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Abstract

We consider theinference problem for finitetransducers
using different kinds of samples (positive and negative
samples, positive samples only, and structural samples).
Given pairs of input and output words, our task isto infer
the finite transducer consistent with the given pairs. We
show that this problem can be solved in certain special
cases by using known results on the inference problem for
linear languages.
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1. Introduction

A finitetransducer isafinite automaton which emitsan
output string during each move made. It defines a
trangdlation, i.e. a set of pairs of strings. A classical work
considering the use of translationson compilersis[1]. This
note deals with the inductive inference properties of finite
transducers and the trandlations realized by them. Given a
set of pairs of input and output strings, we consider the
problem of inferring atransducer consistent with the pairs.
Transducers are earlier studied in the context of inductive
inference by Oncinaetal.in[8].

We assume a familiarity with the basics of formal
language theory and grammatical inferenceasgivene.g.in
[5] and [2], respectively. As inference criterion we use
“identificationinthelimit” [4,2]. If not otherwise stated, we
follow the notations and definitions of [5]. The empty word
isdenoted by A, the mirror image of awordw by w# , and
the length of aword a by lg(«).

2. Preliminares
A finitetransducer isa6-tupleM —Q, S, A, §, g0, F) .
where Qisafiniteset of states, & isafiniteinput alphabet,

Aisafinite output alphabet, ¢ isamapping from
Q x (S U {\})tofinitesubsetsof @ x A* ¢qo isthe
initial state, and ' C iQthe set of final states. The trans-
lation realized by M is T = {(z,y) | (qo.z.\) F*
(¢, \y),z € ",y € A* ¢q € F} wheretherelation is
defined as usual. The mapping § can be given also as a
set of moves (¢, w, p, v), where (p,v) € 6(q,u), p,q € Q,
u € &, v € A*. Trandationsreslized by finitetransducers
arecalled regular trandations. Regular trandationsare also
known asrationa trandations[3].

Inwhat follows, 5 isextendedto y:= inthe normal way.
A finite transducer A = (Q,S,A,6,q0,F) IS
deterministicif the following conditionshold for each state
qginQ :
- either §(¢, o) contains at most one element for each
a € ¥,and §(q, \) isempty, or
- &(q,\) contains one element, and for all
a € T, §(q, a) isempty.
Otherwise, afinite transducer is non-deterministic.

Recall that in linear grammars all productions have
eithertheform A — wBv,where A and B arenonterminals
and u and v are (possibly empty) termina strings, or the
foom A — u ,whereu isa(possibly empty) terminal string.
Theformer productionsare called continuing and thel atter
onesareterminating. A language L islinear if there exists
alinear grammar generating L.

We suppose that all grammars are reduced, i.e. each
nonterminal and termina symbol appearsin somederivation
from the start symbol to aterminal string.

Thefollowing well-known fact establishesarel ationship
between regular translations and linear languages.
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Theorem 2.1[9] 7 isaregular trandlation if and only
if thereexistsalinear language , suchthat 7 = {(z,y) |

z#y" € L}, where#isanew symbol.

In what follows, it is essential that from a given linear
grammar, it is possible to uniquely construct the
corresponding finite transducer. The left hand sides of the
productions correspond to the states of the transducer,
and the transition leaving from the states are obtained from
the corresponding right hand sides. If 4 — yBo® isa
production, then the corresponding moveis(q, v, ¢g, v).
Terminating productionsareof theformA — # , where#is
the separator between the two parts of the words. The
corresponding move is (g4, A, ¢5, A), where 45 is afina
state of the finite transducer.

Any linear language can be generated by a linear
grammar with productions of theform 4 — X\, A — aB,
and A — Ba '10]. If wesupposethat alinear grammar isin
this normal form, we obtain a finite transducer where
8§ CQ x(STU{A}) x(AU{X}) x Q. Thesetransducer
are caled 1-bounded. In a 1-bounded regular transducer
each input and output string related to atranstionisasingle
terminal (from X or A, respectively) or theempty string ).

The companion grammar of 1-bounded finite transducer
M = (Q,%,A,d, q, F) hascontinuing productionsof the
foom4 — oBp Whereq ¢ S U {A}andj3 € U {)\},
and terminating productions of theform 4 —, 4, where#
isthe new symbol.

The purpose of thisnoteisto apply the results obtained
for inferring linear languages when inferring finite
transducers from pairs of input and output strings.

3.Inferringlinear languages

Takada [13] has introduced an inference algorithm for
linear grammarswith all continuing productions of theform
A s aBb,» Where ¢ and j, are single terminals, and all
terminating productions of the form
A = ab, A > a,or S - X\, wWhere g is the start
symbol. We call these grammars even linear. A language ..
is an even linear language if there exists an even linear
grammar generating .

LetG = (N, X, P, S) beanevenlinear grammar whose
productions are uniquely labeled by the symbols of an
alphabet 11. If a sequence ¢ of labeled productions is
appliedinaderivation 3 =* ~,wewrite3 =¢ ~. If Cis
subset of I7*, then the language generated by G with
control set Cis Lo (G) = {fw € ¥° | S =% w, ¢ € C}.

Takada [13] showed that a grammar scheme with
productions of the fom§ - )\, S — a, S — ab,and
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S — aShissufficient for all evenlinear grammarsif regu-
lar control sets are used. The use of the grammar scheme
with control sets reduces the inference problem for even
linear languages to the inference problem for regular
languages. As a consequnce, we have the following

Theorem 3.1[13] Even linear languagesareinferable
in the limit from positive and negative samples.

For many practical purposesitismorenatural to consider
inference algorithms using positive samples only. For
subclasses of even linear languages such inference
algorithmsaregivenin|[6, 7].

We say that an even linear grammar isterminal-fixed if
A — aBband(C — aDbimpliesd = Cand B = D. If
A — aBband C — aDbimplies B = D, we say that
the grammar in questionis almost terminal-fixed. An even
linear languageisterminal-fixed (resp. dmost terminal-fixed)
if thereisaterminal-fixed (resp. amost terminal-fixed) even
linear grammar generating it.

Theorem 3.2 /7] Terminal-fixed even linear languages
can be inferred from positive samplesin linear time.

Theorem 3.3 /7] Almost terminal-fixed even linear
languages can be inferred from positive samples.

Additional conditions for the inferability of certain
subclassesof even linear languages from positive samples
aregivenin[6]. However, these conditions are not directly
characterized by the form of single productions and we
omit them here.

Sempere and Nagaraja [12] have considered the
inferability of asubclass of linear languages from positive
structural samples. In addition to an input string, the
corresponding parsing tree without label s of internal nodes
is given. As in the case of [6], these results characterize
language and grammar classes by conditionswhich are not
“local” to the productions. Hence, instead of the Sempere-
Nagargjaresultson structural inferencefor linear grammars,
weuse moregeneral resultsby Sakakibara[11].

A context-freegrammar ¢ = (N, ©, P, S)is reversible
if (1) A—aand B — «in pimplies 4 — p and (2)
A > aBpand 4 - O3, Where o and 3 are arbitrary
stringsover s+, in pimplies B — (. Hence, acontext-
freegrammar isreversibleif and only if itis(1) invertible
and (2) reset-free. All context-free languages can be
generated by reversible context-free grammars.

Theorem 3.4[11] Thestructural grammatical inference
problemfor reversible context-free grammars can be solved
in polynomial time.

Instead of general context-free grammars, we need here
only linear ones. Hence, in the definition of reset-freeness,
wehavea and 3 in ©~.
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4. The Results

A 1-bounded finitetransducer A/ = (Q, 3, A, 8, qo, F)
islength-preservingif(p, 3) € §(q, a) impliesig(3) = 1,
forallg € Q andg € ¥, andd(q, \) isempty for al ¢.
Length-preserving finite transducers correspond to even
linear languages.

Givenapair of input and output stringsfrom atransation
realized by a length-preserving finite transducer, we can
always combine the input and output terminals related to
the same transition of the transducer. If
an,biby .. .by) is apair of input and output
strings, then the corresponding word produced by the
companionevenlinear grammaris aj as . . . a7 by, ... boby
where # is the separator. We have moves
(go,a1,q1,b1).(q1, a2, q2,02)s - -.(gn 1, Qn, qn,by), for
some statesq;, i = 1,2,...,n—1, in M, with ¢, € F.

(aras ..

By using Takada's algorithm [13] we can infer thefinite
transducer in the limit. We state the result in terms of
trandlations as follows.

Theorem 4.1 Regular tranglations realized by length-
preserving finite transducers are inferable from positive
and negative samples.

If inferencefrom positive samplesonly isprefered, then
further restrictions to the form of transition functions of
finite transducers must be set. When comparing the
concepts of deterministic finite transducers and almost ter-
minal-fixed even linear grammars, we notice that although
the underlying ideas are quite the same, the concepts do
not match. Hence, in order to apply Theorems 3 and 4, we
must modify the concept of deterministic finite transducers.

We say that a length-preserving finite transducer
M=(Q,%,A,8,qy, F) is state-deterministic, if
(p1,b) € 8(qi,a) and (p2,b) € 6(g,a) implies p1 = P2
and ¢1 = ¢2. Similarly, M is almost state-deterministic if
(p1,b) € 6(q1,a)and(p2,b) € 6(q2,a)implies 1 = po.
Now we clearly have aone-to-one correspondence between
(almost) state-deterministic finite transducersand (almost)
terminal-fixed even linear languages. Hence, we can write

Theorem 4.2 Regular trandations realized by state-
deterministic finitetransducersareinferableinlinear time
from positive samples only.

Almost state-deterministic finite transducers are also
inferable from positive samples only, but no linear time
algorithmisknown.

In the rest of this section we give up the assumption
that finite transducers are length-preserving. We can relax
the assumptions concerning transducers if we
simultaneously strengthen the form of inference used. For
now on, we suppose that structural samples are available.

In the case of trandations this means that we know how
input and output strings are combined from the substrings
related to the transitions of the transducer. A sample pair
(aran...an,B:8>...8,), is now given in the form
((a1,B1), (@2, B2) .. - (vn, Bn)), whereeach a; in £* and
each 3; in A*, corresponding a sequence of moves
(q0> 0[1,([1,01) » (fh,lez,fIz, ﬁl) [ IREE ] (qn 1, an,;q17,>,gn> .
Since we deal with linear grammars, this is the same
information asused in the structural grammatical inference
problem[11, 12].

In order to apply Theorem 5, we need arestriction on
the form of transition functions of finite transducers. We
say that a finite transducer M = (Q,X, A, 8, q0, F) IS
reversibleif (1) moves(qy, u, p,v) and(gs, u, p,v) implies
q = q,fordlpe @,uec T*,andy € A*, and (2) mo-
ves (g, u, p1,v) and (q, u, po, v) implies py = p», for al
geEQR, uey ,andy € A*.

By theorem 5 we now have

Theorem 4.3 Regular translations realized by
reversible finite transducers are inferable from positive
structural samples.

5.Conclusions

We have been able to characterize finite transducers
realizing inferable regular tranglations. Depending on the
form of samples available (positive and negative sample,
positive samples only, or structural samples), we have
different restrictions on the form of the transducers
considered.
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