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Abstract

We describe a simple representation for the mod-
ules of a graph G. We show that the modules of G
are in one-to-one correspondence with the ideals of
certain posets. These posets are characterized and
shown to be layered posets, that is, transitive closures
of bipartite tournaments. Additionaly, we describe ap-
plications of the representation. Employing the above
correspondence, we present methods for solving the
following problems: (i) generate all modules of G, (ii)
count the number of modules of G, (iii) find a maximal
module satisfying some hereditary property of G and
(iv) find a connected non-trivial module of G.
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1 Introduction

There exists a vast literature on the study of mo-
dules of a graph, since this concept was first introduced
by Gallay [5]. See [2, 3, 6, 7, 8, 12, 13]. In special
there are several relevant algorithmic applications of
the modular decomposition of a graph [1, 9, 10, 11, 14].
This paper describes a simple representation for the
modules of a graph G. We show that the modules of
G are in one-to-one correspondence with the ideals of
certain posets. These posets are shown to be transitive
closures of bipartite tournaments.

G denotes an undirected graph, V(G) and E(G) the
vertex and edge sets of G, respectively, with |V (G)| =
n and |E(G)| = m. For v € V(G), N (v) denotes the
set of neighbours of v in G, and Ng[v] = Ng(v) U {v}.
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Let Ng(v) = V(G) \ Ng[v]. A module of G is a non-
empty subset M C V(G), such that every vertex v €
V(G)\ M is either a neighbour of all the vertices of M
or of none of them. Clearly, V(G) and all one vertex
subsets of G are modules of G, called trivial modules.
Finally, define a bipartite tournament as an orientation
of a complete bipartite graph.

D denotes a directed graph, or digraph, V(D) and
E(D) are its sets of vertices and directed edges, re-
spectively.  For v € V(G), let Nf(v) = {w €
V(D)|(v,w) € E(D)}, Np(v) = {w € V(D)|(w,v) €
B(D)}, Nj[vl = Nj(v) U{v} and Np[o] = Np (v) U
{v}. Additionally, define Np(v) = N} (v) U Np(v)
and Np[v] = Np(v) U {v}. When convenient we may
drop the symbol of the graph or digraph, in the in-
dices of these notations. If N (v) = @ then v is the
source of D. For v,w € V (D), if D contains a v — w
path, then v is an ancestor of w and w is a descen-
dant of v. Say that D is strongly connected when it
contains both v — w and w — v paths, for every pair
v,w € V(D). The strongly connected components of
D are the maximal strongly connected subdigraphs of
D. The condensation C of D is the digraph whose ver-
tices correspond to the strongly connected components
of D, while w € NZ (v) when there is an edge in D
from a vertex lying in the strongly connected compo-
nent corresponding to v, to a vertex in the component
corresponding to w.

A digraph is transitive when (v,w), (w,z) € E(D)
implies (v,z) € E(D), for all v,w,z € V(D). The
transitive closure of a digraph D is the transitive span-
ning superdigraph of D, preserving its reachability. A
partially ordered set (poset) is an acyclic transitive di-
graph. An ideal of a poset P is a subset I C V(P),
such that & € I implies N (z) C I, for all z € V(P).

Section 2 presents the correspondence between
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Figure 2: The modular digraph D; of G relative to v;.

modules of a graph G and ideals of certain posets,
as well as a characterization of these posets.

2 The Representation

Let G be a graph and v; € V(G). The modular
digraph D; of G relative to v;, is one with vertex set
V(G) \ {v;} and edge set defined as follows. For each
pair of distinct vertices vj, vy € V(G), i # j, k,

(vj,vx) € E(G) =
lf Uj,Uk ¢ NG(’UZ')
then (vj,vk), (vg,v;) € E(D;). (1.1)
if v; € Ng(v;) and v € Ng(v;)
then (vj,vx) € E(D;). (1.2)
(vj,08) € E(G) =
if vj,vr € Ng(vs)
then (vj,vk), (vg,v;) € E(D;). (2.1)
if v; € Ng(v;) and v, € Ng(v;)
then (vy,v;) € E(D;). (2.2)

D; contains no other edges, besides those as above.
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Figure 3: The condensation graph C; of D;.

Figure 4: The modular poset P; of G relative to v;.

Further, define the modular poset P; of G, relative to
v; € V(G), as the transitive closure of the condensa-
tion C; of D;. See Figures 1- 4 for examples.

Let v € V(D;). Denote by S(v) C V(D;) the subset
of vertices belonging to the same strongly connected
component of D;, as v does. Similarly, for z € V(F;),
S(x) C V(D) is the subset of vertices which forms the
strongly connected component of D;, corresponding to
x in the condensation. Call S(v) the expansion of v,
while v is the reduction of S(v) in D;. On the other
hand, S(z) is the expansion of z € V(P;) and z is the
reduction of S(z) in P;.

Ehrenfeucht et al. [4] have previously employed the
condensation of a digraph (different from the above) in
the process of computing the modular decomposition
tree of a symmetric two-structure.

The following theorem characterizes the modules of
G, in terms of the ideals of modular posets.

Theorem 1 Let G be a graph, v; € V(G) and P; the
modular poset of G, relative to v;. Then there exists
a one-to-one correspondence between the ideals of P;
and the modules of G containing v;.
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Proof: : Let M be a module of G containing v; €
V(G). We show that we can always choose a conve-
nient ideal I of the modular poset P; of G, to corre-
spond to M. Let D; be the modular digraph of G. We
know that the vertices of P; are in one-to-one corre-
spondence with the strongly connected components of
D;. Let z be a vertex of P; and S(z) the expansion of
x.

Proposition 2 Fither all vertices of S(z) belong to
M or none of them does.

Proof: To start, note that the proposition is trivially
true when |S(z)| = 1. When |S(z)| > 1, assume that
it is false. In this case, S(x) contains at least one ver-
tex that belongs to M, and at least one which does
not. Because the vertices of S(xz) form a strongly con-
nected component of D;, it follows that there must
be an edge (vj,vr) € E(D;), such that vj, v € S(x),
v; € M and vy € M. Examine the following alter-
natives for the pair of vertices vj,vy. First, assume
that (vj,v;) € E(G). Then vy € M and v; ¢ M im-
plies that v; € Ng(v;). In this case, (1.1) and (1.2)
assure that (vj,v;) ¢ E(D;). The other possibility is
(vj,vr) € E(G). In such situation, the implication is
that v; € No(v;). By applying this time, (2.1) and
(2.2) we again conclude that (v;,v;) ¢ E(D;), contra-
dicting the fact that (vj,v;) must be an edge of D;.
Hence Proposition 2 is true.

The proof of the theorem proceeds by assigning a
label 0 or 1 to each vertex z of P;, as follows. Examine
the set S(z). By Proposition 2, either all vertices of
S(z) belong to M, or none of them does. In the for-
mer alternative, assign the label 0 to z. In the latter,
assign 1. Let I be the subset of vertices of P; having
label 0. In other words, M = {v;},c;S(z). We
show that the subset I is an ideal of P;. If possible
choose two vertices z,y of P;, such that z is labelled
1, y has label 0 and (z,y) € E(P;). Since P; is the
transitive closure of the condensation of D;, the latter
digraph must contain an edge (vj,vx) € E(D;), from
some vertex v; € S(z) to v € S(y). Because of the
values of the labels of z and y, it follows that v; ¢ M
and v, € M. Examine the following alternatives for
the pair v;,vg. When (v;,v;) € E(G), the conditions
vj ¢ M and vy € M imply v; € Ng(v;). By apply-
ing (1.1) and (1.2), we conclude that (v;,vx) & E(D;),
a contradiction. When (vj,vi) € E(G) it follows that
vj & Ng(v;). The same contradiction (vj, vy) ¢ E(D;)
arises by (2.1) and (2.2). The conclusion is that no
such edge (vj,vx) € E(D;) may exist, and conse-
quentely the above choice of vertices x,y of P; is not

possible. That is, no vertex labelled 1 in P; has any
descendant labelled 0. Consequentely, I is in fact an
ideal of P;.

Conversely, let I be an ideal of P;. We show the exis-
tence of a module M of G containing v;, that can be
made to correspond to I. Let x € V(P;) and S(z) the
expansion of z. Let M = {v;} |J,; S(z). We will con-
clude that M is a module of G. L T =0 or [ = V(F;)
then M is a trivial module of G and the argument is
complete. Otherwise, there exists v; € V(G)\ M, with
j # . Iffor any such v;, M C Ng(vj) or M C Ng(v;),
then M is indeed a module of GG, again completing the
argument. Otherwise, thereis v; € V(G)\M such that
M ¢ Ng(vj) and M € Ng(vj). Then we can choose
v, v € M, such that vy & Ng(v;) and v € Ng(v;).
First, we examine if i can be equal to k or [. Suppose
i = k. Then v; € Ng(v;). Since (vj,v) € E(G), by
(1.1) and (1.2) we conclude that (v;,v;) € E(D;). De-
note by #' € V(F;) and " € V(F;) the reductions in
P; of S(v;) and S(v;), respectively. Because v; ¢ M
and vy € M, we conclude that ' ¢ I and 2" € I. How-
ever (vj,v) € E(D;). Hence I can not be an ideal of
P;, a contradiction. The second alternative, i = [ is
similar and can not occur too. Consequently, i # k, 1.

The proof proceeds by examining all possibilities
of contaiments in Ng(v;) and Ng(v;) of the vertices
Uj,Vk, V1.

Case 1 vj, v, € Ng(v;)

By (2.1) it follows that (v, v), (vk,v;) € E(D;). Then
vj and v belong to a same strongly connected com-
ponent of D;. In this case, vj,vy € S(z), for some
vertex z of P;. By the construction of M, if x € I
then v;,vy € M. The latter contradicts v; € M. The
opposite case, ¢ I, implies v, v, € M, contradicting
v, € M. Hence Case 1 can not occur.

Case 2 v; € Ng(v;) and v, € Ng(vy).

By (2.2), it follows that (vj,vx) € E(D;). If v; and vy
belong to the same strongly connected component of
D;, a similar argument as the Case 1, leads to a con-
tradiction. When v; and v;, belong to distinct compo-
nents, let z and z’ represent the reductions in P; of
S(v;) and S(vy), respectively. That is, v; € S(z) and
v € S(z'). Consequentely, z ¢ I and z' € I. How-
ever, (vj,vr) € E(D;) implies that 2 is an ancestor of
z' in P;. The latter contradicts I to be an ideal of P;.

Case 3 v; € Ng(vi) and v; € Ng(v;)

By (1.2) we conclude that (v;,v;) € E(D;). A contra-
diction arises by applying an argument similar as in
Case 2, with v; replacing v.

11
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Case 4 v, U € Ng(’l)i)

Applying (1.1) we conclude that (v;,v), (v, v;) €
E(D;). Hence v; and v; belong to a same strongly
connected component of D;. Similarly as in Case 1,
we conclude that the present situation can not occur
too.

The above four cases cover all eight possibilities
for containment in N(v;) of vj,vg,v. Since none of
them can occur, we conclude that there is no triple
vj, vk, v € V(G), with v; ¢ M and vi, v, € M, satis-
fying v, & Ng(v;) and vy € Ng(vj). Therefore, M is
indeed a module of G.

Each of the two above described correspondences is
the inverse of the other. This completes the proof of
Theorem 1. g

For example, in the graph G of Figure 1, the corre-
spondences between modules M; containing the vertex
vy and ideals I; of the modular poset P; of G relative
to vy of Figure 4 are as follows:

My = {v1} corresponds to Iy = {0},

My = {v1,v2} corresponds to Iy = {z1},

My = {v1,v2,v3,v4} corresponds to Iy = {x1,z2},
M3 = {v1,va, v7} corresponds to I3 = {z1,x3},

My, = {vi,ve,v3,04,07} corresponds to I, =
{$17$27$3}7
Ms = {v1,v2,v3,v4,v7,05,06} corresponds to Iy =

{w1,$2,w3,$4}.

Theorem 1 has shown a correspondence between the
modules of G containing v; and ideals of the corre-
sponding modular poset of G. In the sequel, the in-
terest is to characterize these posets. We use more
notation.

Let D be an acyclic digraph. A layer decomposition
of D is a sequence Ly,...,L; of subsets Ly C V (D),
such that (J;<p<; L = V(D) and Lj is the set of
sources of the digraph D \ L, where L7 = () and
Ly = U <iep Li, for k> 1.

Each Ly is called a layer of D. Clearly the layer
decomposition of D is unique. Say that the digraph
D is layered, when its layer decomposition L1,..., L;
is such that (vj,v;) € E(D), for any v; € L and
v € L1, 1 <k <t

Theorem 3 The following affirmatives are equiva-
lent:

(i) P; is the modular poset of some graph G, relative
tov; € V(G),
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(ii) P; is a layered poset,

(iii) P; s the transitive closure of an acyclic bipartite
tournament.

Proof: (i) = (ii): Let G be a graph, v; € V(G),
D; the modular digraph of G, relative to v;, C; the
condensation of D;, and P; the corresponding modular
poset of G. We have to show that P; is layered. We
can classify the vertices of P; (and C;) into three types
as follows. Let z € V(P;) and S(z) C V(D;) the
expansion of z. Then

0 when S(x)
1 when S(z)
2 otherwise

z is of type

Similarly, say that a vertex v; € S(z) is a type [
vertex of D;, when z is a type [ vertex of P;, 0 <1 < 2.
Denote by T; the set of type [ vertices of P;. The
following proposition is useful.

Proposition 4 Let x be a vertex of C;. Then
0 = NCl(l’):Tl UT2

1 = Nci(dj')ZT()UTQ
2 = Nela]=VI(C)

x 1s of type

Proof: To prove the above fact, we can assume that
P; has at least two vertices, otherwise the proposition
is trivial. Let z,y be distinct vertices of P;. Consider
the following alternatives.

Case 1: z and y are type 0.

Then S(z),S(y) C Ng(v;). Let v; € S(z) and
v € S(y). Examining (1.1) - (1.2) and (2.1) - (2.2),
since v;,vr, € Ng(v;) we conclude that (2.1) gives
(vj,vk), (v, v;) € E(D;). This implies that vj, vy be-
long to the same strongly connected component of D;,
contradicting z,y to be distinct. Hence alternative
(2.1) does not occur. Consequently, vy € Np,(v;).
Since v; and vy, are arbitrary vertices of S(z) and S(y),
respectively, we conclude that there are no edges in C;
between a vertex of S(x) and another of S(y). Conse-

quentIYa Y ¢ NCi (ill')

Case 2: z is type 0 and y is type 1.

Then S(z) C Ng(v;) and S(y) C Ng(v;). Again, let
vj € S(z) and vg, € S(y). If (vj,vx) € E(G), applying
(1.2) implies that (vg,v;) € E(D;). When (vj,v;) ¢
E(G), (2.2) leads to (vj,vx) € E(D;). The conclusion
is that v, € Np,(v;), meaning that y € N¢,(z).
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Case 3: z is type 0 and y is type 2.

We know that S(z) C Ng(v;), while S(y) € Ng(v;)
and S(y) € Ng(v;). Then we can choose v; € S()
and vy € S(y), such that v; € Ng(v;) and v, €
Ng(v;). Similarly as in Case 2, (1.2) and (2.2) im-
ply that either (vg,v;) € E(D;) or (vj,v) € E(D;).
Consequentely, vi, € Np, (vj), that is y € N, ().

Case 4: z and y are type 1.

Similarly, as in Case 1, we obtain y ¢ N¢, ().

Case 5: z is type 1 and y type 2.

Analogous to Case 3, and we conclude that y €
Noi (.’,E)

Case 6: x and y are type 2.

That is, S(z),S(y) € Ne(vi) and S(z),5(y) <
N¢(v;). This means that the following choice of ver-
tices is possible. Let v; € S(z), and v, € S(y) satis-
tying v; € Ng(v;) and v € N¢g(v;). This situation is
again similar to Case 2, implying that y € N¢, ().

As the last step of the proof, look at all the above
cases. Let © € V(P;) be a type 0 vertex. Applying
Cases 1,2 and 3, we conclude that N¢,(z) = 11 U
T,. If x is of type 1, then Cases 2,4 and 5 lead to
Ne¢,(z) = To U T, The last alternative is that x is
type 2, which implies N¢,[z] = V(C;), by Cases 3,5
and 6. Proposition 4 is proved.

In the sequel, let Lq,...,L; be a layer decompo-
sition L of C;. Examine the types of vertices in Cj
belonging to a same layer or to consecutives layers in
L. Let z,y be distinct vertices of C;. Suppose that
z,y belong to a same layer of L. Then they can not
be adjacent in C;. By Proposition 4, it follows that if =
is of type 0, so is y; when z is type of 1, so is y; and if
is of type 2 implics that y can not exist. Consequentely,
there can be no layer formed by vertices of distinct
types. Moreover, any type 2 vertex is the sole vertex
in its layer. Then we can say that layer L, is of type
I, when L, contains a type ! vertex, 0 <1 < 2. We
study the alternatives when z,y belong to consecutive
layers of L. Suppose that the theorem is false, that is,
P; is not a layered poset. Therefore, C; is not layered
too. Then there exist ¢ € L, and y € L4441, such that
(z,y) & E(C;). Because L is a layered decomposition,
we know that (y,z) &€ E(C;). Then y € N¢,(z). Con-
sequentely, neither layer L, nor L,i1 can be of type
2. Since L is a layer decomposition, there are ' € L,

and y' € Ly41, such that (¢',y") € E(C;). By Propo-
sition 4, the latter implies that L, and L,4; can not
be both of a same type. Consequentely, L, is of type O
and L4 is of type 1, or vice-versa. Again, by Proposi-
tion 4, this implies that (z,y) € E(C;), contradicting
our inicial assumption. Therefore, C; is layered and
consequentely so is P;.

(ii) = (iii): Let P; be a layered poset. The proof is to
construct a bipartite tournament B;, such that P; is
the transitive closure of B;. Let L1, ..., L; be the layer
decomposition L of F;. Denote by B; the subdigraph
obtained from P; by removing the edges of P; between
vertices belonging to layers Lg, Ly, such that ¢ and p
are both odd or both even. The vertices of B; can be
partitioned into two subsets L', L", the first formed
by the odd layers and the second by the even layers of
L.

By construction, B; has no edges between vertices
of the same subset L’ or L”. On the other hand, since
P; is a layered poset, z € L' and y € L" imply that
x and y are adjacent in F;, and therefore adjacent
in B;. That is, B; is a bipartite tournament. Since
P; is acyclic, so is B;. In addition, all the edges of
E(P;) \ E(B;) are necessarily implied by transitivity.
Consequentely, P; is the transitive closure of B;. That
is, (i) = ().

(iii) = (i): By hipothesis, P; is the transitive closure of
an acyclic bipartite tournament B;. We have to prove
that P; is the modular poset of some graph G, relative
to a vertex v; € V(G). With this purpose, we con-
struct an undirect graph G, having B; as its modular
digraph, relative to v;. Define V(G) = V(B;) U {v;},
where v; € V(B;). The edges of G are defined in the
sequel. Let Vo UVy = V(B;) be a bipartition of the
vertices of B;. The vertices of G adjacent to v; are
defined as being all of V and none of Vi. The set
Vo is a clique of G, while V; is an independent set of
G. It remains to define the edges (vj,vx) of G, such
that v; € Vo and v, € Vi. For each pair v;, vy, where
v; € Vp and vy, € V1, we know that B; contains exactly
one of the directed edges (vj,v) or (vg,v;). The de-
cision of whether or not (v, v;) will be included as an
undirected edge of G depends on its direction in B;,
as folllows. Include (vj,v) in E(G) if and only if its
direction in B; is from vy to v;. The construction of
G is complete.

The next task is to show that B; is precisely the
modular digraph D; of G relative to v;. Clearly,
V(D;) = V(B;), as both of them are equal to V(G) \
{vi}. By the construction of G, Ng(v;) = V, and

13
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N¢(v;) = V1. Since Vj is a clique in G, (1.1) and (1.2)
assure that D; has no edges between two vertices of V.
Similarly, from (2.1) and (2.2) we conclude that there
are no edges in D; between two vertices of V;. Finally,
for each pair v; € V) and v, € V4, (1.2) assures that
when (vj,v;) € E(G), D; contains the directed edge
(vk,v5). Similarly, from (2.2) we conclude that when-
ever (vj,v;) € E(G), it follows (v;,vr) € E(D;). This
completes the description of D;. Observe that D; is a
bipartite digraph, with bipartition V5 U V1. In addi-
tion, for v; € Vo and v, € Vi, D; contains either the
edge (vj,vx) or (vg,v;), its direction being the same
as in B;. Consequentely, D; = B;. Since B; is acyclic,
so is D;. Therefore the condensation C; of D; coin-
cides with D;. Because P; is the transitive closure of
B;, we conclude that P; is the transitive closure of C;.
Hence P; is the modular poset of G, relative to v;.
This completes the proof of Theorem 3. o

3 Applications

In the last section, it has been shown that the set of
modules of a graph G, containing a vertex v; € V(G),
can be described by the modular poset of G, relative
to v;. In this section, we present applications of this
representation.

3.1 Enumerating the modules

The first application is on the enumeration of the
modules of a graph G. We present methods for gen-
erating and counting the modules of G. The following
simple proposition is useful.

Proposition 5 Let P be a layered poset with layers
Lq,...,L;. Then there exists an one-to-one corre-
spondence between non-empty ideals I of P and non-
empty subsets Lj, C Ly, for all 1 < k <t. Moreover

I=LiUy<oey Le

Proof: Let I be an ideal of P, and k the largest in-
dex of a layer Ly of P, such that () Ly # (. Then
Ly,...;Lyq1 € 1. Let Lj = I'\ U;<;p, Li. Choose
L), C Ly to correspond to I. Conversely, by hypoth-
esis L}, # 0 and L}, C Ly, for some 1 < k <t. Then
I=1L, U1§l<k Ly is clearly an ideal, precisely the one
corresponding to Lj. o

Using Theorem 1, a possible method for enumerat-
ing the modules of G is to choose an ordering vy, . .., vy,
of the vertices of GG, and iteratively enumerate the
modules of G' containing v;, except those also contain-
ing any of the preceding vertices v1,...,v;—1. With
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the purpose of applying this idea let P; be the mod-
ular poset of G relative to v;. Define the modular
poset P! relative to vy,...,v;, as follows. If i = 1 then
P! =P, and for i >1 P/ = P;\ U1§j<iNl}'§i [z], where
x € V(P;) is the reduction of S(v;) in P;. Clearly, P}
is also a layered poset. The next proposition describes
a correspondence between all modules of G and ideals

of P/.

Proposition 6 Let G be a graph, vi,...,v; a Sse-
quence of vertices of it, and P] the modular poset of G
relative to vy,...,v;. Then there exists a one-to-one
correspondence between the ideals of P} and the mod-
ules of G, containing v; and not any of the vertices
Viy---,U5—1-

Proof: Let M be a module of G containing v; and
not containing any vi,...,v;—1. By Theorem 1, P;
has an ideal I corresponding to M. Moreover, M =
{vi} U, er S(x). We show that [ is also an ideal of P}
and can be chosen as corresponding to M. If i = 1,
this is trivial. Let ¢ > 1 and consider the alternatives.

Case 1: I Z V(P})

Then any vertex z € I\ V(P}) is such that € N7, [y],
where y is the reduction in P; of S(v;) C V(G), for
some 1 < j < i. Because v; ¢ M, it follows that y ¢ I.
This means that I is not an ideal of P;, since z € T
has an ancestor y ¢ I in P;. This contradiction leads
to the conclusion that this case does not occur.

Case 2: ] CV(P))

Then I is also an ideal of P}, since the sets of ancestors
of the vertices of I are the same in P; and P}.

Conversely, let I be an ideal of P;. Then I is also
an ideal of P;.By theorem 1, M = {v;} J,¢; S(z) is a
module of G containing v;. Since I C V(P}), I does
not contain any vertex which is the reduction in F;
of S(v;) C V(G), for some 1 < j < i. Consequently.
v; ¢ M. That is, M is a module of G containing v;
and not vy,...,v;_1. Therefore, M is the module of
G corresponding to the ideal I of P/. o

The algorithm for generating all modules of a graph
G follows directly from Proposition 6. Choose an ar-

bitrary ordering vy,...,v, of the vertices of G. For
1 < i < n construct the modular poset P/, relative
to v1,...,v;. Generate all ideals I of P} and compute

the corresponding modules {v;} |, c; S(z) of G. Gen-
erating all the ideals of P/ is equivalent to generating
all the subsets of the layers of P/, by Theorem 3 and
Proposition 5. The latter step requires constant amor-
tized time. The overall time bound of the algorithm
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is O(n3 + p), where p is the total number of modules
of G. The (worst-case) delay complexity is O(n?).

As for the counting problem, the number of distinct
modules of G can be computed using the expression
given by the proposition below. The proof of it follows
directly from Theorems 1, 3 and Propositions 5 and 6.

Proposition 7 Let G be a graph, u the number of
modules of G, and vy,...,v, an ordering of its ver-
tices. Denote by L, ..., L;, the layer decomposition
of the modular poset of G, relative to vy,...,v;. Then

p=nt Y @kl-1)

1<i<n 1<k<t;

The corresponding counting algorithm requires
O(n?) steps.

3.2 Finding special modules

Consider the problem of finding a module of a graph
G satisfying a given property. Below, we describe solu-
tions for two distinct cases. The first is to find a max-
imal module of G satisfying an hereditary property,
while the second corresponds to finding a non-trivial
connected module of a graph, if existing.

We use more notation. Let G be graph, v; €
V(G), P; the modular poset of G, relative to v;,
and Lq,...,L; the layer decomposition of P;. Let
S(X) =U,ex S(z) for X CV(F;). Denote Sy = {v;}
and Sy = Sg_1 US(Ly). Finally, Si C Sy, represents
the subset of vertices forming the connected compo-
nent containing v; of the subgraph induced in G by

Sy CV(G).

3.2.1 Finding modules satisfying hereditary
properties

A property T on graphs is a collection of graphs, closed
under isomorphism. When a graph G belongs to 7, say
that V(G) satisfies 7. When 7 is closed under induced
subgraphs, say that it is an hereditary property.

The following proposition describes the maximal
modules of a graph G containing a vertex v; € V(G)
and satisfying an hereditary property w. Examples
of such properties are planar graphs, chordal graphs,
bipartite graphs, and so on.

Proposition 8 Let G be a graph, v; € V(G), and
Ly,...,L; the layer decomposition of the modular
poset of G, relative to v;. Let m be an hereditary prop-
erty satisfied by {v;}. For M C V(G), M is a mazimal
module of G containing v; and satisfying 7 if and only

if M satisfies m and

M =V(G), or

M = SUS(L},), where Lj, C Ly, L}, # Ly, for some
1<k<t, and

M U{v} does not satisfy 7, for all v € S(Ly \ L},).

The above proposition leads to the following algo-
rithm for finding a maximal module of G, containing
v; € V(G) and satisfying a given hereditary property
7, where {v;} € 7.

In the initial step, given G and wv;, construct D;
and P;, find the layer decomposition Ly, ..., L; of P;,
define k =1,¢=0and M = {v;}. In the general step,
for each v € Ly, if M U {v} satisfies m then include
v in M, otherwise set £ to 1. After all vertices of Ly
have been examined, if k = ¢ or £ = 1, stop: M is the
desired module. Otherwise, increase k by 1 and repeat
the general step.

The complexity of the algoritm is O(n? + nCj),
where C is the complexity of verifying whether G
satisfies 7.

3.2.2 Finding a connected non-trivial module

The property connected graphs is not hereditary.
Therefore finding a connected non-trivial module of
a graph can not be solved by Proposition 8. We de-
scribe below a method for finding such a module. We
use an additional concept.

Let G be a connected graph, A, B C V(G) and AN
B = (). Say that B separates A in G when the vertices
of A belong to more than one connected component of
G\ B.

The following proposition describes the non-trivial
connected modules of G.

Proposition 9 Let G be a graph, |[V(G)| > 3, v; €
V(G) and Ly,...,L; the layer decomposition of the
modular poset of G, relative to v;. There exists a con-
nected non-trivial module of G, containing v;, if and

only if
(a) {vi} #Si #V(G), or
(b) Sk—1 C Si #V(G), for some k > 1, or

(c) Si=V(G),t>1, and {v} does not separate S;_;
in G, for some v € S(Ly).

Proof: Let M be a non-trivial connected module of
G, containing v;. By Proposition 5, M is of the form
{vi} Ume% S(z), for some k and subset Lj C L.
That is, Sp_1 C M. Since M is connected it fol-
lows that M C S,. Consequently, & = 1 implies

15
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{vi} # 5% # V(G), otherwise M is trivial. That is,
(a) is valid. Suppose 1 < k < t. Then S} # V(G)
and (b) holds. Finally, let £ = ¢ > 1. Examine the
following two alternatives. If S} # V(G) then case (b)
occurs again. Consider Sf = V(G). Since M is not
trivial, there exists B C S(L;), such that BN M = ()
and B # (. Because S;_; C M it follows that B
can not separate S;—1 in G. Consequently, any subset
B’ C B also does not separate S;_; in G. That is,
any v € B is such that {v} does not separate S;_1,
meaning that condition (c) occurs. Hence M being
a non-trivial connected module of G implies that at
least one of the conditions (a), (b) or (c¢) occurs. The
proof of the converse consists of exhibiting a module
M having the desired properties, whenever one of the
conditions (a), (b) or (c) holds.

If (a) is verified then S} is a connected non-trivial
module of G. So is Si, when (b) occurs. Finally,
suppose that (c) is true. In this case, the vertices of the
connected component containing v;, of the subgraph
induced by V(G) \ {v} form a non-trivial connected
module of G. g

The above proof leads directly to an algorithm for
finding a connected non-trivial module of G, or report-
ing that one does not exist. In the worst situation,
it might be necessary to check conditions (b) and (c)
O(n) times. Therefore the complexity of the algorithm
is O(nm).

4 Conclusions

We have presented a characterization of the mod-
ules of an undirected graph G, in terms of ideals of
certain posets. As applications of it, we have described
algorithms for (i) generating all the p modules of G,
(ii) counting the p modules of G, (iii) finding a maxi-
mal module of G containing v; € V(G) and satisfying
an hereditary property 7, and (iv) finding a non-trivial
connected module of G. The complexities of the algo-
rithms are (i) O(n® + ), (i) O(n?), (iii) O(n® +nCx),
where C; is the complexity of verifying whether G
satisfies m, and (iv) O(nm).
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