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Abstract 
 

This paper presents a new complex valued 
radial basis function (RBF) neural network (NN) with 
phase transmittance between the input nodes and 
output, which makes it suitable for channel 
equalization on quadrature digital modulation 
systems. The new Phase Transmittance RBFNN 
(PTRBFNN) differs from  the classical complex valued 
RBFNN in that it does not strictly rely on the 
Euclidean distance between the input vector and the 
center vectors, thus enabling the transference of phase 
information from input to output. In the context of 
blind channel equalization, results have shown that 
the PTRBFNN not only solves the phase uncertainty of 
the classical complex valued RBFNN but also presents 
a faster convergence rate.comes the abstract of the 
paper. 

 
Keywords: Neural Network, Equalizer, Phase, Concurrent, 
Blind 

1. INTRODUCTION 
Several complex valued RBF neural network 

approaches has been proposed in the context of 
channel equalization [1]-[5]. These classical 
approaches share a common architecture, shown in 
Figure 1, and a common principle – the output of the 
kth  Gaussian center kϕ  is based on the Euclidean 

norm between the complex valued input vector u and 

the kth  center vector kΨ , as given by (1) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ−−= 2

2
1exp k
k

k uu
σ

ϕ  (1) 

where  [ ]TLuuuu 110 −= L  is the vector 

which represents the communication channel regressor 

and whose L complex valued components  lu   are 
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such that  { } { } 1
1

−
−= zuu ll ZZ ,i.e., the channel 

regressor behaves as a FIFO [6]. {}⋅Z  is the operator 

which returns the Z-Transform of its argument, with 
1,,2,1 −= LLl .  kΨ   is the  kth  center vector  

[ ]TL 110 −= ψψψψ L , 2
kσ  is the variance of the 

kth  Gaussian center, 1,,1,0 −= Kk L , being K  the 

adopted number of  centers. ⋅  is the operator which 

returns the Euclidean norm of its argument. 

 
Figure 1:  RBF neural network architecture. 

From Figure 1 the output   is 

∑
−

=

=⋅=
1

0

K

k
kk

T WWy ϕϕ  
(2) 

where kW  is the kth  complex valued component 

of the output synapses vector 

[ ]TKWWWW 110 −= L and kϕ  is the kth  real valued 

component of the hidden layer output vector 

[ ]TK 110 −= ϕϕϕϕ L . 

In digital communications using quadrature 
modulation, the information is conveyed across the 

channel by means of a discrete sequence ( )ns  of 

complex numbers jQI + , each complex number 

being denoted as an IQ symbol of the sequence ( )ns  

[6]. This sequence is generated by the digital 

transmitter at the specific symbol rate RS  of the 

system, which defines the time interval T  between IQ 

symbols ( )ns  and ( )1+ns  as RST 1= , being 

L,1,0=n . 

The digital modulator at the transmitter maps each 
incoming binary word of fixed length into the 
respective IQ symbol. Since an IQ symbol is a 
complex phasor, the phase of each IQ symbol plays a 
crucial role in the information flow. 

Subsequently, the transmitted IQ symbol sequence 

( )ns  is convolved with the discrete complex valued 

impulse response of the communication channel, 
impulse response which is dictated by the channel 
multipath scenario [6]. This multipath scenario 

imposes phase and amplitude distortions to ( )ns . In 

addition, besides the multipath distortion, the channel 

adds noise to ( )ns , so that the received sequence 

( )nr  barely resembles the original transmitted 

sequence ( )ns . 

At the digital receiver, the received IQ sequence 

( )nr  is stored in the FIFO buffer of the channel 

regressor u , so that an equalizer can perform the so 

called channel deconvolution process [9]. Once ( )nr  

is deconvolved by the equalizer, the digital 
demodulator de-maps each deconvolved IQ symbol 
into the respective binary word of fixed length and of 
duration T [6]. 

Notice from (1) and (2) that the phase of the input 

u  is not explicitly transmitted to the output y , since 

it is  discarded by the Euclidean norm operator in (1). 

Therefore, the resulting hidden layer output vector ϕ  

restricts the RBFNN forward transmittance to be real 
valued, which inherently imposes some restrictions 
when the classical RBFNN is applied to blind channel 
equalization, since the forward transmittance does not 
explicitly convey any phase information. 

In order to avoid the explicit phase invariance on 
the transmittance function of the classical RBFNN 
network we propose a new complex valued RBFNN – 
the Phase Transmittance RBFNN (PTRBFNN). 
Specifically, we replace the Euclidean norm based 
hidden-layer radial basis function by the complex 
valued basis function 

( ) { } { } { }

{ } { } { } ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ−−⋅+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ−−=

2
2

2
2

ImIm
Im

1exp

ReRe
Re

1exp

k
k

k
k

k

uj

uu

σ

σ
ϕ

 (3) 

where {}⋅Re  and {}⋅Im  are the operators which 

respectively return the real and imaginary part of the 
respective arguments. 
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Notice that this approach turns phase-sensitive the 
hidden neurons input-output relationship while 
preserving the locality of the basis function. 

Notice also that { } { }222 ImRe kkk j σσσ +=  does not 

strictly imply a complex valued physical interpretation 

for the variance of the kth  complex valued center kϕ .  

{ }2Re kσ  is just a quadratic measure for the reach 

radius of the basis function { }kϕRe . Likewise, same 

interpretation apply to { }2Im kσ  with respect to 

{ }kϕIm . 

2. THE PTRBFNN LEARNING ALGORITHM 
Let ( )nu  be the channel regressor at the instant 

n , and let ( )nd  be the desired complex value at the 

PTRBFNN output  ( )ny .  In the context of channel 

equalization, ( )nd  is the original transmitted IQ 

symbol training sequence whose values are stored in a 
look up table at the receiver as reference data for the 
learning process.  Actually, as we shall see further, the 
reference IQ symbol training sequence for the RBFNN 
learning process is based on a blind concurrent 
algorithm. For now, lets just assume ( )nd  is known at 

the receiver. 

In this work we adopt a gradient based learning 
process. It consists of , for each received IQ symbol at 
the instant n , to adjust by means of the Delta Rule [8] 

the PTRBFNN free parameters kΨ , 2
kσ  and W , 

1,,1,0 −= Kk L , so that after a sufficient number 

of received IQ symbols the distance between ( )ny  

and ( )nd  is as close as possible to zero.  A quadratic 

measure of the distance between ( )ny  and ( )nd  is: 

( ) ( ) ( ) 2

2
1 nyndnJ −=  (4) 

Specifically, the learning process consists of to 
minimize the cost function given by (4) by adjusting 

the PTRBFNN free parameters ( )nW , ( )nkΨ  and 

( )nk
2σ   at  each instant n [8].  For any PTRBFNN 

free parameter ℘, the Delta Rule adjusts ℘ 

according to: 

( ) ( )nJnn ∇−℘=+℘ η)(1  (5) 

where η  is the learning rate or adaptation step 

[7][8] and J∇  is the gradient of the cost function J  
with respect to the parameter ℘: 

( ) ( )
( )n
nJnJ

∂℘
∂=∇  (6) 

Let  pW  be the thp component of vector  

[ ]TKWWWW 110 −= L .  pW  is one of the 

PTRBFNN free parameters which is adjusted by (5), 
so that 

( ) ( ) ( )nJnWnW W
pWpp ∇−=+ η1  (7) 

where Wη  is the adaptation step and 

{ } { }ppp

W
p W

Jj
W
J

W
JJ

ImRe ∂
∂+

∂
∂=

∂
∂=∇  (8) 

For convenience, in the equations that follow we 
drop n  from the notation, unless its presence is 
strictly necessary. From (2) and (4) the real and 
imaginary parts of (8) are obtained as 

{ } { }

{ }
{ } { } { } { }pp

p

K

k
kk

pp

ee

W

Wd

W
yd

W
J

ϕϕ

ϕ

ImImReRe

Re2
1

Re2
1

Re
21

0

2

−−

=
∂

−∂

=
∂

−∂
=

∂
∂

∑
−

=  

(9) 

{ } { }

{ }
{ } { } { } { }pp

p

K

k
kk

pp

ee

W

Wd

W
yd

W
J

ϕϕ

ϕ

ImReReIm

Im2
1

Im2
1

Im
21

0

2

+−

=
∂

−∂

=
∂

−∂
=

∂
∂

∑
−

=  

(10) 

where yde −=  is the learning process 

instantaneous error. 

From (9), (10), (8), (7) and in vector 
representation: 
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( ) ( ) ( ) ( )nnenWnW W
*1 ϕη+=+  (11)

where {}∗⋅ denotes the complex conjugate operator. 

Likewise, let pqΨ  be the thq  component of the 

thp  center vector 

[ ]TpLpqppp 110 −ΨΨΨΨ=Ψ LL , 

1,,1,0 −⋅⋅⋅= Lq  and 1,,1,0 −⋅⋅⋅= Kp .  pqΨ  is 

also a PTRBFNN free parameter which is adjusted by 
(5), so that 

( ) ( ) ( )nJnn pqpqpq
Ψ

Ψ∇−Ψ=+Ψ η1  (12) 

where Ψη  is the adaptation step and 

{ } { }pqpqpq
pq

JjJJJ
Ψ∂

∂+
Ψ∂

∂=
Ψ∂
∂=∇ Ψ

ImRe
 (13)

From (2) and (4) the real and imaginary parts of 
(13) are obtained as 

{ } { } { }

{ } { } { }
{ } { } { } { } { }[ ]eWeW

u

Wd
ydJ

pp
p

p

p

pq

K

i
ii

pqpq

ImImReRe
Re

ReRe
Re2

Re2
1

Re2
1

Re

2

21

0
2

][
+

Ψ−
−

=
Ψ∂

−∂
=

Ψ∂
−∂

=
Ψ∂

∂ ∑
−

=

σ
ϕ

ϕ  
(14)

{ } { } { }

{ } { } { }
{ } { } { } { } { }[ ]eWeW

u

Wd
ydJ

pp
p

p

p

pq

K

i
ii

pqpq

ReImImRe
Im

ImIm
Im2

Im2
1

Im2
1

Im

2

21

0
2

][
−

Ψ−
−

=
Ψ∂

−∂
=

Ψ∂
−∂

=
Ψ∂

∂ ∑
−

=

σ
ϕ

ϕ  
(15)

From (14), (15), (13), (12) and in vector 
representation: 

( ) ( )

( ){ } ( ){ } ( ){ }
{ }

( ) ( ) ( )[ ]

( ){ } ( ){ } ( ){ }
( ){ }

( ) ( ) ( ) ( )[ ] ⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−

⋅
Ψ−

−+

⋅
Ψ−

⋅+Ψ=+Ψ

∗∗

∗∗

Ψ

nenWnenW

n

nnu
n

nenWnenW

n

nnu
n

nn

pp

p

p
p

pp

p

p
p

pp

2

2

Im

ImIm
Im

)(

)(Re

ReRe
Re

1
][

][

σ
ϕ

σ
ϕ

η

 
(16)

The last PTRBFNN free parameter which is 

adjusted by (5) is the thp  center variance 2
pσ . Thus, 

from (5), 

( ) ( ) ( )nJnn ppp
σ

σησσ ∇−=+ 22 1  (17)

where ση  is the adaptation step and 

{ } { }222 ImRe ppp
p

JjJJJ
σσσ

σ

∂
∂+

∂
∂=

∂
∂=∇  (18)

From (2) and (4) the real and imaginary parts of 
(18) are obtained as 

{ } { } { }
{ } { } { }

{ }( ) { } { } { } { }[ ]eWeWu

Wd
ydJ

pp

p

p
p

p

K

i
ii

pp

ImImReRe
Re

Re
 ReRe

Re2
1

Re2
1

Re

22

2

2

21

0
2

2

2

+Ψ−−

=
∂

−∂
=

∂
−∂

=
∂
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−

=

σ

ϕ
σ

ϕ

σσ

 
(19)

{ } { } { }
{ } { } { }

{ }( ) { } { } { } { }[ ]eWeWu

Wd
ydJ

pp

p

p
p

p

K

i
ii

pp

ReImImRe
Im

Im
 ImIm

Im2
1

Im2
1

Im

22

2

2

21

0
2

2

2

−Ψ−−

=
∂

−∂
=

∂
−∂

=
∂
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−

=

σ

ϕ
σ

ϕ

σσ

 
(20)

From (19), (20), (18) and (17): 

( ) ( )

( ){ } ( ){ } ( ){ }
( ){ }( )

( ){ } ( ){ } ( ){ } ( ){ }[ ]
( ){ } ( ){ } ( ){ }

( ){ }( )
( ){ } ( ){ } ( ){ } ( ){ }[ ] ⎪

⎪
⎪
⎪

⎭

⎪
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⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−

⋅Ψ−
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⋅Ψ−

+=+

nenWnenW

n

n
nnuj

nenWnenW

n

n
nnu

nn

pp

p

p
p

pp

p

p
p

pp

ReImImRe

Im

Im
 ImIm

ImImReRe

Re

Re
 ReRe
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22

2

22

2

22

σ

ϕ

σ

ϕ

ησσ σ

 
(21)

Summing up, the PTRBFNN gradient based 
learning process is given by equations (11), (16) and 

(21).  For all these equations, the instant error ( )ne  is 

a measure of the distance between the PTRBFNN 
output ( )ny  and the original transmitted IQ symbol 

( )nd  whose value we assume is stored in a look up 

table at the receiver as reference data for the learning 
process: 

( ) ( ) ( )nyndne −=  (22)

3. BLIND CHANNEL EQUALIZATION WITH THE 
PTRBFNN 

Since ( )nd  is an IQ symbol sequence which is 

periodically transmitted in order to perform the 
equalizer training, it occurs that some channel 
bandwidth is wasted for this purpose. 
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A possible approach to avoid the transmission of 
a training sequence is to adopt a blind channel 
deconvolution algorithm [9]. To this end, in this 
work, the training training sequence for the 
PTRBFNN  is obtained with basis on the blind 
concurrent algorithm proposed by De Castro et al. 
[10][14]. 

Specifically, the concurrent arquitecture is 
obtained by modifying the PTRBFNN output given by 
(2) to the form 

uVWuVWy TT
LK

k
kk ⋅+⋅=+= ∑∑

−

=

−

=

ϕϕ
1

0

1

0 l
ll  (23)

where lu  is the htl  complex valued element of 

the channel regressor u  and lV  is the htl  complex 

valued component of the vector 

[ ]TLVVVV 110 −= L which is adjusted via 

stochastic gradient algorithm in order to minimize the 
Godard Cost Function [13] given by 

( ) ( )( )
⎭⎬
⎫

⎩⎨
⎧ −=

22

4
1 γnynJG  (24)

with γ  being a dispersion constant defined as 

{ }
{ }2

4

 
 
AE
AE

=γ  (25)

where {}⋅E  is the expectation operator and A  

is the digital modulation IQ symbol set, also 
known as modulation alphabet [6]. For instance, 
for a 16-QAM modulation with a unit variance 
alphabet, the resulting dispersion constant from 
(25) is 32.1=γ . Notice that the Godard Cost 

Function given by (24) is phase invariant, 

therefore the gradient based update of vector V  is 

insensitive to the IQ symbol sequence phase 
information. 

Notice also from (23) that, for a given input 

channel regressor u , the data flow goes through two 

paths: path I  is the PTRBFNN and path II is the FIR 
filter whose coefficients are given by the components 

of vector V . The two paths add together to produce 

the equalizer output y , thus, defining the concurrent 

architecture. 

From (5), in order to minimize (24) with respect  

V , and in vector representation [13]: 

( ) ( ) ( )nJnVnV GW ∇−=+ η1  (26)

 

where Vη  is the adaptation step. From (23), (24) 

and (26) we have: 

( ) ( ) ( ) ( )( ) ( )nunynynVnV V
∗−+=+ 21 γη  

(27)

 

Similarly to the non-blind case, the PTRBFNN 
learning process consists of to minimize the cost 
function given by (4) by adjusting the PTRBFNN free 

parameters W , kΨ  and 2
kσ  according to (5), with 

1,,1,0 −= Kk L .  Following the same derivation in 

[10], the PTRBFNN blind learning process can be 
described by: 

( ) ( ) ( )( ) ( ) ( )nnenDnWnW bW
*11 ϕη −+=+  (28)
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σ
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(30)

 

where 

( ) ( ){ } ( ){ }
( ){ } ( ){ }⎩

⎨
⎧

≠
=

=
nyQnyQ
nyQnyQ

nD ~ if1

~ if0
 (31)

being ( )ny~  the value of output y  after the update 

of vector V  by means of (27): 
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( ) ( ) ( ) ( ) ( )nunVnnWny TT ⋅++⋅= 1~ ϕ  (32)

and 

( ) ( ){ } ( )nynyQneb −=  (33)

being {}⋅Q  the operator which returns the 

reference constellation IQ symbol ms  with the 

smallest Euclidean distance to the argument: 

{} {}

1,,1,0

minarg 2

−⋅⋅⋅=
∈

−⋅=⋅

Mm
As

sQ

m

msm

 
(34)

where M is the cardinality of the IQ symbol set A . 

Notice that with this approach no training sequence 
is necessary for the PTRBFNN learning process. 

4. SIMULATION RESULTS 
In this section we evaluate the PTRBFNN 

performance in comparison with the classical complex 
valued RBFNN whose basis function is given by (1). 
We adopt a 16-QAM digital modulation with a unit 
variance alphabet A  for the transmitted IQ symbol 
sequence ( )ns , thus 16=M [6].  The samples of 

source sequence ( )ns  are randomly drawn from 

alphabet A  such that ( )ns  is statistically independent 

with uniform distribution. 

In order to reduce the noise enhancement we 
use a fractionally-spaced equalizer [6][11], i.e., the 

channel regressor u  stores 2T –spaced IQ 

samples from the communication channel.  Aiming 
to evaluate the PTRBFNN performance in a 
realistic situation, we adopt the channel models 
available in the Signal Processing Information 
Base (SPIB) [12] at http://spib.rice.edu/. The SPIB 
microwave channel models are available at 
http://spib.rice.edu/spib/microwave.html. These 
models are the impulse response of several 
practical microwave channels obtained from field 
measurements using a high fractionally-spaced 
sampling rate (tens of megabauds per second). 
This allows the database user to decimate the 
impulse response sequence according to the 
particular requirements of the study, without 
losing significant information. The great majority 
of works on the subject of channel equalization 
seldom use more than some tens of samples for the 

channel model. In this work we will decimate the 
original SPIB microwave channel impulse response to 

a channel length 16=CL . In order to not alter the 

channel root locus we use frequency domain 
decimation. 

One of the channel models available from SPIB 
is the microwave channel M7, whose impulse 
response is shown in Figure 2. This channel rotates 
the received IQ symbol constellation when 
deconvolved via CMA equalizer [13], which is 
recognized as one of the most widely used 
algorithms in blind channel equalization practice. 
Thus this channel model can be used as a 
benchmark for the PTRBFNN performance 
determination with respect to the phase 
sensitiveness. 

 

(a) Magnitude 

 

(b) Phase [°] 

 

Figure 2:  SPIB channel M7 impulse response. 
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Besides the multipath effects represented by the 
channel impulse response in Figure 2, we assume an 
additive white Gaussian noise with Signal to Noise 
Ratio (SNR) of 35dB at the receiver input.  The non-
linear transmittance of the receiver RF front-end when 
operating near the upper limit of its dynamic range is 
also taken  into account  – we introduce 5% of  2nd 
and 3rd order harmonic distortion so that the received 

sequence ( )nr  is submitted to the non-linear relationship 

( ) ( ) ( ) ( )nrnrnrnro
3

3
2

2 αα ++= , 05.032 == αα , 

where ( )nro  is the IQ sequence after the receiver RF 

front-end. 

The simulation conditions are such both equalizers 
– the PTRBFNN equalizer and the classical complex 
valued RBFNN equalizer – operate in the blind 
concurrent architecture dictated by (23). Both 
equalizers share the same architectural and training 
parameters: 16=L , 5=K , 3101 −×=Vη , 9.0=Wη , 

5.0=Ψη , 0.5=ση .  Both equalizers also share a 

common initialization procedure: 
( ) [ ]TjV 000000001000000000 +=

, 0)0( =W  and all the L  components of the thk  

center initial vector ( )0kΨ  are randomly  drawn from 

the 16-QAM alphabet A . 2
kσ  is initialized with half 

the maximum Euclidean distance between all vectors 
( )0kΨ  for the classical RBFNN. For the PTRBFNN, 

{ }2Re kσ  and { }2Im kσ   are initialized with half the 

maximum Euclidean distance between all respective 
vectors ( ){ }0Re kΨ  and ( ){ }0Im kΨ , with 

1,,1,0 −= Kk L . 

 
Figure 3: PTRBFNN equalizer output y after convergence. 

 
Figure 4: Classical complex valued RBFNN equalizer output 

y after convergence. 

 

Figures 3 and 4 respectively show the resulting 

digital modulation constellations for output y  of the 

PTRBFNN equalizer and  for the output y  of the 
classical complex valued RBFNN equalizer, after the 
equalizer convergence and for the previously given 
simulation conditions. Convergence is considered to 
be achieved when the output mean square error 

( ){ }neEMSE 2=  has decreased to a small enough 

value 076.0<MSE [10]. In these figures, the 
characters ‘+’ represent the source reference alphabet 
IQ symbols.  Notice that the rotation of the symbols in 
Figure 4 with respect to the reference constellation 
stems from the fact that the RBFNN is not able to 
solve SPIB channel M7 phase distortion. Comparing 
Figures 3 and 4  its clear that both the RBFNN and the 
PTRBFNN  were able to reduce the output samples 
dispersion, the difference being that the RBFNN 
output is rotated with respect to the reference 
constellation. This difference in terms of rotation 
evidences the influence of the phase transmittance on 
the PTRBFNN learning process, which effectively 
takes into account the channel phase rotation. 

Figure 5 shows the convergence rate ( )nMSE  for 

both equalizers. Notice that the RBFNN equalizer 
minimizes the channel dispersion, but it is not able to 
achieve a low steady-state MSE  due to the phase 
rotation of its output y . On the other hand, the 

PTRBFNN not only minimizes the channel dispersion 
but also corrects the channel phase rotation  after 

approximately 5104.1 ×  IQ symbols are received 
from the channel. 
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Figure 5: ( )nMSE  for the PTRBFNN equalizer (black curve) and 
the classical complex valued RBFNN equalizer (gray curve). 

5. CONCLUSION 
The proposed complex valued radial basis function 

(RBF) neural network with phase transmittance 
(PTRBFNN) outperforms the classical complex 
valued RBF neural network (RBFNN) for those 
channels which impose drastic phase rotation to the 
received symbol sequence. The PTRBFNN not only 
presents a higher convergence rate than the RBFNN 
but also exhibits a lower steady state MSE , thus 
minimizing the phase invariance problem inherent to 
the RBFNN hidden-layer when applied to blind 
channel equalization. This is an important PTRBFNN 
feature, since adaptive joint equalization and carrier 
phase recovery is desirable for wireless mobile 
operation. 

Although we have applied the new PTRBFNN to 
solve a specific blind channel equalization problem, its 
usefulness extends to any situation for which the 
forward transmittance of the hidden layer neurons 
must include phase information, such as is the case for 
spectral analysis in signal processing or near-field 
analysis in electromagnetics. 
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