
Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

5

Closing the GAP Between OrganizationalClosing the GAP Between Organizational
Requirements and Object OrRequirements and Object Oriiented Modelingented Modeling

Jaelson Castro
Universidade Federal de
Pernambuco, Centro de
Informática, Recife, Brazil
jbc@cin.ufpe.br

Fernanda Alencar
Universidade Federal de
Pernambuco, Dep. Eletrônica e
Sistemas, Recife, Brazil
fmra@npd.ufpe.br

Gilberto Cysneiros
Universidade Federal de
Pernambuco, Centro de
Informática, Recife, Brazil
gaacf@cin.ufpe.br

Abstract Requirements Engineering has been considered a key activity in any Software Engineering
process. It is well known that a requirements specification should include not only software
specifications but also business models and other kinds of information describing the context
in which the intended system will function. In recent years we have observed a growing influ-
ence of the object-orientation paradigm. Unfortunately, the current dominant object oriented
modeling technique, i.e. Unified Modeling Technique, is ill equipped for modeling early re-
quirements which are typically informal and often focus on Organizational objectives. UML is
more suitable for later phases of requirements capture, which usually focus on completeness,
consistency, and automated verification of functional requirements for the new system. In this
paper, we present some guidelines for the integration of early and late requirements specifica-
tions. For the organizational modeling we use the i* framework, which focuses on the descrip-
tion of organizational relationships among various organizational actors, as well as an under-
standing of the rationale for the alternatives chosen. For the functional requirements specifi-
cation, we rely on a precise subset of the Unified Modeling Language  annotated with con-
straints described in the Object Constraint Language. A small example is used to illustrate
how the requirements process iterates between the early and late requirements specification.

Keywords: Requirements Engineering, Object Oriented Development, UML

1 Introduction

It is now a widely shared tenet of Software Engi-
neering that a good Requirements Engineering effort is
paramount to the success of any system. Often, software
systems fail to properly support the organizations of
which they are an integral part. Primary reasons for such
failures are the lack of proper understanding of the or-
ganization by the software developers of the system,
also the frequency of organizational changes which
cannot be accommodated by existing software systems
(or their maintainers). Hence, requirements capture has
been acknowledged as a critical phase of software de-
velopment, precisely because it is the phase which deals
not only with technical knowledge, but also with Or-
ganizational, managerial, economic and social issues.

The emerging consensus is that a requirement specifica-
tion should include not only software specifications but
also business models and other kinds of information
describing the context in which the intended system will
function [1]. During requirements analysis, analysts
need to help to identify different ways in which software
systems ca be used to achieve Organizational objectives.
Consequently, there is a need for modeling and analysis
of stakeholder interests and how they might be ad-
dressed, or compromised, by various system-and-
environment alternative structures. Indeed, the Unified
Method has suggested the following archetypal
workflow for requirements capture [2]:

• List candidate requirements,

• Understand system context,



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

6

• Capture functional requirements,

• Capture non-functional requirements.

However, the production of high quality specifica-
tions is quite difficult. Usually the customers do not
exactly know what they want and sometimes the re-
quirements may not reflect the real needs of the custom-
ers. It is common for requirements to be incomplete
and/or inconsistent.

A recent work on requirements engineering has drawn
an important distinction between early phase requirements
capture and late phase requirements capture [3]. Early
phase requirements activities are typically informal and
address Organizational or non-functional requirements. The
emphasis is on understanding the motivation and rationale
that underlie system requirements. Late phase requirements
activities usually focus on completeness, consistency, and
automated verification of requirements.

We claim that the dominant object oriented modeling
technique, Unified Modeling Language [4], is well suited
only for late-phase requirements capture. We argue that
UML is ill equipped for early requirements capture because
it can not represent how the intended system meets organ-
izational goals, why the system is needed, what alternatives
were considered, what the implication of the alternatives are
for the various stakeholders, and how the stakeholders’
interests and concerns might be addressed. What is required
to capture such concerns is a framework that focuses on the
description and evaluation of alternatives and their relation-
ship to the organizational objectives behind the software
development project [5]. We argue that the i* framework
[6], is well suited for early-phase requirements capture,
since it provides for the representation of alternatives, and
offers primitive modeling concepts such as those of softgoal
and goal.

We advocate that UML alone is not adequate to deal
with all different types of analysis and reasoning that are
required during the requirements capture phases. Instead,
we advocate the use of two complementary modeling tech-
niques, i* and UML. To model and understand issues of the
application and business domain (the enterprise) a devel-
oper can use the i* framework which allows a better de-
scription of the organizational relationships among the
various agents of a system as well as an understanding of
the rationale of the decisions taken. For the functional re-
quirements specification, the developer can rely on UML,
or if formality is required, the precise Unified Modeling
Language (pUML) [7], annotated with constraints described
in OCL [8].

In this work we present the transition from early (in-
formal) descriptions in i* to late (precise) requirements
in pUML. This constitutes a conceptualization activity
within which a developer might make use of domain

knowledge partly expressed in descriptions of the or-
ganization, and partly in existing requirements specifi-
cations.

This paper is organized as follows. Section 2 intro-
duces the language used for the early requirements de-
scription, namely the i* technique. In section 3, we
provide some means for transforming the i* models into
precise specifications in pUML/OCL. Late requirements
specification is described in Section 4. Section 5 reviews
some related work, while Section 6 concludes the paper
with a summary of its contributions. Throughout the
paper, a small CD store example is used to illustrate
how the requirements process iterates between the early
and late requirements specification. The example is
pedagogical and is meant to be suggestive of the much
more complex sets of issues typically found in actual
situations

2 The i* Modeling Framework for
Early Requirements Capture

When developing systems, we usually need to have a
broad understanding of the organizational environment
and goals. The i* technique [3] provides understanding
of the “why” by modeling organizational relationships
that underlie systems requirements. i* offers a modeling
framework that focuses on strategic actor relationships.
Usually, when we try to understand an organization, the
information captured by standard modeling techniques
(DFD, ER, Statechart, etc.) focuses on entities, func-
tions, data flows, states and the like. They are not capa-
ble of expressing the reasons (the “why’s”) of the proc-
ess (motivations, intentions and rationales). The ontol-
ogy of i* [9] caters to some of these more advanced
concepts. It can be used for: (i) obtaining a better under-
standing of the organizational relationships among the
various organizational agents; (ii) understanding the
rationale of the decisions taken; and (iii) illustrating the
various characteristics found in the early phases of re-
quirements specification. The participants of the organ-
izational setting are actors with intentional properties,
such as, goals, beliefs, abilities and compromises. These
actors depend upon each other in order to fulfil their
objectives and have their tasks performed. The i* tech-
nique offers two models: The Strategic Dependency
(SD) model, and the Strategic Rationale (SR) model.

2.1 The Strategic Dependency Model

This model focuses on the intentional relationships
among organizational actors. It consists of a set of nodes
and links connecting them, where nodes represent actors



Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

7

and each link indicates a dependency between two ac-
tors. The depending actor is called depender, and the
actor who is depended upon is called the dependee.
Hence, an SD model consists of a network of depend-
ency relationships among various actors, capturing the
motivation and the rationale of activities. i* distin-
guishes four types of dependencies. Three of these re-
lated to existing intentions – goal dependency, resource
dependency and task dependency, while the fourth is
associated with the notion of non-functional require-
ments, the so called softgoal dependency. In a goal de-
pendency, an agent depends on another to fulfil a goal,
without worrying how this goal will be achieved. In a
resource dependency, an agent depends on another agent
to provide a physical resource or information. In a task

dependency, an agent depends on another to carry out a
task. A softgoal dependency is similar to a goal depend-
ency, except that a softgoal is not precisely defined. In
i* we can also model different degrees of dependency
commitment on the part of the relevant actors (open,
committed, or critical). We can also classify actors into
agents, roles and positions. An agent is an actor with
concrete physical manifestations (a person or a system).
A role is an abstract characterization of the behaviour of
a social actor within some specialized context, domain
or endeavor. A position is a set of roles typically played
by one agent. Finally, i* supports the analysis of oppor-
tunities and vulnerabilities for different actors [6].

Figure 1: Strategic Dependency Model



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

8

Suppose a situation in which a Client wishes to buy
CDs and goes to a specialized store because its services
are of good quality and it claims to have most (if not all)
available titles on stock. If a client cannot find his/hers
preferred title, the shop can happily place an order for it
and notify the client upon its arrival. The shop has de-
cided to improve its services by commissioning a new
software system (SmartCD) to handle orders as well as
providing an online catalogue (it would be so conven-
ient!). In Figure 1, we have the Strategic Dependency
(SD) model of the CD store case study.

At this early stage of requirements capture we have
identified three actors: Client, Store and SmartCD. This
last actor indeed corresponds to the system to be devel-
oped, handling orders, notifications of CD arrivals and
providing the online catalogue. The dependencies be-
tween the Client and the Store actor can be find in Fig-
ure 1. The Client depends on the Store for getting the
CD (resource dependency). However, he/she wishes the
services to be of good quality (softgoal Qual-
ity[Service]) and the store to maintain a good stock of
CDs (softgoal Good variety). Of course these goals are
not yet precisely defined at this early stage, hence the
use of softgoals. Turning to the relationship between
actors Client and SmartCD,  we notice that one of the
goals for introducing the online system is to enable
browsing facilities (goal dependency Browse Cata-
logue). In fact, the store may stock thousands of CDs,
making it difficult (or even impossible) for a customer
to manually search all of them. In the (unlikely) situa-
tion that a CD is not on stock, the SmartCD actor will be
able to handle orders online (the system will inform
what and how it should be done, hence task dependency
Order new CD). This feature is much awaited, since
filling orders manually (through a sales person) is time
consuming. Of course, when the (ordered) CD arrives,
the Client will be notified as soon as possible (actually
there is a pre-defined procedure for dealing with it,
hence the task dependency Notify CD Arrival). The
Client expects the access to software system to be fast
(softgoal Fast[Access]) and to use it to keep the stock
updated (task Update Stock). Last but not least, the Store
actor also has some expectations on the commissioned
SmartCD system. It relies on the software system to
process internet orders (goal Process Internet Orders)
and to controls its stock (task Update Stock).

2.2 The Strategic Rational Model

The Strategic Rationale Model (SR) provides a more
detailed level of modeling by looking “inside” actors to
model internal intentional relationships. It is used to: (i)

describe the interests, concerns and motivations of par-
ticipants process; (ii) enable the assessment of the possi-
ble alternatives in the definition of the process; and (iii)
research in more detail the existing reasons behind the
dependencies between the various actors. Nodes and
links also compose this model. It includes the previous
four types of nodes (present in the SD model): goal,
task, resource and soft-goal. However, two new types of
relationship are incorporated: means-end that suggests
that there could be other means of achieving the objec-
tive (alternatives) and task-decomposition that describes
what should be done in order to perform a certain task.

In Figure 2 we use the SR notation to detail the Store
agent. Due to space limitation we now only comment
some aspects. An interested reader can find a fuller
description of the approach in [10]. The store is inter-
ested in attracting (new and old) clients (expressed by
task node To Attract Customers). Several strategic deci-
sions were taken in consideration and as a result the task
was decomposed into five aspects (expressed by a task-
decomposition link):

• The need to offer reasonable prices (captured by
software goal Good Prices). Two alternatives
are considered for meeting this objective: to of-
fer discount on selected items (softgoal Discount

Price) or obtaining good deals by buying large
quantities of popular CDs (softgoal Volume Pur-

chase[Highs]),

• To need to establish a courteous relationship
between the store staff and its clients (repre-
sented by softgoal Friendly Staff). This is con-
sidered to be a way of meeting the quality of
service expected by the client.

• To define standard procedures for delivering CD
(expressed by sub-task Delivery),

• To be able to maintain a good stock of CDs
(captured by sub-task Maintain Stock). This will
also require the updating of the online informa-
tion system. Hence the task dependency Update

Stock between the Store and SmartCD actors.

• To handle internet sales (captured by sub-task
Sales by Web), which depends on the adequate
software system, hence the goal dependency
Process Internet Orders  between the Store and
SmartCD actors.



Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

9

Figure 2: Strategic Rational Model

After some considerations, it has been agreed that the
task of maintaining the stock needs to be further decom-
posed:

• The overall objective is to have all available titles
on stock (captured by goal Have all titles). If
this is met, certainly the client will be very
pleased (see the softgoal Good Variety between
Client and Store actors),

• Buying new titles (expressed by a sub-task Buy

new releases),

• Making sure that popular CDs are re-stocked (ex-
pressed by a sub-task ‘Replenish’).

At this point, we may stop the process of modeling
the strategic dependencies of the CD store. We are al-
ready capable of understanding some issues of the appli-
cation domain (the enterprise). We can then move to
provide a detailed system specification.

3 From Organizational Requirements
to Object Oriented Models

We have shown that i* provides an early under-
standing of the organizational relationships in a business
domain. As we progress in the development we need to
focus on the functional and non-functional requirements
of a system-to-be, which will support the chosen alter-
native among those considered during early require-
ments. To specify the late requirements, we adopt
pUML (precise UML) [7] which provides a precise de-
notational semantics for core UML elements, such as:
relationship, classifier, association, and generalization.
The interested reader can visit the pUML site [11] for a
complete description of the approach.

Note that pUML diagrams alone are not sufficient
for late requirement capture because it does not provide
for the specification of constraints, such as invariants,
preconditions and the like. For this task, we have
adopted the Object Constraint Language (OCL) [8].
OCL is a textual language, also part of the Object Man-



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

10

agement standard, that can precisely describe constraints
for object oriented models.

In the sequel we suggest six heuristics for trans-
forming i* based early requirements models to
pUML/OCL based late requirements:

• Guideline G1: Related to actors;

• Guideline G2: Related to tasks;

• Guideline G3: Related to resources;

• Guideline G4: Related to goals and soft-goals;

• Guideline G5: Related to tasks decomposition;

• Guideline G6: Related to means ends links.

Guideline G1:

Actors in the i* framework, can be mapped to classes
in pUML. OCL constraints can be attached to the actor-
generated classes.

In our case study (see Figure 1) there were three ac-
tors: Store, Client and SmartCD. These actors can be
mapped to the three classes shown in Figure 3.

Guideline G1.1:

Actor composition in i* corresponds to class aggre-
gation in pUML.

In our CD Store case study (see Figure 1), the Strate-
gic Dependency contained three actors: Store, Client and
SmartCD. In pUML (see Figure 3), CD Store class is the
aggregate of three composite classes.

Guideline G2:

Tasks in i*, are mapped to class operations in pUML.

Guideline G2.1:

A task dependency, between a depender and a de-
pendee actor in the SD model, corresponds to a public
operation in the dependee pUML class.

In our case study (see Figure 1), the Store Actor de-
pends on the SmartCD  Actor for updating its stock (task
Update Stock). Similarly, the Client actor depends on
the SmartCD Actor for two tasks: ordering CDs (Order
new CD) and receiving notification of goods arrival
(task Notify CD arrivals). Hence, in Figure 3 you can
observe that the SmartCD pUML class will be responsi-
ble for supporting the three (public) operations (Update
Stock, Notify CD Arrival, Order New CD) .

Guideline G2.2:

A task in the SR model is mapped to  a local opera-
tion in the corresponding pUML class.

In our case study, see Figure 2, a key task for the

Store actor was to be able to Attract Customers. This
consists of three subtasks: to handle internet orders
(Sales By Web), to Maintain Stock and to deliver the
CDs (Delivery). Maintaining stock included obtaining
the new releases (Buy new releases) and renewing items
(Replenish). Therefore the corresponding Store class has
five (local) corresponding operations (see Figure 3).

Guideline G3:

Resources in i* are mapped as classes in pUML. A
public attribute of the type Boolean, indicates the avail-
ability of resource.

In our example, see Figure 1, Client actor depends
on the Store Actor, to obtain a CD resource. In Figure 3,
we can observe that the CD class has been introduced to
represent the resource. A boolean attribute (availability)
indicates if is the resource is at hand.

Guideline G4:

Strategic goals and soft goals will be mapped to at-
tributes of the type boolean and enumerated type, re-
spectively, in pUML classes.

Goals are well defined, hence it is always possible to
establish if one has been fulfilled or not. On the other
hand, softgoals are not well defined. They can only be
“satisfied” to some degree [16]. Hence, an enumerated
type is better suited for their representation in
pUML/OCL, whose values represent different degrees of
softgoal fulfillment.

Guideline G4.1:

Goals and soft goals dependencies in Strategic De-
pendency Models (SD) models are mapped to public
boolean and enumerated attributes, respectively, of the
dependee pUML class.

In our case study (see Figure 1), the Client Actor ex-
pects that the Store Actor could have a good stock
(Good variety softgoal)  and provide a good service
(Quality[Service] softgoal). Therefore, in the corre-
sponding Store  class, two enumerated public attributes
are added (see Figure 3).

Guideline G4.2:

Goals and soft goals dependencies in Strategic Ra-
tionale Models (SR), are mapped to local boolean and
enumerated pUML class attributes, respectively.

For example, in Figure 2, we have that the Store ac-
tor has a well defined goal (to Have all titles), and four
ill defined objectives or softgoals: to offer Good Price,
to have Volume Purchase [High], to give Discount
Price, and to have a Friendly staff. In Figure 3 we ob-
serve that these extra attributes have been included to



Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

11

Store Class.

The next guideline deals with task. Operations in
pUML can be used to describe tasks performed by an
actor. If we need to provide a more precise account of
the operation, we can rely on OCL to specify its pre and

post conditions. However, observe that in the i* frame-
work tasks can also  be decomposed into sub-task, sub-
goal, sub-softgoal and sub-resource.

Figure 3: Context Class Diagram of the CD Store

Guideline G5:

Task decomposition is represented by pre and pos-
conditions (expressed in OCL) of the corresponding
pUML operation.

The pre-condition is the conjunction (AND OCL
connector) of sub-tasks pre-conditions.

The post-condition is the conjunction (AND OCL
connector) of all: (i) sub tasks post-conditions; (ii) re-
source Boolean attributes; (iii) goal Boolean attributes
(iv) soft-goal enumerated attributes.

Consider for example, the task To Attract Customers
(Figure 2). It is decomposed into three sub-tasks (Deliv-
ery, Maintain Stock and Sales By Web) and two sub-
goals (Good Price and Friendly staff). Let us use the
OCL assertions pre-Subtask and pos-Subtask to indicate
generic pre and post-conditions of a sub-task. Moreover,
assume that the OCL assertion value indicates one of the
possible values of the enumerated type (posit, negat,
undef,) associated to a soft goal. Figure 4 shows the
corresponding OCL description.

Figure 4: Task decomposition in OCL

When we work with the later requirements we can
refine the pre and post conditions of  the three opera-
tions: Delivery, Maintain Stock and Sales by Web. This

activity is typical of later phase of the development
process. Hence, we can suggest some conditions for
these operations as you can see in the Figure 5.

 CD Store 

Store 

 + Quality[Service] : enum 
 + Good variety : enum 
 - Good Price : enum 
 - Volume Purchase[High] : enum 
 - Discount Price : enum 
 - Friendly staff : enum 
 - Have all titles : bool 

 - To Attract Customers 
 - Sales By Web 
 - Maintain Stock 
 - Buy new releases 
 - Replenish 
 - Delivery 
 

Client SmartCD 

+ Update Stock 
+ Notify CD Arrival 
+ Order New CD 
+ Browse Catalogue 

+ Process Internet Order 
+ Fast [Access] 
+ Security [Access] 

CD 

 + availability 
 

Depender 

Resource 

Resource 

Dependee 

Store:: To Attract Customers
pre:    pre-Delivery and pre-Maintain Stock and pre-Sales By Web
post: GoodPrice = ‘value’ and Friendly staff = ‘value’ and
          post-Delivery and post-MaintainStock and post-Sales By Web



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

12

Figure 5: Some Pre and Post Conditions

The SR models also provides for several types or
means-end link. The “end” can be a goal, task, resource,
or softgoal, whereas the “means” is usually a task (GT,
TT, RT and ST links). Sometimes it is also useful to
have means-end hierarchy of softgoals or goals (SS and
GG links).

Guideline G6:

 Means end-analysis is represented by OCL disjunc-
tions of all possible means achieving the end.

Guideline G6.1(SS and GG Links):

If the end is a (soft) goal and the means are  (soft)
goals than the disjunction of the means values implies
the end value.

In our case study (see Figure 2), there are two means
of offering reasonable prices Negotiating discounts
based on high volume purchase (softgoal Volume Pur-
chase[High]) or by promoting sales (softgoal Discount
Price). Either way the end goal (softgoal Good Price) is
achieved. In Figure 6 the corresponding OCL represen-
tation is presented.

Figure 6: Means-end analysis

Guideline G6.2 (GT, RT and ST Links):

If the end is either a goal, resource or softgoal and
the  means is a task than the post-condition of the means
task implies the value of end goal (boolean) attribute,
resource (boolean) attribute or softgoal (enumerated)
attribute.

In our case study these means-end links did not oc-
cur.

Guideline G6.3 (TT Link):

If the end is a task and the means are tasks then the
disjunction of the post-condition of the means task imply
the pos-conditions of the end task.

In our case study this means-end link did not occur.

Of course not all concepts captured in the early re-
quirements phase will correspond to software system
models. The models do not have a one-one relationship;
many elements of the organisational model are not part

of the software model, since not all of the organisational
tasks require a software system. Many tasks contain
activities that are performed manually outside the soft-
ware system, and so do not become part of the software
system model. Likewise, many elements in the software
model comprise detailed technical software solutions
and constructs that are not part of the organisational
model. Nonetheless, as we shall see, pUML/OCL also
can be used to represent this information.

So far we have been able to identify a context class
diagram for  problem at hand. Now we can proceed to
give some more details of the software system to be
developed.

4 Some Late Requirements

Late requirements analysis results in a requirements
specification document which describes all functional

Store:: To Delivery
pre: delivery address and payment
post: delivered CD

Store:: To Maintain Stock
pre: quantity >= “value”
post: CD in stock

Store:: To Sales By Web
pre: site on line
post: increaseded sales volume

Store
Volume Purchase [High]=’value’ or Discount Price = ‘value’

implies Good Price = ‘value’



Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

13

and non-functional  requirements of the system-to-be. In
our case study, the SmartCD actor represents the infor-
mation system that will help the store to accomplish
some of its tasks strategic objective, namely to attract
customers (see Figure 2). The system can be structured
into various modules or sub-actors including: inventory,
financial and the  internet sales module.

Due to space limitation we will concentrate on some
late requirements for the Internet Sales Module, since it
is related to the Sales By Web task, shown in the strate-
gic rationale model of Figure 2. It is part of the system
responsible for the process of sales through the Internet.
We will consider the context class diagram of Figure 3
as the starting point of our discussion, which by no
means should be considered exhaustive. On the contrary,
it is meant to be suggestive of the much more complex
sets of issues typically found in actual situations. As a
matter of fact, methods such as Catalysis [13] already
make some of these issues very clear.

The Internet Sales sub-system provides a web-site to
enable customers to remotely access the Store. This site
allows the visitors to search for CDs, see information
about pop stars and news about the musical events.

There are two ways for a client to search for a CD:
the fast and super search. In the fast mode the visitor
informs the name of the album, of the artist, or of the
music. In the super search the objective is to help those
that still do not  know which title to buy. For that super
search type the following options are available: name of
the album or of the music, the styles (Pop, Rock, Rap,
Reggae, Jazz, etc.), the recording, the repertoire (na-
tional or international) and the release time.

Assistance can be provided upon request by e-mail
or through a FAQ page. The FAQs (Frequentely Asked
and Questions) contains answers for the most common
questions. If the visitor does not find the appropriate
answer he/she can fill in a form (including the subject,
name, number of the purchase request) and submit it.
Upon receipt, an on-line sales assistant will answer the
question.

A visitor (if not already a client) would have to reg-
ister in order to use the system. The register operation is
available through a page where the customer supplies its
personal data (complete name, identification no., gen-
der, birthday), an access name (login), a password, a
note (to help to recollect the password), its complete
address (street, number, neighborhood, city, state and
zip code), residential and commercial telephone, e-mail,
the address for delivery (street, number, neighborhood,
city, state, zip code, telephone for contact) and the pay-
ment form. In particular we are conceiving two forms of

payment: credit card or direct debit in checking account.
For the payment by credit card it is necessary the title-
holder's name, the type of the credit card, the number of
the card and validity of the card. For the direct debit in
checking account it is necessary the title-holder's name,
the name of the bank, the number of the agency and the
number of the checking account. If necessary the client
can later revise his/her personal information. For reasons
of security the customer can choose to fax or e-mail the
personal information.

The site offers to its clients special services, for ex-
ample: security in the transactions and personalized
attendance. For the sake of total security the customers’
data are stored in a safe and isolated server (not con-
nected to the Internet), with restricted access to author-
ized employees. SmartCD will use a safe communica-
tion protocol (SSL - Secure Sockets Layer). Client pro-
file can also be provided. It consists of client's prefer-
ences such as musical styles (Pop/Rock, Blues/Jazz,
Infantile, Samba/Pop,...), artists or favorite groups and
the desire or not of receiving information on promo-
tions, releases, and so on.

Based on these late requirements a revised pUML
class diagram can be drawn (see Figure 7). It is inter-
esting to note that the security[Acess] softgoal between
the Client and SmartCD actors of Figure 2 is the reason
for the choice of the use of a secure protocol (SSL) for
credit and debit operation of  Payment Form Class.

5 Related Work

The area of Requirements Engineering [14] has de-
veloped several novel techniques for early requirements
capture [15,16]. Bubenko emphasizes the need to model
organizations and their actors, motivations and reasons
[16]. In his work, enterprise modeling and requirements
specification are based on the notion that a requirements
specification process, from a documentation point of
view, implies populating (instantiating) five interrelated
sub-model, representing areas of knowledge of the or-
ganization, which include an Objectives Model, an Ac-
tivities & Usage Model, an Actors Model, a Concepts
Model, and an Information Systems Requirements
Model. Since the models are informal, or at best semi-
formal, only some verification can be performed auto-
matically, such as syntactical correctness and connect-
edness.



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

14

Figure 7: Revised Class Diagram (Internet Sales Sub-System)

In the KAOS framework [16] goals are explicitly
modeled and simplified (reduced) through means-end
reasoning until it reaches the agent level of responsibili-
ties. KAOS provides a multi-paradigm specification
language and a goal-directed elaboration method. The
language combines semantic nets for conceptual mod-
eling of goals, requirements, assumptions, agents, ob-
jects and operations in the system; temporal logic for the
specification of goals, requirements, assumptions and
objects; and state-based specifications for the specifica-
tion of operations. Goals are reduced through means-
ends reasoning to arrive at responsibilities for agents.
The modeling of agents is specificational and prescrip-
tive. Since agents are assumed to conform to prescribed
behavior, one cannot easily analyze dependencies  for
opportunities and vulnerabilities. On the other hand, i*

models offer a number of levels of analysis, in terms of
ability, workability, viability and believability. These
are detailed in [3].

The TROPOS project [17,18] is developing a meth-
odology for agent-oriented systems which is require-
ments-driven. It adopts the i* concepts and uses it all
along the life-cycle as a foundation to model late re-
quirements, architectural, detailed design and imple-
mentation. That allows dealing with intention-based
software units at the right phase and not freeze them
earlier in the process.

Another related work is the requirements modeling
framework for manufacturing systems (MS) presented in
[19]. It relies on two major ideas: a multi-formalism
approach, combining several languages into a coherent

CD

code
albumTitle
style
….

newCD
...

Music

songTitle
artist
audio
letter
....

Order

status
dateOrder
dateDelivery
address

Payment Form

Credit Card

name
type
number
validate

Checking Count

name
bank
accountNumber

Client

Attendance

subject
orderNumber
e-mail
message

name
sex
login
password
address
...

register
verifiyPassword
alterData
fastSearch
superSearch
orderCD
...

credit
debitSSL

Inventory

report
removeCD
insertCD
...

Sales

report
....

notifyCDArrival



Jaelson Castro,     Closing the Gap Between Organizational
Fernanda Alencar and Gilberto Cysneiros Requirements and Object Oriented Modeling

15

formalism, and a component-based modeling approach.
The modeling framework proposed combines the Albert
II, i* and CIMOSA languages. The combination is
achieved through meta-modeling and the definition of a
set of mapping rules that establish a correspondence
among some of the concepts of the three formalisms.

Another important issue related to early phase re-
quirements capture is the representation of qualities
attributes, such as accuracy, performance, security,
modifiability, etc. In [12] a comprehensive approach for
dealing with non-functional requirements - NFR is pre-
sented. Structured graphical facilities are offered for
stating NFRs and managing them by refining and inter-
relating NFRs, justifying decisions, and determining
their impact. A current research topic is the extension of
traditional Object-Oriented Analysis to explore the al-
ternatives offered by the non-functional goal-oriented
analysis, which systematizes the search for a solution
which characterizes early phases or requirements analy-
sis, rationalizes the choice of a particular solution, a
relates design decisions to their origins in organisational
and technical objectives.

Although UML has been used mainly for modeling
software, recent proposals have used it for describing
enterprise and business modeling. For example, [1]
claims that UML is a suitable language for describing
both the structural aspects of business (such as the or-
ganization, goal hierarchies, or the structure of the re-
sources), the behavioral aspect of a business (such as the
processes), and the business rules that affect structure
and behaviour. In [20] UML is used, from a business
perspective, to describe the four key elements of an
enterprise model: purpose, processes, entities and or-
ganization. The challenge is to transfer the information
available in the (early) business models to the (late)
software requirements models.

6 Conclusion

In this paper, we have suggested that requirements
capture has to be done at different levels of abstraction
(ranging from the early phase to the late phase require-
ments). Furthermore, we argue that UML alone is not
adequate to deal with all different types of analysis and
reasoning that are required during the requirements
capture phases. Instead, we advocate the use of two
complementary modelling techniques, i* and a precise
subset of UML.

To model and understand issues of the application
and business domain (the enterprise) a developer can use
the i* framework which allows a better description of

the organisational relationships among the various
agents of a system as well as an understanding of the
rationale of the decisions taken. For later requirements
capture we suggest the use of pUML, a subset of UML
which has a well defined semantics. Annotations in OCL
can also be deployed for describing constraints on the
models.

We believe that each language has its own merits for
supporting requirements capture. But as long as different
techniques are used, then a key issue is the development
of an integrated framework to support and guide the
interplay of requirement captures activities at the vari-
ous levels, and to support traceability and change man-
agement. Indeed, the guidelines presented in the paper
are important steps in this direction. They can help to
map the descriptive, early requirements model of the i*
technique into a prescriptive, late requirements model
expressed in pUML/OCL.

Of course not all concepts captured in the early re-
quirements phase will correspond to software system
models. The models do not have a one-one relationship;
many elements of the organisational model are not part
of the software model, since not all of the organisational
tasks require a software system. Many tasks contain
activities that are performed manually outside the soft-
ware system, and so do not become part of the software
system model. Likewise, many elements in the software
model comprise detailed technical software solutions
and constructs that are not part of the organisational
model. Nonetheless, pUML/OCL also can be used to
represent this information.

Further research is still required to handle some
structuring concepts found in the i* framework, such as
agent, role and position. Some real industrial case stud-
ies are also expected. Work is underway to provide
some tool support (Multiview+) for the mapping.  The
tool will import organizational requirements specifica-
tion produced by the i* toolset (OME) and generate the
corresponding pUML business model.

Acknowledgements

The authors are grateful to John Mylopoulos whose
insights helped us focus our research on intentional and
social aspects. He provided valuable comments on ear-
lier drafts of this paper. We would like also to thank the
anonymous referees for their helpful comments to this
work.



Closing the Gap Between Organizational Jaelson Castro,
Requirements and Object Oriented Modeling Fernanda Alencar and Gilberto Cysneiros

16

References

[1] H. Erikson, M. Penker. Business Modeling with
UML: Business Patterns at Work, John Wileys
& Sons, Inc., USA, 2000.

[2] I. Jacobson, G. Booch, J. Rumbaugh. Unified
Software Development Process, Rational Soft-
ware Corporation. Addison-Wesley Object
Technology Series, 1999.

[3] E. Yu. Towards Modelling and Reasoning Sup-
port for Early-Phase Requirements Engineering.
In Proc of IEEE International Symposium on
Requirements Engineering - RE97, pages 226-
235, 1997.

[4] G. Booch, I. Jacobson, J. Rumbaugh. Unified
Modeling Language User Guide. Rational Soft-
ware Corporation. Addison-Wesley Object
Technology Series, 1999.

[5] J. Mylopoulos, L. Chung, E. Yu. From Object-
Oriented to Goal-Oriented Requirements
Analysis. Communications of the ACM, 42(1):
31-37, 1999.

[6] E. Yu, J. Mylopoulos. Understanding 'Why' in
Software Process Modeling, Analysis and De-
sign. In Proc. Sixteenth  International  Confer-
ence  on Software  Engineering,  Sorrento,
Italy, 1994.

[7] A. Evans, S. Kent. Core Meta-Modelling Se-
mantics of UML: The pUML Approach.
UML’99 – The Unified Modeling Language.
Proc. of <<UML>>’99 The Unified Modeling
Language: Beyond the Standard - The Second
International  Conference. Eds. Robert France
and Bernhard Rumpe. Fort Collins, CO, USA,
pages 140-15, 1999.

[8] J. B. Warmer, A. G. Kleppe. The Object Con-
straint Language: Precise Modeling with UML.
Addison-Wesley Object Technology Series,
1999.

[9] E. Yu. Why Agent-Oriented Requirements
Engineering. In Proc. of the 4th International
Workshop on Requirements Engineering: Foun-
dations of Software Quality, Pisa, Italy. E. Du-
bois, A.L. Opdahl, K. Pohl, eds. Presses
Universitaires de Namur, pages 15-22, 1998

[10] F. M. R. Alencar. Mapping Organizational
Modeling into Precise Specification. Ph.D.
Thesis  (In Portuguese). Centro de Informática,

Universidade Federal de Pernambuco, Recife,
Brazil, Dec., 1999.

[11] Precise UML Group, pUML:
http/www.cs.york.ac.uk/puml, Out. 2000.

[12] L.  K. Chung, B.  A. Nixon, E. Yu, J. Mylo-
poulos.  Non-Functional Requirements in Soft-
ware Engineering, Kluwer Publishing, 2000.

[13] D. F. D’Souza, A. C. Wills. Objects, Compo-
nents, and Frameworks with UML: The CA-
TALYSIS Approach. Addison-Wesley Object
Technology Series,  1999.

[14] A. van Lamsweerde. Requirements Engineering
in the year 00: A Research Perspective. Invited
paper to ICSE’2000. In Proc. 22nd International
Conference on Software Engineering, Limerick,
2000.

[15] M. Boman, J. Bubenko, P. Johannesson, B.
Wangler. Conceptual Modeling. Prentice Hall
Series in Computer Science, 1997.

[16] A. van Lamsweerde, R. Darimont, E. Letier.
Managing Conflicts in Goal-Drivel Require-
ments Engineering.  IEEE Transaction on Soft-
ware Engineering, Special Issue on Inconsis-
tency Management in Software Development,
1998.

[17] J. Castro, M. Kolp, J. Mylopoulos. Developing
Agent-Oriented Information Systems for the
Enterprise. In Proc of the Second International
Conference On Enterprise Information Systems
(ICEIS00), Stafford, UK, 2000.

[18] J. Mylopoulos, J. F. B. Castro. Tropos: A
Framework for Requirements-Driven Software
Development. Brinkkemper, J. and Solvberg, A.
(eds.), Information Systems Engineering: State
of the Art and Research Themes, Springer-
Verlag, pages 261-273, 2000.

[19] M. Petit. Formal Requirements Engineering of
Manufacturing Systems: A Multi-Formalism
and Component-Based Approach. Ph.D. Thesis,
Computer Science Departament University of
Namur, Namur, Belgium, 1999.

[20] C. Marshal. Enterprise Modeling with UML:
Designing Successful Software through Busi-
ness Analysis. Addison-Wesley Object Tech-
nology Series, 2000.


