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Abstract

This paper presents a non-iterative regularized
inverse solution to the image interpolation problem. This
solution is based on the segmentation of the image to be
interpolated into overlapping blocks and the interpolation
of each block, separately. The purpose of the overlapping
blocks is to avoid edge effects. A global regularization
parameter is used in interpolating each block. In this
solution, a single matrix inversion process of moderate
dimensionsisrequired in the whole interpolation process.
Thus, it avoids the large computational cost due to the
matrices of large dimensions involved in the interpolation
process. The performance of this approach is compared to
thestandard iterativeregularized interpol ation schemeand
to polynomial based interpolation schemes such as the
bicubic and cubic spline techniques. A comparison of the
suggested approach with some algorithms implemented in
the commercial ACDSee software has been performend in
the paper. The obtained results reveal that the suggested
solution has a better performance as compared to other
algorithmsfromthe MSE and the edges preser vation points
of view. Itscomputation timeisrelatively large as compared
to traditional algorithmsbut thisis acceptable when image
quality isthe main concern.

Keywords: Image Interpolation, Regularized
Interpolation, Cubic Spline, Bicubic, Laplacian.

1. INTRODUCTION

Image interpolation is the process by which a high
resolution (HR) imageis obtained from alow resolution (LR)
one. Image interpolation has a wide range of gpplicationsin
numerous fields such as medica image processing, military
applications, spaceimagery, image decompression and digital
HDTV.

Theimageinterpolation problem has beenintensively
treated in the literature [1-12]. Conventional interpolation
agorithms such as the bicubic and cubic spline agorithms
have been widdly used in image interpolation [1-12]. These
conventiond agorithms are space invariant algorithms based
on the appropriate choice of a basis function. They don't
consider the spatia activities of the image to be interpolated.
Thismeansthat the variationsin pixel valuesof the LR image
arenot consdered. They aso don’'t consider the mathematical
model by which the imaging sensors capture the image.

Spatialy adaptive variants of the above mentioned
agorithms have a so been devel oped [ 13-15]. Although these
adaptive agorithms improve the qudity of the interpolated
image especially near edges, they till don't consider the
mathematical model by which the image capturing devices
operate. EI-Khamy et a. have proposed aunified approach for
adaptive polynomia based image interpolation [16,17]. This
gpproachisbased on the optimization of theimageinterpolation
formulausing asingle controlling parameter to preserve edges
through the interpolation process. Better results are expected
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if the pre-requisites of the modern sampling theory are
conddered in the interpolation process[18].

Infact, most image capturing devicesare composed of
charge-coupled devices(CCD’s). In CCD imaging, thereisan
interaction between the adjacent points in the object to be
imaged to form a pixd in the obtained image [19-22]. If this
model of interaction is consdered in image interpolation, the
interpolation process will be smilar to a process of imaging
with an HR imaging deviceto agreat extent and better results
are expected to occur.

Some image interpolation agorithms have been
introduced considering thisinteraction process[19-22]. The
linear minimum mean square error (LMMSE) image
interpolation algorithmisoneof them[19,21]. Another oneis
theregularizedimageinterpolation agorithm. Thisregularized
interpolation agorithm has been previously solved in a
SuCCess Ve gpproximation manner to avoid thematrix inversion
process [20].

Inthispaper, wesuggest anew implementation of the
regularized image interpolation agorithm. In this suggested
implementation, we solve the problem using a non-iterative
inverse solution. Thisimplementation requiresasingle matrix
inverson of moderate dimensions if a globa regularization
parameter is used.

2. LR IMAGE DEGRADATION M ODEL

In the imaging process, when a scene isimaged by
anHR imaging device, the captured HR image can be named
f(n,,n,) where n, n,=0,1,2,....N-1. If the same scene is
imaged by an L R imaging device, theresultingimage can be
named g(m,,m,) where m, m,=0,1,2,....M-1. HereM=N/R,
where R is the ratio between the sizes of f(n,,n,) and
g(m,m,) . The relationship between the LR image and the
HR image can berepresented by thefollowing mathematical
modd [19-22]:

g=Df +v @

wheref , gand V arelexicographically ordered vectors of the
unknown HRimage, themeasured LR imageand additivenoise
values, respectively. These lexicographically ordered vectors
are obtained by rearranging the image into a single column.
The matrix D represents the filtering and down sampling
process, which transformsthe HR imageto theLR image. The
modedl of filtering and down samplingisillustratedin Figure 1.
The LPF in the figure refers to the averaging process of two
adjacent pixels.
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The vector f isof Sze N?x1 and the vectors g and V
areof szeM?x1. Thematrix D isof szeM?xN?whichcanbe
writtenas[19-22]:

D=D1 ® Dq 2

where ® represents the Kronecker product, and the N/2 x N
meétrix D1 representstheonedimensiond (1-D) low pessfiltering
and down sampling . For M=N/2, we have:
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From the above modd, it is clear that the process of
obtaininganHRimagefroman LRimageisaninverseproblem,
which requires inverting the operator D. It is clear that, the
matrix D is not a square matrix, so its direct inversion is not
possible.

The target of the image interpolation process is the
estimation of the vector f given the vector g. According tothe
modern sampling theory, this process requires a correction
pre-filtering step in the reconstruction process [18]. This
correctionfilterisobtained astheinverseof thecrosscorrelaion
seguence between the acquisition model filter and the
recongtruction filter [18]. Unfortunately, the estimation of this
correctionfilterinour caseisdifficult or evenimpossible. This
is because our problem represented by equation (1) isan ill-
posadinverseproblem[19-22]. Thetrestment of ill-posedinverse
problem in the presence of noiseis performed using different
techniques such as regularization techniques and Wiener
filtering techniques[18]. In this paper, we present an efficient
regularized solution to the problem of imageinterpolation.

3. PoLynomIAL BASED | MAGE | NTERPOLATION

The process of image interpolation aims at estimating
intermediate pixels between the known pixel valuesas shown
inFigure2. To estimatetheintermediate pixel a positionx, the
neighboring pixelsand the distance sareincorporated into the
estimation process.

For equally spaced 1-D sampled data, f(x, ) , many
interpolation techniques can be used. The vaiue to be
interpolated, f(x),can,ingeneral, bewrittenintheform

[1-12]:

Vertical
LPF

g(n;,ny)
1 '< >(N'/2)x(N/2)

LR image

Figure 1: Down sampling process from the NxN HR image to the (N/2) x N/2) LR image.
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Figure 2: 1-D signal interpolation. The Pixel at position x is estimated using its neighborhood pixels and the distances.

F =Y flx—x,) @

where f(x) is the corresponding interpolated
function, B(x) is the interpolation kernd , and x and x,
represent continuousand discretespatial distance, respectively.
Thevduesof C, represent theinterpol ation coefficients, which
need to be estimated prior to the interpolation process.

Fromtheclassica Samplingtheory, if f(X) isbandlimited
to(-x,n),then[4,6]:

f(x)=Zf(xk)sinc(x—xk) (5)

Thisisknown as the ideal interpolation. From the
numerical computations point of view, the ideal
interpolation formulais not practical due to the slow rate
of decay of the interpolation kernel sinc(x). So,
approximations such as the bicubic and cubic spline
interpolation techniques are used as alternatives [1-13].

As shown in Figure 2, we define the distance
between x, x, and x , , as[6,13,22]:

S = X-Xp, 1-S = Xpi X ©)
For the Bicubic and Cubic spline image
interpolation algorithmswe have [6,13,22]:

i- Bicubic

F()= f(x, (=" +2s>—5)/2
+ £ (x,)3s =55*+2)/2
+ (X, (=S +4s* +5)/2
+f(xk+2)(s3 -57)/2

™

ii- Cubic Spline

J@) =, ,[B+s) ~4@2+s)
+6(1+5) —4s°1/6 ®)
+c,[(2+5) —4(1+s) +65°1/6

+e,  [(1+5) 45’/ 6+c¢,,,5° /6
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For the case of bicubicinterpolation, thesamplevaues
are used as the interpolation coefficients. On the other hand,
cubic spline interpolation requires the estimation of the
interpolation coefficients using adigital filtering step prior to
theinterpolation process [1-13]. In image interpolation, these
techniquesare performed row-by-row then column-by-column.

4. REGULARIZED | MAGE |NTERPOLATION

In section |1, we have concluded that the image
interpolation problemfor CCD captured imagesisaninverse
problem. An inverse problem is characterized as ill- posed
when thereis no guarantee for the existence, uniquenessand
stability of the solution based on direct inversion. The
solution of theinverse problem isnot guaranteed to be stable
if asmall perturbation of thedatacan producealargeeffectin
the solution. Image interpolation belongs to a general class
of problems that were rigorously classified as ill-posed
problems. Regularization theory, which was basically
introduced by Tikhonov and Miller, provides aformal basis
for the development of regularized solutions for ill-posed
problems[23,24]. The stabilizing function approach isone of
the basic methodologies for the devel opment of regularized
solutions. According to this approach, an ill-posed problem
can beformulated asthe constrained minimization of acertain
function, called stahilizing function [23,24]. The specific
constraints imposed by the stabilizing function approach on
the solution depend on the form and the properties of the
stabilizing function used. From the nature of the problem,
these constraints are necessarily related to the a priori
information regarding the expected regularized solution.

According to the regularization approach, the
solution of equation (1) is obtained by the minimization of
the cost function [24]:

A All2 All2
wirsfoif Al

where C is the regularization operator and 4 is the
regularization parameter .

Thisminimization isaccomplished by taking the derivative
of the cost function yielding:

a\géf) =0=2D'(g - Df) - 2AC'Cf

(10)

The superscript ‘t’ refersto matrix transpose.

Solving equation (10) for that f that provides the
minimum of the cost function yields:
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f=(D'D+AC'C)'D'g=A(1)g (12)

where A(1)=(D'D+ AC'C)"'D’ (12)

Theruleof the regularization operator C isto move
the small eigenvalues of D away from zero while leaving
the large eigenvalues unchanged. It also incorporates prior
knowledge about the required degree of smoothness of f
into the interpolation process.

The generality of the linear operator C allows the
development of a variety of constraints that can be
incorporated into the interpolation operation. For instance:

a: C=l. Inthis casethe regularized solution reducesto the
regularized inverse filter solution, which is named the
pseudo inversefilter solution, and it is represented as[24]:

f=(DD+A)'Dg (13)

b: C=[finitedifferencematrix]. Inthiscase, the operator
C ischosen to minimize the second order (or higher order)
difference energy of the estimated image [24]. The 2-D
Laplacianillustrated in Figure 3ispreferred for minimizing
the second order difference energy. The 2-D Laplacianis
the most popular regularization operator. It is the used
operator in the paper

Figure 3: The 2-D Laplacian operator.

c- C=[eyemodel]. If theinterpolated imageisrequired to
be appedling to the human eye from aperceptual viewpoint,
the operator C is chosen as ablock circulant matrix whose
propertiesin the Fourier domain match the spatial frequency
response of the human visual system[24]. Theregularization
parameter 4 controls the trade-off between fidelity to the
data and the smoothness of the solution.

One of the possible previously suggested solutions
to this problem is to use a successive approximation for
the solution, which can beimplemented using thefollowing
equation [20]:

£ o=f+ n{D‘g—(D‘D+/1C‘C) fi}

(14)
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Wherefi istheobtained HRimageat iterationiand s
a convergence parameter. This method is a good solution that
avoidsthelargecomputationa complexity involvedinthematrix
inverson processin equation (11). Thedrawback of thismethod
is the computationd time where alarge number of iterationsis
required to get agood HR image.

In this paper, we suggest another solution to the
regularized image interpolation problem. This solution is
implemented by the segmentation of the LR image into
overlapping segmentsand theinterpol ation of each segment
separately using equation (11) asan inversion process. It is
clear that, if agloba regularization parameter isused asingle
matrixinverson processfor amatrix of moderatedimensions
isrequired becausetheterm (DD + AC'C) ™ isindependent
ontheimageto beinterpolated. Thusthe suggested solution
isefficient from the point of view of computational cost.

5. ExPeRIMENTAL REQULTS

In this section, severa experiments have been carried
out to test the performance of the suggested inverse regularized
interpolation algorithm and compare it with traditional
interpolation agorithms. Theimages used in these experiments
arefirst down sampled and then contaminated by additivewhite
gaussan noise to smulate the LR image degradation model
given by equation (1). The LR images are then interpolated to
their origind sizeandtheM SE isestimated betweentheobtained
image and the origina image. We use two measures for
performance evauation of every imageinterpolation agorithm
implemented. These measures are the M SE and the correlation
coefficient a, for edge pixelsbetween theorigina imageand the
interpolated image. In applying the correlation coefficient
measure, a Sobd edge detection operator is goplied to both the
origina and theinterpolated imagesto extract edge pixels. The
correlaion coefficient is estimated between edge pixelsin both
images. Thehigher thecorrdation coefficient, thelarger thedhility
of theimage interpolation dgorithm to preserve edges through
the interpolation process.

Figure 4: Lenna Image: (a) Origina Image (128 x 128).
(b) LR image. (64 x 64). SNR=25 dB.

Inthefirs experiment, a128 x 128 L ennaimagehasbeen
downsampled by 2ineachdirection and contaminated by additive
white Gaussan noiseto givean LR image of SNR=25dB. The
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origind andthe LR images areillugtrated in Figure4. TheLR
image isthen interpolated using bicubic, cubic spline, iterative
regularized andinverseregularizedinterpolaion techniques. The
resultsof thisexperiment aregivenin Figure5.

Figure 5: Interpolation Results of Lenna Image:
(a) Bicubic. MSE=339, a3=0.56. CPU=0.7 s.
(b) Cubic Spline. MSE= 342, a=0.57. CPU=1.1s.
(c) Iterative Regularized (100 iterations). MSE= 313, a,=0.66.
CPU=8.6 s.
(d) Inverse Regularized. MSE=223, 3=0.78. CPU= 17.2 s.

(a) (b)

(©) (d)

Figure 6: Error Patterns For Lenna Image Interpolation.
(a) Bicubic. (b) Cubic Spline. (c) Iterative Regularized.
(d) Inverse Regularized

Anerrorimageisal so estimated between the original
image and each of the interpolated images. If the
interpolationis ideal, dl thepixel valuesof thiserrorimage
must bezero. Inthisexperiment, theerror imagesareinverted
and displayed in Figure 6. These error images reveal the
ability of the suggested inverse regularized interpolation
agorithm to preserve edges. It is clear from these results
that the suggested algorithm gives better results than
traditional techniques. The vaues of the MSE, the edge
pixelscorrelation coefficient and the computation timeusing
a1 GHz processor are included with the figures for each
interpolation technique. Several other experimentshave been
carried and theresults are given in Figures 7 to 15.

(a)

Figure 7: Building Image: (a) Original Image (128x128)
(b) LR image. (64x64). SNR=25 dB.

(c)

Figure 8: Interpolation Results of Building Image
(@) Bicubic. MSE=1234, a=0.22. CPU=0.7 s
(b) Cubic Spline. MSE=1304 , a=0.39. CPU=1.1 s
(c) Iterative Regularized (100 iterations). MSE=878 , a=0.5.
CPU=8.6 s
(d) Inverse Regularized. MSE=971, a=0.47. CPU= 17.2's
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Figure 9: Error Patterns For Building Image Interpolation.
(a) Bicubic. (b) Cubic Spline. (c) Iterative Regularized.
(d) Inverse Regularized.

In our experiments, the inverse regularized image
interpolation approach is tested on the available LR images
withagloba regularization parameter 1 =0.001. TheLRimege
issegmented into overlgoping blocksof Sze12x12 pixelseach.
Eachblockisinterpolated separately tothesizeof 24x 24 pixels
and 8 pixelsare removed from the four sides of each block to
yieddasmall block of Sze8x8in order toavoid theedgeeffects.
By the process of segmentation and the usage of a global
regularization parameter, thistechniquereguiresasinglematrix
inverson of Sze 576x576 which isamoderate size. We have
found that the Size of 12x12 isthe best choice. If we choose
blocks of smaller dimensions, we will not be able to remove
edge pixelsto avoid edge effects. If we use blocks of larger
dimensions the matrix required to be inverted will be of
dimengonslarger than 576x576 whichwill bedifficult andtime
consuming. The size of the matrix to be inverted is fixed
regardlessof theszeof theL R image. For the case of iteretive
regularized image interpolation, we use a regularization
parameter 4=0.001 and aconvergence parameter n =0.125.

(a)

Figure 10: Plane Image: (a) Origina Image (256x256). (b) LR image. (128x128). SNR=25 dB.

For interpolating an image of size 64x64 to size 128x128,
thematrix D'D + AC'C will beof dimensions4096x4096.
If theLR imageisof dimensions 128x128, the same matrix
will be of dimensions 16384x16384. It is clear that the
computational cost for iterative regularized image
interpolationincreaseslargely if the LR image dimensions
increase, while that for inverse regularized interpolation
approach will remain linearly proportional to the LR image
dimensions.

Theeffect of the choice of the global regularization
parameter 4 in both iterative and inverseregularized image
interpolation approaches is studied for the different used
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images and theresultsaregivenin Figures16 and 17. Itis
clear that the effect of 4 on MSEissmall for 1intherange
of 10 to 102 for the iterative solution and in the range of
10°to 1 for theinverse solution. The performance of the
implemented image interpolation techniques are studied
for different signal to noise ratios on the different used
images and theresultsare givenin Figures 18 to 21. Itis
clear that the inverse regularized interpolation approach
has the least M SE in most cases. Some experiments have
been carried out to compare the performance of the
commercially available ACDSee software [25] to the
suggested interpolation approach. In this software there
are different implemented interpolation algorithms such
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as the Lanczos and the Mitchell algorithms. Results of
these experimentsare tabulated in tables (1) and (2). These
results reveal the superiority of the suggested inverse
regularized image interpolation approach to the
commercially availabletechniques.

6. CoNncLUSION

Thispaper suggests an efficient implementation of the
regularizedimageinterpol ation problem asaninverseproblem.
Thesuggested implementati on reducesthe computationa cost
of theimageinterpolation problemto asinglematrix inverson
problem of moderate dimensions. The obtained results using
the suggested regularized image interpolation algorithm is
compared to the results using the iterative regularized image
interpolation agorithm and the traditiona polynomia based
imageinterpolation a gorithms. Thesuggestedimplementation
of regularizedimageinterpolation has proved to be superior to
polynomia basedimageinterpolationtechniquesfromthe MSE
point of view and from the visua quality point of view. It has
aso proved to be superior to the iterative regularized image

interpolation from the computationa time point of view when
the dimensions of the image to be interpolated are large. The
suggested implementati on hashigher edge preservation ability
than other interpolation agorithms.
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Figure 14: Interpolation Results of Test Pattern Image. (a) Bicubic. MSE=315, a=0.47. CPU=2.6 s.
(b) Cubic Spline. MSE=312, a=0.46. CPU=4.2 s. (c) Iterative Regularized (100 iterations). MSE=324, a=0.6. CPU=138 s. (d) Inverse
Regularized. MSE=68, =0.89. CPU= 62 s.
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(c) (d)

Figure 15: Error Patterns For Test Pattern Image Interpolation.
(a) Bicubic. (b) Cubic Spline. (c) Iterative Regularized. (d) Inverse Regularized.
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Figure 16: Effect of regularization parameter on iterative regularized image interpolation
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Figure 17: Effect of regularization parameter on inverse regularized image interpolation.
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Figure 18: MSE vs. SNR for the Lenna Image.
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Figure 19: MSE vs. SNR for the Building Image.
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Figure 20: MSE vs. SNR for the Plane Image.
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Figure 21: MSE vs. SNR for the Test Pattern Image.
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Image Lanczos Mitchell Bicubic Cubic Spline Regularized Regularized
(Iterative) (Inverse)
Cameraman MSE=466 MSE=435 MSE=245 MSE=254 MSE=216 MSE=135
(128 x 128) o.=0.44 o.=0.47 o.=0.6 o.=0.6 .=0.74 o.=0.84
CPU=2.6 s CPU=4.2s CPU=138 s CPU=62
Lenna MSE=559 MSE=519 MSE=336 MSE=339 MSE=307 MSE=216
(64 x 64) 0.=0.41 o.=0.44 o.=0.57 o.=0.57 0.=0.66 o.=0.78
CPU=0.7 s CPU=1.1 CPU=8.6s CPU=17.2
Mandrill MSE=1734 MSE=1567 MSE=966 MSE=1000 MSE=802 MSE=751
(128 x 128) .=0.23 o.=0.29 o.=0.47 o.=0.45 .=0.65 o.=0.68
CPU=2.6s CPU=4.2s CPU=138 s CPU=62 s
Building MSE=2005 MSE=1828 MSE=1230 MSE=1306 MSE=873 MSE=965
(64 x 64) o.=-0.13 oe=-0.12 o.=0.21 o.=0.4 .=0.5 o.=0.47
CPU=0.7 s CPU=1.1 CPU=8.6 s CPU=17.2
Plane MSE=536 MSE=486 MSE=204 MSE=207 MSE=199 MSE=113
(64 x 64) o.=0.41 o.=0.44 o.=0.7 a.=0.71 .=0.78 .=0.88
CPU=0.7 s CPU=1.1 CPU=8.6 s CPU=17.2
Woman MSE=694 MSE=633 MSE=496 MSE=509 MSE=397 MSE=412
(128 x 128) o.=0.45 a.=0.49 a.=0.51 a.=0.5 a.=0.71 a.=0.62
CPU=2.6s CPU=4.2s CPU=138 s CPU=62 s
Pattern MSE= 1244 MSE=1151 MSE=306 MSE=301 MSE=310 MSE=50
(128 x 128) a.=0.1 a.=0.12 .=0.47 a.=0.46 a.=0.57 a.=0.9
CPU=2.6s CPU=42s CPU=138s CPU=62 s
Table 1: Interpolation results for different noise free images.
Image Lanczos Mitchell Bicubic Cubic Spline Regularized Regularized
(Iterative) (Inverse)
Cameraman MSE=499 MSE=454 MSE=269 MSE=282 MSE=249 MSE=179
(128 x 128) o.=0.44 0.=0.47 0.=0.61 o.=0.6 o.=0.74 .=0.83
CPU=2.6s CPU=4.2s CPU=138s CPU=62 s
Lenna MSE=573 MSE=527 MSE=348 MSE=356 MSE=326 MSE=241
(64 x 64) o.=0.41 o.=0.44 0.=0.56 o.=0.57 o.=0.67 .=0.77
CPU=0.7 s CPU=1.1 CPU=8.6s CPU=1725s
Mandrill MSE=1766 MSE=1582 MSE=991 MSE=1033 MSE=836 MSE=796
(128 x 128) o.=0.23 .=0.29 0.=0.47 o.=0.44 o.=0.64 .=0.67
CPU=2.6s CPU=4.2s CPU=138s CPU=62 s
Building MSE=2014 MSE=1833 MSE=1245 MSE=1322 MSE=889 MSE=985
(64 x 64) o.=-0.13 oe=-0.11 0.=0.22 o.=0.4 o.=0.5 0.=0.48
CPU=0.7 s CPU=1.1 CPU=8.6s CPU=1725s
Plane MSE=566 MSE= 505 MSE=228 MSE=237 MSE=230 MSE=155
(64 x 64) o.=0.41 o.=0.45 0.=0.71 o.=0.71 o.=0.78 .=0.87
CPU=0.7 s CPU=1.1 CPU=138 s CPU=17.2
Woman MSE=711 MSE=643 MSE=510 MSE=526 MSE=417 MSE=439
(128 x 128) o.=0.45 .=0.49 0.=0.51 o.=0.49 o.=0.7 0.=0.62
CPU=2.6s CPU=4.2s CPU=138 s CPU=62 sec
Pattern MSE=1271 MSE=1166 MSE= 336 MSE=337 MSE=353 MSE=108
(128 x 128) o.=0.11 .=0.12 0.=0.47 o.=0.46 o.=0.62 .=0.87
CPU=2.6s CPU=4.2s CPU=138 s CPU=62 sec
Table 2: Interpolation results for different noisy images SNR=20 dB.
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