 are respectively white and black in the
quad-tree of c.

• The value white explicitly associated with c in
generic node 02 corresponds with the value of
node 02 in the quad-tree of c.

• Finally, image c and its parent image a implicitly
share the value white of generic node 03.

4.2 Image modification

Modifying an image updates its quad-tree. Two cases
occur, illustrated by the modifications of image b in fig-
ure 9 compared to figure 7.

1. The modification preserves the image quad-tree
structure and only values of leaf nodes are
changed. For example in figure 9, quadrant 00 of
image b is changed from white (see figure 7) to
black (see figure 9). As a consequence leaf node

00 is modified in the quad-tree of b.

Figure 9: Modification of image b.

2. The modification alters the image quad-tree
structure:

(a) nodes may disappear because quadrants which
were not homogeneous become homogeneous.
For example nodes 03k, k ∈ [0,3], disappear in
the quad-tree of b, because quadrant 03 in image
b becomes homogeneous.

(b) or nodes may appear because quadrants, which
were previously homogeneous, are no more ho-
mogeneous. For example nodes 01k, k ∈ [0,3],
appear in the quad-tree of image b, because an
homogeneous quadrant (01) becomes non homo-
geneous.

All cases may occur simultaneously, for different
nodes of the original image.

4.2.1 Value modification of a quad-tree node

Performing a value modification of quad-tree node n

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

19

generates changes in the Generic Quad-Tree. The new
value v.new of node n for the modified image quad-tree i
must be implicitly or explicitly associated with i. How-
ever, to avoid the propagation of the modification to the
possible images descending from i, the implicit sharing
between i and its image children, in the Image Tree, must
be cut. Thus each image child of i, not explicitly associ-
ated with a value in generic node n before the modifica-
tion, must be explicitly associated with the old value
v.old that it was implicitly sharing with i before the modi-
fication.

For instance, before the modification of image b, im-
age b and image a were implicitly sharing the value white
of generic node 00 (see Figure 8). After the modification
of image b (see Figure 9), the value black of generic node
00 is explicitly associated with image b in Figure 10.
Image d, child of b in the Image Tree, is explicitly asso-
ciated with value white, because it was the value of node
00 in the quad-tree of b before the modification and be-
cause the quad-trees of images b and d were implicitly
sharing this value.

Figure 10: The Generic Quad-Tree after image b modifica-
tion.

4.2.2 Deletion of quad-tree nodes

When a modification implies the deletion of nodes (at
least four: n0, n1, n2 and n3) in an image quad-tree i, the
corresponding generic nodes must be updated for image
quad-tree i, and only for i, by value ⊥, meaning does not
exist. In order not to modify the images descendant of i,
image i and its children must not implicitly share the
value ⊥. This operation is performed exactly as explained
in section 4.2.1. If a generic node n.k (k=0..3) contains
only the value ⊥, this node does not exist anymore in any
image quad-tree. As a consequence it may be deleted
from the Generic Quad-Tree. The deletion of four nodes,
which are siblings identified by n0, n1, n2 and n3 in a
quad-tree entails a modification of their parent node n: it
was internal and becomes a leaf. As a consequence, the
generic parent node must be updated.

For example, node 03, which was internal (see Figure
8) in the quad-tree of image b becomes white (see Figure
10). In the Generic Quad-Tree, image b is removed from
the image identifiers list associated with value I of ge-
neric node 03. Thus, image d, child of b in the Image
Tree, is explicitly associated with value I of generic node
03. Then, image b identifier is associated with value
white of generic node 03. As this value exists in generic
node 03 and is associated with image a, parent of b in the
Image Tree, image b implicitly shares value white with
image a. After the modification of node 03, nodes 03k, k
∈ [0,3], are removed from the quad-tree of image b. As a
consequence, image b implicitly shares the value ⊥ of
generic nodes 03k with image a, because image a is ex-
plicitly associated with value ⊥ of generic nodes 03k and
b is the child of a in the Image Tree. Finally, image d is
explicitly associated with the black and white values of
nodes 03k before the updating of b.

4.2.3 Creation of quad-tree nodes

Finally, new nodes of an image quad-tree (at least
four: n0, n1, n2 and n3) may appear after updating image
i. This operation updates the value of the parent node n,
which becomes internal. The value I of the generic parent
node n is associated with image i, and only with i (i.e. no
side effect on other images descendant of i). If image i
and its children in the Image Tree were implicitly sharing
a value in the generic parent node n, this implicit sharing
must disappear. For each new node n.k (k ∈ [0,3]) cre-
ated in the quad-tree of image i, a new generic node n.k is
created in the Generic Quad-Tree, if it doesn't exist. First,
this node is created empty: value ⊥ is associated with the
root of the Image Tree. Then, the generic node n.k is
updated and the corresponding value of node n.k in the
quad-tree of i is associated with i in generic node n.k (see
section 4.2.1).

This situation is illustrated in Figure 10. Nodes 01k, k
∈ [0,3], are created in the quad-tree of b, because region
01 is not homogeneous any longer (see figures 7 and 9).
The corresponding generic nodes 01k do not exist in the
Generic Quad-Tree. They are created with value ⊥ asso-
ciated with image a, root of the Image Tree. Nodes 01k
are updated in order to associate the value white or black
with image b. Image d, child of b in the Image Tree, is
explicitly associated with value ⊥ in generic nodes 01k,
because these nodes do not exist in the quad-tree of im-
age d. A new line is added in generic node 01. This line
associates value I with image b. Image d, child of b in the
Image Tree, is explicitly associated with the value black
of generic node 01, because it was the value of node 01
in the quad-tree of b before the updating.

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

20

4.2.4 Other modifications

After all these examples, it appears easy to perform
other operations by modifications of generic nodes:

1. Modification of a part of an image by copying the
corresponding part of another image. In fact
copying corresponds to two simultaneous up-
dates.

2. Performing the same modification simultaneously
in several images. For instance, it is easy to
propagate a modification of node n performed on
image i to all images descendant of i. This opera-
tion consists in modifying the value of generic
node n associated with image i, and in deleting
the identifiers of the descendants of image i in
generic node n. Thus all the images descending
from i implicitly share the value of node n with
image i.

Modifying an image i changes the implicit sharing
between i and its descendants. After many image modifi-
cations, it may happen that the implicit sharing between
images deceases. A reorganization of the Image Tree
may improve it. Algorithms for Image Tree reorganiza-
tion are detailed in [24].

4.3 Image insertion

Two modes of insertion of a new image in a Generic
Quad-Tree are provided, according to user needs. The
first mode corresponds to the creation of a new image by
modification of a preexisting image without destroying
that one. The other mode is the insertion of a new image
created outside the Generic Quad-Tree, e.g. by an image-
processing tool.

For the first case, users are provided with an opera-
tion which creates a new image x.i by logical copy of a
preexisting image x. The new image x.i is inserted as the
ith child of x in the Image Tree. As it is a copy of x, it has
exactly the same content and it shares the value of all its
quad-tree nodes with x. As a consequence, no updates of
Generic Quad-Tree nodes are required; this is the reason
why this operation is called logical copy. This case of
logical copy of image is illustrated on figure 11: a new
image e is created as a child of image a in the Image
Tree. Figure 12 represents the Image Tree modification.
The Generic Quad-Tree does not change and is still the
one represented in figure 10.

Figure 11: Creation of image e as a logical copy of image a.

Figure 12: Image Tree modification after the insertion of
image e.

In the second case, a new image i' built outside the
Generic Quad-Tree must be inserted. It may be produced
by an external source or as the result of an image proc-
essing operation performed on an image extracted from
the Generic Quad-Tree. The quad-tree of i' is built. It is
easy to compare the value of each quad-tree node n of
image i' with the corresponding generic node n and to
detect the node values that image i' and other images will
share. If the place of i' in the Image Tree is not well cho-
sen, the sharing will mainly be explicit. To improve the
implicit sharing, i' must be inserted in the Image Tree as
a child of an image sharing the maximum number of
node values with i'. For that, for each node n of i', the list
of all images sharing the value of n with i' is built using
the information contained in generic node n. The set of
images, sharing the maximum number of node values
with i', is determined. The image i parent of i' is chosen
in this set and i' is inserted as a leaf in the image Tree.
Then the Image Tree and the Generic Quad-Tree are
updated to introduce if necessary values of nodes of
image quad-tree i' ; They can be unshared, explicitly
shared, or implicitly shared with i. Algorithms for inser-
tion of external image are detailed in [24].

4.4 Image deletion

The deletion of an image can be logical and physical.

When an image is logically deleted it no longer ap-
pears to end users. Thus, it does not appear any longer in
the set of images and in the Image Tree where the corre-
sponding node of the image quad-tree is no longer visible
to users. A deletion indicator, associated with each image
in the Image Tree, is used to perform this deletion. When
the indicator of i is positioned, i is logically deleted.

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

21

Nothing else is done. Due to the sharing mechanism, the
Generic Quad-Tree remains unchanged: the references to
a deleted image in generic nodes still exist, hidden to
users. The Image Tree is preserved.

Another step in deletion of an image consists in de-
leting the value corresponding to i in all the generic
nodes, if this value is not shared with any other image.
This is useful when the deleted values are large on the
point of view of memory space.

Another step consists in deleting all explicit or im-
plicit references to i in the Generic Quad-Tree. This is
performed by changing to explicit sharing all the cases of
implicit sharing between i and its image children and
then in deleting the identifier i from all the generic nodes.

The last step deletes image i from the Image Tree.
Thus the Image Tree structure is modified with conse-
quences on internal image identifiers. Therefore, this
physical deletion is only used in case of archiving or
destroying a subset of images stored in the Generic
Quad-Tree (for instance a sub-tree).

4.5 Other operations on images

Using Generic Quad-Tree, other operations involving
several images and very useful for applications, like
comparison, can be easily performed.

The comparison of values of an area in any two im-
ages i j and ik can be performed by a top-down comparison
of the values extracted from generic nodes. It begins at
the generic node of the smallest quadrant including the
considered area. Similarly the comparison of any two
images can be performed.

It is also interesting to extract the regions which are
common to several images or which are different. If,
from the user point of view, the compared images are
ordered according to their validity time, this kind of
comparison is useful to study spatio-temporal evolution.
This is a hot topic in Geographic Information Systems.

Using the technique of generic node modification il-
lustrated in section 4.2, and provided that these opera-
tions are defined for the values stored in the Generic
Quad-Tree, it is easy to compute inside the Generic
Quad-Tree an image whose content is the result of:

1. computing the complement of an image or of a part
of an image,

2. the union, intersection or difference of any two im-
ages, or of the same region in any two images.

5 Examples of GQT implementations

Until now in this paper we have considered that the
only constraint on quad-trees is homogeneity of the leaf
quadrants according to a predefined criterion. As a con-
sequence, instead of black or white quadrant, gray scale,
colors, textures etc. can be used without any change in
the algorithms of the Generic Quad-Tree. Moreover, to
limit the number of levels in quad-tree divisions a thresh-
old on the quadrant value can be chosen.

Figure 13: An example of three processed images.

In image processing, particularly in medical domain,
quad-trees are interesting to delimit image quadrants
whose size can be as small as required. For instance, a
quadrant may represent an interesting area for a biologist,
because it contains specific cells. These quadrants are
subject to image operations in order to improve the qual-
ity. This situation happens in the medical application of
SIMA and is illustrated by Figure 13. In order to improve
the quality of quadrant 011 in image A two different
processes have been carried out starting from image A.
Thus, two images, B and C, have been created. The im-
age B has been obtained by application of an image im-
provement operation on the contrast of quadrant 011 of
image A. On the other hand, image C has been obtained
by applying darkening algorithms on quadrants 0110 and
0111 of image A. Figure 14 represents the Generic Quad-
Tree storing images A, B and C. The quadrants of the
images are subject to image operations. Their values,
which are smaller images, are too large to be stored in-
side a generic node. As a consequence the quadrant val-
ues are stored outside the Generic Quad-Tree, for in-
stance in files, and the generic nodes contain references
to these files, for instance file identifiers.

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

22

6 Comparison with other approaches

This section begins by rapidly comparing the Generic
Quad-Tree approach with other approaches using image
versions. In the end, the Generic Quad-Tree approach is
compared in detail to approaches using quad-trees for
managing images and for optimizing memory space.

6.1 Approaches using image versions

The authors of [1, 16] propose an approach to manage
image versions in an image processing system. An image
version is defined as the result of processing algorithms
on an initial image. Each version of an image i is associ-
ated with a specific object containing the history of the
image processing of i. All images, all image versions and
all operations applied on image versions are stored in a
database. Users can reuse an existing image version to
apply processing algorithms stored in the database or
created outside. They can use an image history to create
new image versions or operate on them. In this approach,
each image is considered as a whole and each version
corresponds to an entire image. There is no image mem-
ory space optimization.

6.2 Overlapping approaches

Storage of similar images has been considered in dif-
ferent articles. Several proposals are based on extensions
of overlapping between data of the same type [39, 38,

40]. The purpose of overlapping mechanisms is to share
the maximum of common parts between an original data
structure and another one [2, 3]. This mechanism has
been extended to sequences of a given data structure, like
B-tree [5, 22], R-tree [26] or quad-tree [39, 38, 40]. The
idea is to share the common parts of the quad-trees corre-
sponding to different similar images using overlapping.
As a consequence, memory space is saved and the access
time to an image is the same with overlapping as without
it. In [40], the management of any type of images (e.g.,
binary, colored images) is allowed. Linear overlapped
quad-trees representations are proposed in [39, 38], but
they only manage black and white images.

In [40], a technique of overlapping to represent se-
quences of similar images using quad-trees is proposed.
When a new image i is inserted at the end of a sequence,
its quad-tree overlaps the quad-tree of the preceding
image, called i-1. The quad-trees representing image i
and image i-1 share all parts which are equal in both
quad-trees. On the other hand, when a leaf node has dif-
ferent values in both quad-trees, all the nodes from the
root to the modified node are copied in the quad-tree of
image i. This is shown on Figure 15.B. The different
parts of quad-trees representing both images a (in the left
of the figure 15.A) and b (in the right) are represented in
gray in the quad-tree of b. Both quad-trees share nodes
00 to 02, because they appear with the same value in both
of them. Dotted lines represent references to shared
nodes. On the other hand, node 03 has a different value in

F igu re 14 : Im ages o f f igu re 1 3 sto red in a G en eric Q uad-Tree.

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

23

both quad-trees. Then a new sub-tree is created in the
quad-tree representing image b.

Figure 15: Overlapping between two image quad-trees.

The sharing of common parts of quad-trees saves
memory space. In the overlapping methods the set of
images is organized in sequence. The sharing of parts of
a quad-tree is always implicit and is only possible with
the quad-tree of the previous image in the sequence. On
the contrary, in the Generic Quad-Tree, when the same
value appears in the node n of any two different image
quad-trees, it is automatically shared, implicitly or ex-
plicitly. Therefore the Generic Quad-Tree approach
maximizes the sharing of quadrant values.

Image modification has not been considered by
authors [40, 39, 38]. The only operations allowed on
images stored in overlapped quad-trees are reading an
image and inserting an image at the end of the sequence.
Moreover, it is possible to modify or delete the last image
of the sequence. By contrast, for the images stored in a
Generic Quad-Tree, there is no limitation on operations
allowed: a new image may be inserted as the child of any
image in the Image Tree and any image can be modified
or deleted. As a consequence, the sharing of values is, in
the worst case, equal for the Generic Quad-Tree and the
overlapping approaches, and generally better for the
Generic Quad-Tree.

The most important difference between the Generic
Quad-Tree approach and the overlapping quad-tree
methods is that Generic Quad-Tree allows many opera-
tions which do not exist for the others (e.g., updating an

image, comparing images or part of images, following
the evolution of an area across images), as explained in
section 4. A consequence of this peculiarity is that it is
efficient for working on one image and for operating
simultaneously on any set of images. Thus, for the kind
of application, presented in section 2, the Generic Quad-
Tree is the most adapted structure.

7 Conclusions

The Generic Quad-Tree, presented in this paper, op-
timizes the storage of similar images organized in quad-
tree, avoiding to store several times a part common to
several images. The Generic Quad-Tree allows applying
operations to images: image reading, image insertion or
suppression, modification of an image or several images
simultaneously, and image comparison. This type of
operation is very important in the domain of image proc-
essing.

In the GQT approach, operations are applied on im-
ages organized in quad-tree. Quad-trees offer an absolute
reference of image regions and allow parallel executions
of some operations. It is also possible to visualize differ-
ent consequences of an image processing in the same
regions. In the same way, this type of operation is im-
portant in the spatio-temporal domain, to study the evo-
lution of a geographical area.

Among the representations of similar images using
quad-trees, the Generic Quad-Tree is specific because
each generic node may be used according to two dimen-
sions. One dimension allows navigating inside the quad-
tree of an image i: thus it is hierarchical in that sense. The
other dimension, across images, allows jumping from one
image to another using generic nodes. Thus it is easy,
using the Generic Quad-Tree to access simultaneously
the same area in different images, for instance to compare
their value or to study the area evolution. Because of
sharing the comparison of node n value in different im-
age quad-trees is immediate.

A prototype validating the GQT approach has been
implemented at the University Central of Venezuela [13].
Work is currently in progress on the building of accurate
indexes of similarity between images according to other
definitions of similarity [19, 28, 31, 32] used in image
retrieval domain. Mechanisms proposed in the GQT
approach have been extended to other data structure (B+-
tree, R-Tree) in [24], in order to enlarge the application
domain of the Generic Quad-Tree.

9ZUXGMK GTJ 3GTGMKSKTZ UL -� 0USOKX� 3� 3GTU[\XOKX
9OSORGX /SGMKY GTJ 3� 8[QU`

24

References

[1] M. Aritsugi, M. Tabata, K. Fukatsu, Y.
Kanamori and Y. Funyu Manipulation of Image
Objects and Their Versions under CORBA Envi-
ronment. In Proc. DEXA '97, pages 86-91, 1997.

[2] F.W. Burton, M.M. Huntbach and J.Y.G. Kollias
Multiple Generation Text Files Using Overlap-
ping Tree Structures. The Computer Journal
28(4):414-416, 1985.

[3] F.W. Burton, J.G. Kollias, D.G. Matsakis and
V.G. Kollias Implementation of overlapping B-
trees for time and space efficient representation
of collections of similar files The Computer
Journal 33(3):279-280, 1990.

[4] J.M. Corridoni, A. Del Bimbo, and E. Vicario
Painting Retrieval Based on Color Semantics
Images Databases and Multi-Media Search,
World Scientific, Series on Software Eng. and
Knowledge Eng. (8): 13-24, 1997.

[5] M.J. Carey, D.J. DeWitt, J.E. Richardson and E.
Shekita chap. 14 - Storage Management for
Objects in EXODUS Object-Oriented Concepts,
Databases, and Applications, Addison Wesley -
ACM Press, pages 341-369, 1989.

[6] W. Cellary and G. Jomier Consistency of Ver-
sions in Object-Oriented Databases In Proc.
VLDB, Brisbane (Australia), 1990.

[7] A. Del Bimbo and P. Pala Shape Indexing by
Multi-scale Representation Images Databases
and Multi-Media Search, World Scientific, Se-
ries on Software Eng. and Knowledge Eng.
(8):59-74, 1997.

[8] C. Djeraba, I. Savory, M. Barere and S. Mar-
chand Content Based Image Retrieval Model in
an Object Oriented Database Images Databases
and Multi-Media Search, World Scientific, Se-
ries on Software Eng. and Knowledge Eng.
(8):263-275, 1997.

[9] G.M. Davis A Wavelet-Based Analysis of Frac-
tal Image Compression IEEE Trans. on Image
Processing, 7(2):141-153, 1998.

[10] M. Flickner, H. Sawhney, W. Niblack, J. Ashley
and al. Query by Image and Video Content: The
QBIC System Computer, 28(9):23-32, IEEE
Comp. Soc. Press, 1995.

[11]
C. Goble chap. 12 - Images Database Prototype

The Handbook of Multimedia Information Man-
agement, Prentice Hall, pages 365-404, 1997.

[12] G. Jomier, M. Manouvrier and M. Rukoz Stock-
age et gestion d'Images par un Arbre Quaternaire
Générique In Proc. 15èmes Journées Bases de
Données Avancées (BDA'99), Bordeaux
(France), 1999.

[13] G. Jomier, M. Manouvrier, M. Rukoz, J. Rami-
rez and Y. Valero MIS: Un prototipo de un sis-
tema de Manipulaciòn de Imágenes Similares In
XXV Conf. Latinoamericana de Informàtica
(Panel'99), Asunciòn (Paraguay), 1999.

[14] E. Kawagushi and T. Endo On a method of bi-
nary picture representation and its application to
data compression IEEE Transactions Pattern
Anal. Mach. Intell., 2(1):27-35, 1980.

[15] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel
and Z. Protopapas Fast Nearest Neighbor Search
in Medical Image Databases In Proc. VLDB,
Mumbai (Bombay) India, pages 215-226, 1996.

[16] S. Kawashima, M. Tabata, Y. Kanamori and Y.
Masunaga Versioning Model of Image Objects
for Easy Development of Image Database Appli-
cations In Proc. DEXA '96, pages 194-200, 1996.

[17] A. Keller and J. Ullman A version numbering
scheme with a useful lexicographic ordering In
Proc. ICDE, Taipei (Taiwan), pages 240-248,
1995.

[18] M.S. Lew, D.P. Huijsmans and D. Denteneer,
Content-Based Image Retrieval: Optimal Keys,
Texture, Projections, or Templates Images Data-
bases and Multi-Media Search, World Scientific,
Series on Software Eng. and Knowledge Eng.
(8):39-47, 1997.

[19] H. Lu, B-C. Ooi and K-L.Tan Efficient Image
Retrieval by Color Contents In Proc. First Int.
Conf. on Applications of Database (ADB-94),
Vadstena (Sweden), june 1994.

[20] C. Lon and M. Rukoz Sistema Distribuido para
Tratamiento de Imàgenes In Memorias de la XXI
Conferencia Latinoamericana de Informàtica
(PANEL'95), Brasil, Jul. 1995.

[21] C. Lon, M. Rivas and M. Rukoz Una Her-
ramienta en java par Aplicaciones Distribuidas
de Tratamiento de Imàgenes Biomdicas In
Memorias de la XXIV Conferencia Latinoameri-
cana de Informàtica (PANEL'98), Ecuador, Oct.
1998.

[22] Y. Manolopoulos and G. Kapetanakis Overlap-

-� 0USOKX� 3� 3GTU[\XOKX 9ZUXGMK GTJ 3GTGMKSKTZ UL
GTJ 3� 8[QU` 9OSORGX /SGMKY

25

ping B+-Trees for Temporal Data In Proc. of
Jerusalem Conf. on Inf. Technology (JCIT 90),
IEEE Computer Science Press #2078, Israël,
pages 491-499, Oct. 1990.

[23] M.K. Mandal, S. Panchanathan and T. Aboulnasr
Choice of Wavelets for Image Compression
Lecture Notes in Computer Science 1133, World
Scientific, pages 239-249, 1996.

[24] M. Manouvrier Objets Similaires de Grande
Taille dans les Bases de Données PhD Thesis,
Université Paris IX Dauphine (France), Jan.
2000.

[25] N. Nes, C. van den Berg and M. Kersten Data-
base Support for Image Retrieval Using Spatial-
Color Features Images Databases and Multi-
Media Search, World Scientific, Series on Soft-
ware Eng. and Knowledge Eng. (8): 293-300,
1997.

[26] M.A. Nascimento and J.R.O. Silva. Toward
Historical R-trees In Proc. of ACM Symposium
on Applied Computing (SAC'98), Atlanta, USA,
pages 235-240, Feb. 1998.

[27] C. Nastar Indexation d'Images par le Contenu: un
Etat de l'Art In COmpression et Repreésentation
des Signaux Audiovisuels (CORESA'97)},
France, 1997.

[28] B.C. Ooi, K-L. Tan, T.S. Chua and W. Hsu Fast
image retrieval using color-spatial information
The VLDB Journal, 7:115-128, 1998.

[29] E.G.M. Petrakis and C. Faloutsos Similarity
Searching in Medical Image Databases IEEE
Transactions on Knowledge and Data Eng.,
9(3):435-447, 1997.

[30] J.R. Smith and S-F.Chang Quad-Tree Segmenta-
tion for Texture-Based Image Query In Proc.
ACM Multimedia, San Fransisco, CA. USA, Oct.
1994.

[31] J.R. Smith and S-F.Chang VisualSEEk: a fully
automated content-based image query system In
Proc. ACM Multimedia '96, Nov. 1996.

[32] G. Sheikholeslami, A. Zhang and L. Bian A

Multi-Resolution Content-Based Retrieval Ap-
proach for Geographic Images GeoInformatica,
3(2):109-139, 1999.

[33] H. Samet The Quadtree and Related Hierarchical
Structures Computing Surveys, 16(2):187-260,
1984.

[34] H. Samet The Design and Analysis of Spatial
Data Structures, Addison Wesley, 1989.

[35] J. Serra Image Analysis and Mathematical Mor-
phology, vol-2. Theoretical Advances, Aca-
demic, 1988.

[36] I.P. Stewart Quadtrees: Storage and Scan Con-
version The Computer Journal, 29(1):60-75,
1986.

[37] T. Tzouramanis, Y. Manolopoulos and N. Lor-
entzos Overlapping B+-trees : An Implementa-
tion of Transaction Time Access Method Data
and Knowledge Eng. Journal, 29(3):381-404,
1999.

[38] T. Tzouramanis, M. Vassilakopoulos and Y.
Manolopoulos Overlapping Linear Quadtrees: a
Spatio-temporal Access Method In Proc. ACM
GIS'98, Washington D.C., Nov. 1998.

[39] Tsong-Wuu Lin Compressed quadtree repre-
sentations for storing similar images Image and
Vision Computing, 15:833-843, 1997.

[40] M. Vassilakopoulos, Y. Manolopoulos, and K.
Economou Overlapping Quadtrees for the Repre-
sentation of Similar Images Image and Vision
Computing, 11(5):257-262, 1993.

[41] D. Woelk, W. Kim and W. Luther An Objected-
Oriented Approach to Multimedia Databases In
Proc. ACM SIGMOD, Washington D.C., May
1986.

