
 
 

Domain Engineering to Ensure 
Flexibility on Interaction Laws of 

Multi-Agent Systems 
 

Gustavo R. Carvalho1, Rodrigo B. Paes1, Carlos J.P.Lucena1& Ricardo Choren2 
 

1 Computer Science Department, PUC-Rio 
R. M de S. Vicente, 225, Rio de Janeiro/RJ, 22453-900 - Brazil 

{guga—rbp—lucena}@inf.puc-rio.br 
 

2 Computer Engineering Department, IME 
Pça Gen Tibúrcio, 80, Rio de Janeiro/RJ, 22290-270 - Brazil 

{choren}@ime.eb.br 
 
 
 
 

Abstract 
 

Law enforcement approaches have been 
proposed to promote dependability in open multi-agent 
systems. Interaction laws are defined and then enforced 
to promote predictability. As new software demands and 
requirements appear, the system and its interaction laws 
must evolve to support those changes. The purpose of 
domain engineering is to produce a set of reusable 
assets for a family of systems, which are then used to 
build concrete members of the family. Flexibility is the 
ease with which a system or component can be modified 
for use in applications other than those for which it was 
originally designed. In this paper, we discuss how the 
MLaw infrastructure was designed to support 
interaction law evolution providing support to produce a 
set of reusable laws for a family of systems. As an 
example, we have implemented two customizable 
applications in the area of electronic negotiation 
expressed as an open system environment. 

 
Keywords: Open multi-agent systems, maintainability, reuse, 
law enforcement, interaction protocol. 

1. INTRODUCTION 

Usually, distributed software agents are 
independently implemented, i.e., the development is 
done without a centralized control [8]. Nevertheless, 
every agent developer should have a priori access to 
the open multi-agent systems (MAS) specification. 
Open MAS agents are autonomous, i.e. they may 
behave unpredictably, which can lead the system to 
an undesirable state [1]. Thus the specification of 
open MAS should include protocol descriptions and 
interaction laws that define what and when something 
can happen in an open system [17, 18]. Laws are 
restrictions imposed by the environment to tame 
uncertainty and to promote open system dependability 
[13, 14]. A governance mechanism is the mediator 
that enforces the law specification. Examples of 
governance mechanisms are LGI [13], Islander [7] 
and MLaw [15]. 

Sometimes, the interaction laws that define the 
relationships between agents are not always fully 
understood early in the open MAS life cycle. 
Moreover, many more interaction laws are not applied 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 8 

because of a lack of system support for changing 
interaction laws (i.e. extensibility) or because the 
interaction laws are exceptionally complex. One of 
the most important attributes of system dependability 
consists of the ability to undergo repairs and 
modifications, i.e., maintainability. In this paper, 
software maintainability is defined as the ease of 
extending software to fulfill specific domain 
requirements, and we focus on design time support 
for interaction law maintainability for open MAS. 

Thus open MAS specification should also be 
developed to facilitate extensions and law-governed 
approaches should also present a solution to this 
issue. As open MAS must be customized according to 
different purposes and peculiarities, extensions over 
agent interactions can be expressed.  

In this paper, we introduce a design support to 
facilitate the changes of laws in MLaw [15]. During 
the interpretation of laws, the description is mapped 
to an execution model in two steps; the first step 
provides the abstract execution model, with some 
hooks that will be fulfilled with law extensions. We 
also present how we enhanced the XMLaw 
description language with some refinement operators 
[3] to specify extensible laws. These refinement 
operators are used to map extensible (customizable) 
law specifications to the MLaw governance 
mechanism monitor thus providing the means for 
seamless law maintainability for open MAS. The 
main contribution of this paper is to illustrate how the 
refinement operators are mapped to MLaw structure. 

This paper is organized as follows. Section 2 
details the law-governed approach, its architecture 
(MLaw) and some elements of the XMLaw 
description language [14]. In Section 3, we discuss 
variations in open MAS interactions and we describe 
how we included refinement operators in XMLaw. 
We also discuss the design of MLaw that was 
proposed to facilitate law extensions. Section 4 
details an experiment based on a real world 
application. Section 5 shows a sample application 
with some scenarios that include extension points 
identified in a negotiation application and we show 
how XMLaw can be used to support extensibility in a 
compliance mechanism. Related work is described in 
Section 6. Finally, we evaluate this approach and 
describe some future work and our conclusions in 
Section 7. 

2. GOVERNING INTERACTIONS IN OPEN 

MAS  WITH XMLAW 

Law-governed architectures are designed to 

guarantee that the specifications of open systems will 
be obeyed. The core of a law-governed approach is 
the mechanism used by the mediators to monitor the 
conversations between components. We have 
developed MLaw [15], an architecture that provides a 
communication component, or mediator, for 
enforcing interaction laws. MLaw was designed to 
allow extensibility in order to fulfill open system 
requirements or interoperability concerns. 

MLaw was built to support law specification using 
XMLaw [14]. XMLaw is used to represent the 
interaction rules of an open system specification. 
These rules are interpreted by the MLaw mediator 
that, at runtime, analyzes the compliance of agents 
with interaction laws specifications. A law 
specification is a description of law elements which 
are interrelated in a way that it is possible to specify 
interaction protocols using time restrictions, norms, 
or even time sensitive norms. XMLaw follows an 
event-driven approach, i.e., law elements 
communicate by the exchange of events. 

The XMLaw conceptual model (Figure 1) uses the 
abstraction of Scenes to help to organize interactions. 
The idea of scenes is similar to theater plays, where 
actors play according to well defined scripts, and the 
whole play is composed of many scenes sequentially 
connected. Scenes are composed of Protocols, 
Constraints, Clocks, and Norms. It means that these 
four elements share a common interaction context 
through the scenes. Since protocols define the 
interaction among the agents, different protocols 
should be specified in different scenes. 

Statically, an interaction protocol defines the set 
of states and transitions (activated by messages or any 
other kind of event) allowed for agents in an open 
system. Norms are jointly used with the protocol 
specification, constraints, actions and also temporal 
elements, to provide a dynamic configuration for the 
allowed behavior of agents in an open system. The 
mediator keeps information about all data regarding 
system execution such as the set of activated and 
deactivated enforcement elements. 

It is important to make a distinction between law 
and interaction law. For people in the AI & Law 
community, a protocol is a very poor description of a 
law, as it looses all the deontic notions. Here, 
interaction laws are actually modeled as the desired 
behavior which agents should follow. 

Laws may be time sensitive, e.g., although an 
element may be active at time t1, it may not at time t2 
(t1 < t2). XMLaw provides the Clock element to take 
care of the timing aspect. Clocks, used to indicate that 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 9 

a certain period has elapsed, are activated and 
deactivated by law elements and, once active, they 
produce clock-tick events. In other words, a clock 

represents time restrictions or controls and they can 
be used to activate other law elements. 

 

 
 

Figure 1: XMLaw conceptual metamodel 

 
. 

2.1. NORMS 

A Norm is an element used to enable or disable 
agents’ conversation paths. For instance, a norm can 
forbid an agent to interact in a negotiation scene. There 
are three types of norms with different semantics in 
XMLaw: obligations, permissions and prohibitions. The 
obligation norm defines a commitment that software 
agents acquire while interacting with other entities. For 
instance, the winner of an auction is obligated to pay the 
committed value and this commitment might contain 
some penalties to avoid breaking this rule. The 
permission norm defines the rights of a software agent at 
a given moment, e.g. the winner of an auction has 
permission to interact with a bank provider through a 
payment protocol. Finally, the prohibition norm defines 
forbidden actions of a software agent at a given moment; 
for instance, if an agent does not pay its debts, it will not 
be allowed future participation in a scene. 

The structure of the Permission (Code 1), Obligation 
and Prohibition elements are equal. Each type of norm 
contains activation and deactivation conditions. In Code 
1, an assembler will receive the permission upon logging 
in to the scene (scene creation event) and will lose the 
permission after issuing an order (event 
orderTransition). Furthermore, norms define the agent 
role that owns it through the attribute Assignee. In Code 
1, the assembler agent will receive the permission. 
Norms also have constraints and actions associated with 
them, but these elements will be explained later. Norms 
also generate activation and deactivation events. For 
instance, as a consequence of the relationship between 
norms and transitions, it is possible to specify which 
norms must be made active or deactivated for firing a 
transition. In this sense, a transition could only fire if the 
sender agent has a specific norm. 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 10 

 

 
Code 1: Permission structure 

 
2.2. CONSTRAINTS 

A constraint is a restriction over norms or transitions 
and, generally, it specifies filters for events, constraining 
the allowed values for a specific attribute of an event. For 
instance, messages carry information that is enforced in 
various ways. A message pattern enforces the message 
structure fields [14]. A message pattern does not describe 
what the allowed values for specific attributes are, but 
constraints can be used for this purpose. In this way, 
developers are free to build as complex constraints as 
needed for their applications. 

Constraints are defined inside the Transition (Code 2) 
or Norm (Code 1) elements. Constraints are implemented 
using Java code. The Constraint element defines the class 
attribute that indicates the Java class that implements the 
filter. This class is called when a transition or a norm is 
supposed to fire, and basically the constraint analyzes if 
the message values or any other events’ attributes are 
valid. Code 2 shows a constraint that verifies if the date 
expressed in a message is valid; if it is not, the message 
will be blocked. In Code 1, a constraint is used to verify 
the number of messages that the agent has sent until now; 
if it has been exceeded, the permission is no longer valid. 

 

  
Code 2: A Constraint in a Transition tag. 

 

2.3. ACTIONS 

An action is a domain-specific Java code that runs 
integrated with XMLaw specifications. Actions can be 
used to plug services in the mediator. For instance, the 
mediator can call a debit service from a bank agent to 
automatically charge the purchase of an item during a 
negotiation. In XMLaw, an action can be defined in 
three different scopes: Organization, Scene and Norms. 

Since actions are also XMLaw elements, they can be 
activated by any event such as transition activation, 
norm activation and even action activation. The action 
structure is showed in the example of Code 1 (in this 
example, a norm action). The class attribute of an Action 
specifies the Java class in charge of the functionality 
implementation. The Element tag references the events 
that activate this action, and as many Element tags as 
needed can be defined to trigger an action. 

A constraint is a restriction over norms or transitions 

and, generally, it specifies filters for events, constraining 
the allowed values for a specific attribute of an event. 
For instance, messages carry information that is 
enforced in various ways. A message pattern enforces 
the message structure fields [14]. A message pattern 
does not describe what the allowed values for specific 
attributes are, but constraints can be used for this 
purpose. In this way, developers are free to build as 
complex constraints as needed for their applications. 

3. REFINEMENT OPERATORS TO SPECIFY 

 LAWS IN OPEN MAS 

Interaction laws in open MAS should be specified and 
developed to facilitate maintainability and evolution. 
Thus, it is necessary to specify which law elements can be 
customized and so defined as extension points.  

We propose to define extension points as a means of 
representing knowledge about the place where 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 11 

modifications and enhancements in laws can be made. In our 
context, it is useful to permit the inclusion of norms, 
constraints, actions or any other law elements into a pre-
defined law specification. Even with extension points, the 
semi-complete law element specification can be referenced 
by other law elements. The subsections below explain how 

the interaction specification with extension points can be 
better prepared for further refinements. We explain how the 
abstract and extends operators in XMLaw specification are 
implemented in MLaw. Further, we detail the design to 
support the implementation of this feature. We also describe 
the impact of this feature in the mediator lifecycle. 

3.1. THE ABSTRACT OPERATOR 

The clear documentation of an extension point is very 
important. At implementation level, the refinement operators 
must help the designer to find out where the semi-complete 
specifications are. The abstract operator defines when a law 
element is not completely implemented. For instance, it can 
be used to defer the definition of the implementation of 
actions and constraints classes and also to extend the 
definition of other law elements. 

The abstract operator is used to indicate in XMLaw code 
when we have “hooks” or even when the existing laws must 
be better defined to be used. If no value is determined, the 
element is a concrete one (default abstract=”false”). If the 
designer wants to specify that a law element needs some 
refinements to be used, he has to explicitly specify the 
attribute abstract with the value true (abstract=”true”). An 
example of extension is given in the specification of the 
relationship between orders and offers in a negotiation 
protocol. Suppose the following scenario based on [6]: 
agents confirm supplier offers by issuing orders. 
Subsequently, an assembler obtains a commitment from a 
supplier, and this commitment is expressed as an obligation. 
It is expected that suppliers receive a payment for their 
components. This requirement specifies the structure of the 
ObligationToPay obligation (Code 4), defining that it will be 
activated by an order message and that it will be deactivated 
with the delivery of the components and also with the 
payment. A supplier will only deliver the product if the 
assembler has the obligation to pay for it (Code 3). 

3.2. THE EXTENDS OPERATOR 

As laws can be defined as abstract, with some elements 
to be further detailed, at implementation time we still need 
instruments to describe the modifications to turn laws 
concrete. The extends operator changes an abstract element 
into a concrete one and it cannot leave any element 
unspecified. This operator is similar to the specialization 
operation in object-oriented languages (e.g. extends in Java). 
Basically, the extends operator reuses the description of law 
elements and includes any modifications that are necessary 
to customize the law element to users’ needs, including the 
redefinition of law elements. For example, this operator can 
include new activation references, new action elements, and 
new norm elements and can also superpose any element that 
was previously specified. 

It is also possible to use the extends operator to extend a 
non abstract description. When the extends operator is used 
you should instantiate all abstract slots, that is, you cannot 
leave any element unspecified. An example of the extends 
operator usage is given in the specification of a down 
payment in a negotiation protocol. According to the depicted 
scenario [6], suppliers wishing to protect themselves from 
defaults will bill agents immediately for a portion down of 
the cost of each order placed. This down payment is 
implemented by the action SupplierPayment (Code 5). 
Notice that we have added a definition regarding the 
existence of an action in the context of the obligation 
definition. 

 

 
Code 3: ObligationToPay usage 

 

 
Code 4: The ObligationToPay specification 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 12 

 

 
Code 5: ObligationToPay extension

3.3. IMPACTS ON THE MLAW MEDIATOR 

Since MLaw works based on XMLaw 
specification, its lifecycle will be directly impacted 
by evolution scenarios or even inconsistencies 
proposed during the interpretation process. The 
adapted MLaw lifecycle to support static law 
evolution is composed of five states (Figure 2): idle; 
interpreting; extending; inconsistent; and running. 

The IDLE state is the initial state and it means that 
the mediator has not started yet. To evolve from the 
IDLE state to the INTERPRETING state, it is 
necessary to provide the first set of law elements to 
be used by the mediator. The INTERPRETING is the 

state in which the mediator interprets the law 
definition and maps it to the descriptor model. In the 
RUNNING state the mediator enforces messages and 
it is open for services. The INCONSISTENT state is 
achieved after an attempt to evolve the law with a 
new element that is inconsistent with the previous 
specification (e.g. has reference to non-existent 
elements). The EXTENDING state is a transient state 
reached after the change request for evolution. After 
receiving and proceeding with the changes the 
mediator checks to see if there is any reference for 
non-existent elements, if so, the state changes to 
INCONSISTENT and if not, it changes to 
RUNNING. 

 

 
Figure 2: The MLaw mediator lifecycle. 

 

4. DESIGNING LAW EVOLUTION 

In this section, we introduce a design approach that 
may be used by a law enforcement mechanism to 
support law extension. The solution presented is not 
intended to describe a particular concrete design or 
implementation. Instead, the solution provides how a 
general arrangement of classes and objects solves it. We 
depict the class diagram that contains the interfaces that 
must be implemented by solutions that support this 
approach. It is based on the Observer Pattern [9]. 

During configuration time, an XMLaw 
specification is interpreted to verify if it is well-
formed. The interpreter also maps the law 
specification to an execution model that will be used 

at runtime. With the proposal of refinement operators, 
this process occurs in two steps. First, the basic law is 
verified and the structure of the execution model is 
created. Second, the extensions are interpreted and 
any extension point that was left unspecified is 
refined. These two steps permit the verification of 
some construction rules. For example, if a law is 
defined as concrete, it cannot leave any element to be 
further refined. All elements must be fully 
implemented; otherwise, the interpreter will indicate 
an error. 

The class diagram (Figure 3) is composed of five 
classes. The EvolutionManager class acts as a Facade 
for evolution operations. It contains the methods add(), 
change(), update(), and remove(). It can be used for 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 13 

runtime law evolution [4] and design time law evolution 
[3]. We have applied this design in both scenarios. For 
our context, we will explain the method update(), which 
deals with evolution in design time. The Descriptor class 
represents the object model of the elements of the 
XMLaw conceptual model. For example, the scene 

element in XMLaw is represented by the 
SceneDescriptor class. Its main responsibility is to keep 
all the information regarding the element and to create 
execution instances of its descriptor through the 
createExecution() method. 

 

 
Figure 3: Law evolution design support. 

 

An object that implements the Execution interface is 
an instance of an element represented by a Descriptor 
object. For example, a scene may be instantiated many 
times and even various scenes may be running at the same 
time (various auctions running in parallel, for instance). 
Each instance (Execution) has to keep its instance 
attributes and control its lifecycle. The Execution 
interface defines all the callback operations needed by the 
ExecutionManager to control instances. The 
ExecutionManager manages all the execution instances 
controlling the life cycle. Finally, DescriptorManager is in 
charge of keeping control over all the descriptors being 
used by the law specification as well as all the cross-
references among those descriptors. 

In the context of the implementation of refinement 

operators, we only need to change the law descriptors 
because there is no execution element instantiated. In this 
sense, we need only to understand how the 
EvolutionManager updates one law descriptor. Those five 
classes interacts to provide the main update() operation. 
First of all, when we extend one law element we expect 
that it exists before the change. If there is no element in 
the DescriptorManager context, an exception is thrown. If 
it exists, its definition instance is returned to be update. 
During this update, the EvolutionManager verifies if all 
the elements referenced by the new element really exists, 
if so, the EvolutionManager updates the instance of the 
Descriptor, which represents the new element. Finally, if 
it was abstract, it is turned to concrete during this process. 
From this moment, it is possible to create instances 
(Execution instances) of the new updated element. 

5. CASE STUDY: THE SELIC APPLICATION 

 (NEGOTIATION SCENARIO) 

The Central Bank of Brazil (CCB) regulates and 
supervises the national financial system. This experiment is 
running based on the SELIC system requirements [5]. 
SELIC is the central depository of securities issued by the 

CCB. It also settles transactions with these securities. 
Investment banks, savings banks, dealers and many other 
institutions that integrate the financial system participate in 
SELIC as holders of custody accounts. In December 2004, 
the system was composed of 4,900 participants (or agents). 
SELIC system is clearly a system that has a central entity 
(CCB) that mediates and controls the interaction among the 
other entities. 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 14 

We have, then, specified the laws that the institutions 
must follow using XMLaw, and we have used MLaw as a 
mediator that control the interactions. We have 
implemented a prototype of a subset of the actual SELIC 
system for doing this experiment. The experiment was 
performed with 10 agents representing different financial 
institutions and 1 mediator agent (the MLaw). 

The purpose of this case study was to understand how 
we could design interaction laws that could be reused in 
different contexts. We chose the domain of negotiation and 

we proposed an abstract law called NegotiationScene 
(Code 6) that will be customized for two different auction 
contexts called OFPUB and LEINF. The general flow of 
messages (Figure 4) includes an announcement message to 
signal that the auction is open to the financial institutions 
(FI) to send their proposals. Proposals with errors are 
rejected by the system. The securities negotiation ends in a 
predetermined period after the beginning of the negotiation. 
At the end, the system publishes the negotiation results. 
Code 6 depicts the code for this scene. 

 

 
Code 6: Abstract Negotiation Scene implementation 

 

 

timeout
closingwaiting closed

announce
closingAuctionopen

 
 

Figure 4: Negotiation Scene Interaction Protocol. 

 

The negotiation protocol is defined as abstract. The 
expected messages were not specified in the negotiation 
process: this will be done at instantiation time. Every 
message sent by a FI must be checked by a constraint 
that implements some validation rules according to the 
specific auction requirements. An error handling policy 
is implemented to avoid that incorrect messages are 

propagated throughout the negotiation. This policy is 
implemented by the action ERR that sends an error 
notification to the sender. Some actions are defined as 
abstract to be implemented in the instance. There is also 
a clock element that controls the time limit of the 
negotiation. The actual period of negotiation will be 
determined at instantiation time. 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 15 

OFPUB and LEINF are specializations of 
Negotiation Scene. The first instance is called OFPUB 
(Code 7, Figure 5). This auction is used to promote the 
sell of bonds by National Treasury to FIs. This auction is 
an instance of negotiationScene. Every day, the system 
configures (CONFIG action) and communicates to 
participants (CFP) that the auction scenario is open to 
the financial institutions to send their proposals 
(PROPOSAL). Proposals with errors are rejected by the 
system. The message PROPOSAL was defined and its 
associated restriction (checkProposal) was implemented 

as Java component to fulfill the business rules of the 
OFPUB auction scenario. This restriction would fire the 
action ERRORFPUB that will notify the message’s 
sender of any problem with its message. The actions 
CONFIG, OFPUB_CFP and OFPUB_RESULT are 
responsible for the active behavior of SELIC and were 
implemented as Java components. The clock 
timeoutOFPUB indicates the end of the negotiation and 
was configured to fire a clock tick after four hours 
(864000ms). 

 

timeoutOFPUB
RESULTwaiting closed

OFPUB_CFP
closingAuctionopen

PROPOSAL
CONFIG

 

 
Figure 5: OFPUB extends Negotiation Protocol 

 

 
Code 7: OFPUB Scene extends NegotiationScene 

 

The second instance is called LEINF (Code 8, 
Figure 6). This auction is used to promote the 
exchange of securities in an open market. This auction 
is an instance of negotiationScene. Every day, the 
system communicates (LEINF_CFP) that the auction 

scenario is open for the FIs to send their BUY and SELL 
proposals. Proposals with errors are rejected by the 
system. The messages BUY and SELL were defined and 
their associated restrictions (checkBUY and checkSELL) 
were implemented as Java components to fulfill the 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 16 

business rules of the LEINF auction scenario. Those 
restrictions would trigger the action ERRORLEINF 
that will notify the message’s sender of any problem 
with its message. The actions LEINF_CFP and 
LEINF_RESULT are responsible for the active 
behavior of SELIC and were implemented as Java 
components. The clock timeoutLEINF indicates the 
end of the negotiation and was configured to fire a 
clock tick after six hours (1296000ms), 

This case study illustrated the application of 
refinement operators in a real-world negotiation scenario 
of SELIC, and two scenes (OFPUB and LEINF) were 
specialized by the same basic scene. In this example, it 
was possible to design a more general law that was 
customized into two different contexts. Refinement 
operators have simplified and reused the design and the 
implementation of those law elements. 

 

timeoutLEINF

LEINF_RESULTwaiting closed
LEINF_CFP

closingAuctionopen

SELL
BUY

 

 
Figure 6: LEINF Protocol extends NegotiationScene 

 

 
 

Code 8:  LEINF Scene extends NegotiationSc 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 17 

6. RELATED WORK 

Minsky [2, 15] proposes a coordination and control 
mechanism called law-governed interaction (LGI). It 
provides a language to specify laws and it is concerned 
with architectural decisions to achieve a high degree of 
robustness. In contrast, XMLaw provides an explicit 
conceptual model and focuses on different concepts such 
as Norms and also interaction extensibility support. Ao 
and Minksy [2] propose an approach to enhance LGI 
with the concept of policy-hierarchy to support that 
different internal policies are formulated independently 
of each other, achieving flexibility support by this 
means. Different from our approach, Ao and Minsky 
consider confidentiality as a requirement for their 
solution. The goal of the extensions that we have 
presented until now is to support open system law 
maintenance instead of flexibility for confidentiality 
purposes. 

COSY [10] views a protocol as an aggregation of 
primitive protocols. Each primitive protocol can be 
represented by a tree where each node corresponds to a 
particular situation and transitions correspond to 
possible messages an agent can either receive or send, 
i.e., the various interaction alternatives. In AgenTalk 
[12], protocols inherit from one another. They are 
described as scripts containing the various steps of a 
possible sequence of interactions. Beliefs also are 
embedded into scripts. Koning and Huget [11] deal with 
the modeling of interaction protocols for multi-agent 
systems, outlining a component-based approach that 
improves flexibility, abstraction and protocol reuse. All 
of the approaches listed in this paragraph are useful 
instruments to promote reuse; they can be seen as 
instruments for specifying extendable laws. 

Singh [16] proposes a customizable governance service, 
based on skeletons. His approach formally introduces 
traditional scheduling ideas into an environment of 
autonomous agents without requiring unnecessary control 
over their actions, or detailed knowledge of their designs. 
Skeletons are equivalent to state-based machines and we 
could adapt and reuse their formal model focusing on the 
implementation of extensions. But [16] has its focus on 
building multi-agent systems instead of law monitoring and 
enforcement. 

7. CONCLUSIONS 

While analyzing the open software system domain, it 
is possible to design part of the open system evolution. 
If a desired characteristic of a system is long-term 
stability, then the challenge for developers is to deliver a 
product that identifies the general aspects of the open 
MAS that will not change.  

We are addressing the problem of constructing 
governance mechanisms that ensure that agents will 
conform to a well defined customizable specification. 
Our main goal is to contribute on the engineering level 
about how we can productively define and reuse laws. 
We have applied and adapted some object oriented 
concepts to improve law maintainability in XMLaw.  

XMLaw combines extensible interaction 
specification with Java components to instruct how 
governance mechanisms should enforce the expected 
behavior. We are also contributing with the study on 
how to engineer governance mechanisms development. 
With the refinement operators, we support the design of 
law elements for extension.  

We are aware of possible consistency problems 
when redefining or extending laws. We are dealing with 
this problem through the definition of a formal 
framework that enables us to check possible 
inconsistencies. However, a deeper discussion is beyond 
the scope of this paper. 

Acknowledgements. This work was partially funded 
by CNPq through the ESSMA Project (552068/2002-0) 
and through individual grants. The work was also 
supported by CAPES, in the CAPES/Cofecub 
International Cooperation Program, through the 
EMACA Project (0981-04-4). 

REFERENCES 

[1] G. A. Agha Abstracting Interaction Patterns: A 
Programming Paradigm for Open Distributed 
Systems, In (Eds) E. Najm and J.-B. Stefani, 
Formal Methods for Open Object-based 
Distributed Systems IFIP Transactions, 
Chapman & Hall, 1997. 

[2] X. Ao, N. and Minsky. Flexible Regulation of 
Distributed Coalitions. In Proc. of the 8th 
European Symposium on Research in Computer 
Security (ESORICS), 2003. 

[3] G. Carvalho, C. Lucena, R. Paes, J.P. Briot. 
Refinement Operators to Facilitate the Reuse of 
Interaction Laws in Open Multi-Agent Systems, 
International Workshop on Software 
Engineering for Large-scale Multi-Agent 
Systems (SELMAS’06), 5th, at ICSE 2006, 
Shanghai, China. In: Proceedings of the Fifth 
International Workshop on Software 
Engineering for Large-scale Multi-agent 
Systems, pp. 75-82, 2006. 

[4] G. Carvalho et al; Dynamic Law Evolution in 
Governance Mechanisms for Open Multi-Agent 



Gustavo R. Carvalho, Rodrigo B. Paes,  Domain Engineering to Ensure Flexibility 
Carlos J.P.Lucena & Ricardo Choren on Interaction Laws of Multi-Agent Systems 
 

 18 

Systems. Workshop on Software Engineering for 
Agent-oriented Systems (SEAS 2006), 2nd, In: 
C.Lucena, et al (eds.) Proceedings of the II 
Workshop on Software Engineering for Agent-
oriented Systems (SEAS 2006), pp. 83-94, 
October 17th, 2006. 

[5] Case Study Requirements – SELIC application 
scenario - http://www.bcb.gov.br/?SELIC. Last 
Visit <Jan/12/2007>  

[6] J. Collins; R. Arunachala; N. Sadeh; J. Eriksson; 
N. Finne; S.Janson. The Supply Chain 
Management Game for the 2005 Trading Agent 
Competition. CMU-ISRI-04-139., 2005 
http://www.sics.se/tac/tac05scmspec_v157.pdf 

[7] M. Esteva Electronic institutions: from 
specification to development, Ph.D. thesis, 
Institut d’Investigació en Intelligència Artificial, 
Catalonia - Spain., 2003  

[8] M. Fredriksson et al. First international 
workshop on theory and practice of open 
computational systems. In Proceedings of 
twelfth international workshop on Enabling 
technologies: Infrastructure for collaborative 
enterprises (WETICE), Workshop on Theory 
and practice of open computational systems 
(TAPOCS), pp. 355 - 358, 2003 IEEE Press. 

[9] E. Gamma.;R. Johnson.; R. Helm; J. Vlissides.  
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995. 

[10] A. Haddadi. Communication and Cooperation in 
Agent Systems: A Pragmatic Theory, volume 
1056 of Lecture Notes in Computer Science. 
Springer Verlag., 1996. 

[11] J.L. Koning, and M.P. Huget. A component-
based approach for modeling interaction 
protocols. In H. Kangassalo and E. Kawaguchi, 
editors, 10th European-Japanese Conference on 
Information Modeling and Knowledge Bases, 
Frontiers in Artificial Intelligence and 
Applications. IOS Press, 2000. 

[12] K. Kuwabara; T. Ishida; and N.Osato. AgenTalk: 
Coordination protocol description for multiagent 
systems. In First International Conference on 
MultiAgent Systems (ICMAS-95), AAAI Press, 
1995. 

[13] N. H. Minsky; and V. Ungureanu. Law-governed 
interaction: a coordination and control 
mechanism for heterogeneous distributed 
systems, ACMTrans. Softw. Eng. Methodol. 9 
(3) 273–305, 2000. 

[14] R. B Paes; G. R Carvalho; C.J.P.Lucena; P. S. C. 
Alencar; H.O Almeida; V. T Silva. Specifying 
Laws in Open Multi-Agent Systems. In: Agents, 
Norms and Institutions for Regulated Multi-
agent Systems (ANIREM), AAMAS2005, 2005. 

[15] R. Paes.,G.  Carvalho, M. Gatti, C. Lucena, J.P. 
Briot, and R. Choren. Enhancing the 
Environment with a Law-Governed Service for 
Monitoring and Enforcing Behavior in Open 
Multi-Agent Systems, In: Weyns, D.; Parunak, 
H.V.D.; Michel, F. (eds.): Environments for 
Multi-Agent Systems, Lecture Notes in Artificial 
Intelligence, vol. 4389. Berlim: Springer-Verlag, 
2007, p. 221–238. 

[16] M. P. Singh. A Customizable Coordination 
Service for Autonomous Agents," Intelligent 
Agents IV: Agent Theories, Architectures, and 
Languages, Munindar P. Singh et al. ed., 
Springer, Berlin, pp. 93-106, 1998. 

[17] M Wooldridge; G. Weiss; P. Ciancarini. (Eds.) 
Agent-Oriented Software Engineering II,  
Second International Workshop, AOSE 2001, 
Montreal, Canada, May 29, 2001, Revised 
Papers and Invited Contributions, Vol. 2222 of 
Lecture Notes in Computer Science, Springer, 
2002. 

[18] F. Zambonelli, N. Jennings, M. Wooldridge. 
Developing multiagent systems: The gaia 
methodology, ACM Trans. Softw. Eng. 
Methodol. 12 (3) 317–370, 2003. 

 


