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Abstract

A sandwich problem for property Π asks whether there
exists a sandwich graph of a given pair of graphs which
has the desired property Π. Graph sandwich problems
were first defined in the context of Computational Biol-
ogy as natural generalizations of recognition problems.
We contribute to the study of the complexity of graph
sandwich problems by considering the Helly property and
complementary graph classes. We obtain a graph class
defined by a finite family of minimal forbidden subgraphs
for which the sandwich problem is NP -complete. A
graph is clique-Helly when its family of cliques satisfies
the Helly property. A graph is hereditary clique-Helly
when all of its induced subgraphs are clique-Helly. The
clique graph of a graph is the intersection graph of the
family of its cliques. The recognition problem for the class
of clique graphs was a long-standing open problem that
was recently solved. We show that the sandwich prob-
lems for the graph classes: clique, clique-Helly, heredi-
tary clique-Helly, and clique-Helly nonhereditary are all
NP -complete. We propose the study of the complexity of
sandwich problems for complementary graph classes as
a mean to further understand the sandwich problem as a
generalization of the recognition problem.

Keywords: Helly property, Clique graphs, Sandwich
problems, Computational difficulty of problems.

∗An extended abstract was presented at 7th International Colloquium on
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1. INTRODUCTION

We consider simple, finite, undirected graphs. Given
a graph G = (V,E), a complete set of G is a subset of
V inducing a complete subgraph. A clique is a max-
imal complete set. Let F be a family of subsets of a
set S. We say that F satisfies the Helly property when
every subfamily consisting of pairwise intersecting sub-
sets has a non-empty intersection. The Helly property has
an important role in Combinatorics and its computational
aspects [5]. A graph is clique-Helly when its family of
cliques satisfies the Helly property. A graph is heredi-
tary clique-Helly when all of its induced subgraphs are
clique-Helly. This graph class admits a finite family of
minimal forbidden subgraphs. A clique-Helly graph that
is not hereditary clique-Helly is called clique-Helly non-
hereditary. The clique graph of a graph is the intersection
graph of the family of its cliques. G is a clique graph if
there exists a graph H such that G is the clique graph of
H . The recognition problems for the classes of clique-
Helly graphs and of hereditary clique-Helly graphs are
known to be polynomial. The recognition problem for
the class of clique graphs was a long-standing open prob-
lem [3, 14, 16, 18] that was recently solved [1]. Clique
graphs have been much studied as intersection graphs,
and in the context of graph operators, and are included
in several books [3, 12, 15].

We consider the following generalization of recogni-
tion problems. We say that a graph G1 = (V, E1) is a
spanning subgraph of G2 = (V,E2) if E1 ⊆ E2; and that
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a graph G = (V, E) is a sandwich graph for the pair G1,
G2 if E1 ⊆ E ⊆ E2. We call E1 the forced edge set,
E2 \ E1 the optional edge set. The GRAPH SANDWICH
PROBLEM FOR PROPERTY Π is defined as follows [8]:

GRAPH SANDWICH PROBLEM FOR PROP-
ERTY Π

Instance: Vertex set V , forced edge set E1, op-
tional edge set E2 \ E1.

Question: Is there a graph G = (V, E) such that
E1 ⊆ E ⊆ E2 that satisfies property Π?

Graph sandwich problems were defined in the context
of Computational Biology and have attracted much atten-
tion lately arising from many applications and as a natu-
ral generalization of recognition problems [4, 7, 8, 9, 11].
The recognition problem for a class of graphs C is equiv-
alent to the graph sandwich problem in which the forced
edge set E1 = E, the optional edge set E2 \ E1 = ∅,
G = (V, E) is the graph we want to recognize, and prop-
erty Π is “to belong to class C”.

Golumbic et al. [8] have considered sandwich prob-
lems with respect to several subclasses of perfect graphs,
and proved that the GRAPH SANDWICH PROBLEM FOR
SPLIT GRAPHS remains in P . On the other hand, they
proved that the GRAPH SANDWICH PROBLEM FOR PER-
MUTATION GRAPHS turns out to be NP -complete.

Clique graphs admit a characterization by a special
edge cover. A complete set C covers the edge uv if the
endvertices u and v belong to C. A complete edge cover
of G is a family of complete sets covering all edges of G.

Theorem 1 (Roberts and Spencer [16]) A graph G is a
clique graph if and only if there exists a complete edge
cover of G satisfying the Helly property.

Such a family of complete sets is called an RS-family
for G = (V,E). If G admits an RS-family, then G admits
a small RS-family with at most |E| sets, because every
edge needs to be covered by only one complete set and
any subfamily of a family satisfying the Helly property
does satisfy the Helly property too. Therefore, the char-
acterization given in Theorem 1 gives a short certificate
for the class of clique graphs because the Helly property
for a family of subsets can be tested in polynomial time
on the size of the family [2, 16, 18]. On the other hand,
recognizing clique graphs was recently shown to be NP -
complete [1].

The family of all cliques of G is a complete edge cover
of G, so it follows that clique-Helly graphs are clique
graphs. A polynomial-time recognition algorithm for the
class of clique-Helly graphs was presented in [6] and in-
dependently in [17]. This algorithm is a consequence of a
characterization of clique-Helly graphs based on the con-
cept of extended triangle. A triangle T of a graph G is

a complete set containing exactly three vertices. The ex-
tended triangle of G relative to the triangle T is defined
in [17] as the subgraph induced in G by the vertices ad-
jacent to at least two vertices of T and it is denoted T ′.
A universal vertex in a graph is adjacent to every other
vertex of the graph.

Theorem 2 (Dragan [6], Szwarcfiter [17]) A graph G is
a clique-Helly graph if and only if every extended triangle
of G contains a universal vertex.

A polynomial-time recognition algorithm for the class
of hereditary clique-Helly graphs was presented in [13].
This algorithm uses a finite family of induced forbidden
subgraphs, the so-called ocular graphs depicted in Fig-
ure 1.

Given a graph G and a triangle T = {t1, t2, t3}, we
say that T yields an ocular graph in G if there are ver-
tices s1, s2 and s3 such that vertex s1 is not adjacent to t1
and is adjacent to t2 and t3, vertex s2 is not adjacent to t2
and is adjacent to t1 and t3, and vertex s3 is not adjacent
to t3 and is adjacent to t1 and t2. The graph on the left
of Figure 1 is known as the Hajós graph and the trian-
gle that yields this particular ocular graph is known as the
central triangle of this Hajós graph. Ocular graphs were
defined in [19] as a tool to study the Helly property and
were shown in [13] to be the minimal forbidden configu-
rations for hereditary clique-Helly graphs.

The Hajós Graph

Figure 1. The ocular graphs are the minimal forbidden induced
subgraphs for a hereditary clique-Helly graph

Theorem 3 (Prisner [13]) A graph G is a hereditary
clique-Helly graph if and only if G contains none of the
four graphs shown in Figure 1 as an induced subgraph.

Clearly, from Theorems 2 and 3 one can also recog-
nize in polynomial time whether a graph is clique-Helly
nonhereditary.

We contribute to the study of the complexity of graph
sandwich problems by considering the Helly property and
complementary graph classes. Surprisingly, we obtain
a graph class defined by a finite family of minimal for-
bidden subgraphs for which the corresponding sandwich
problem is NP -complete. Additionally, we propose the
study of the complexity of sandwich problems for com-
plementary graph classes as a mean to further understand
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the sandwich problem as a generalization of the recogni-
tion problem.

The studies on sandwich problems focus on proper-
ties that are neither hereditary nor ancestral on subgraphs,
in which case the complexity of the recognition prob-
lem and of the corresponding sandwich problem coincide.
The graph classes considered in the present paper: clique,
clique-Helly, hereditary clique-Helly are neither heredi-
tary nor ancestral on subgraphs. Most properties consid-
ered so far are hereditary on induced subgraphs, which
means that the corresponding graph class admits a fam-
ily of minimal forbidden subgraphs. In particular, every
studied sandwich problem corresponding to a graph class
defined by a finite family of minimal forbidden subgraphs
has been classified as Polynomial. Note the classes clique
and clique-Helly are not hereditary on induced subgraphs.
The class hereditary clique-Helly is the first example of
a graph class defined by a finite family of minimal for-
bidden subgraphs for which the corresponding sandwich
problem is NP -complete.

This paper is organized as follows: in Section 2
we prove that HEREDITARY CLIQUE-HELLY SAND-
WICH PROBLEM, CLIQUE-HELLY SANDWICH PROB-
LEM, and CLIQUE GRAPH SANDWICH PROBLEM are
NP -complete; in Section 3 we prove that CLIQUE-
HELLY NONHEREDITARY SANDWICH PROBLEM is NP -
complete; in Section 4 we have our concluding remarks
about complementary graph classes and sandwich prob-
lems.

2. CLIQUE, CLIQUE-HELLY, AND
HEREDITARY CLIQUE-HELLY SANDWICH
PROBLEMS

We prove that the HEREDITARY CLIQUE-HELLY
SANDWICH PROBLEM is NP -complete by a reduction
from the NP -complete problem 3-SAT. These two de-
cision problems are defined as follows.

3-SAT
Instance: Set X = {x1, . . . , xn} of variables,

collection C = {c1, . . . , cm} of clauses
over X such that each clause c ∈ C has
|c| = 3 literals.

Question: Is there a truth assignment for X
such that each clause in C has at least one
true literal?

HEREDITARY CLIQUE-HELLY SANDWICH
PROBLEM

Instance: Vertex set V , forced edge set E1, op-
tional edge set E2 \ E1.

Question: Is there a graph G = (V, E), such
that E1 ⊆ E ⊆ E2 and G is hereditary

clique-Helly?

Theorem 4 The HEREDITARY CLIQUE-HELLY SAND-
WICH PROBLEM is NP -complete.

Proof. The HEREDITARY CLIQUE-HELLY SAND-
WICH PROBLEM is in NP since a short certificate is a
sandwich graph G that is hereditary clique-Helly together
with the polynomial-time algorithm for hereditary clique-
Helly recognition.

In order to reduce 3-SAT to HEREDITARY CLIQUE-
HELLY SANDWICH PROBLEM we need to construct
in polynomial time a particular instance (V, E1, E2)
of HEREDITARY CLIQUE-HELLY SANDWICH PROBLEM
from a generic instance (X,C) of 3-SAT, such that C is
satisfiable if and only if (V, E1, E2) admits a sandwich
graph G = (V, E) which is hereditary clique-Helly. Re-
call the notation G1 = (V,E1) and G2 = (V, E2).

Let (X,C) be a generic instance of 3-SAT. We as-
sume without loss of generality that each variable occurs
both as a positive and as a negative literal. For each vari-
able xi, add to V four variable vertices: Xi, Xi, ai and bi.
For each clause cj = {`r, `s, `t}, where `u, u ∈ {r, s, t},
is a literal of variable xu, add to V clause vertices yjr,
yjs, yjt. The set V contains 4n variable vertices, plus 3m
clause vertices.

yjr yjs

yjt

ai

bi

Xi X i

yki
ai

bi

Xi X i

yji

Figure 2. Forced variable gadget; forced Hajós graph corresponding to
clause cj ; and Hajós graph in G2, induced by vertices Xi, Xi, ai, bi,

yji and yki, corresponding to variable xi

Please refer to Figure 2, where we have depicted the
forced edges as continuous edges, and the optional edges
as dotted edges. Each triple of clause vertices correspond-
ing to a clause cj induce a triangle Tj in G1, called clause
triangle. Vertices ai, bi, Xi, Xi induce a forced variable
gadget Di in G1, composed by two triangles that share
one edge XiXi.

Let yjr, yjs, yjt be the clause vertices of a clause trian-
gle Tj . If the clause vertex yju, u ∈ {r, s, t}, corresponds
to the positive literal of variable xu, then add optional
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edge Xuyju, add two forced edges Xuyjw, for w 6= u,
and add forced edge auyju. If the clause vertex yju,
u ∈ {r, s, t} corresponds to the negative literal of vari-
able xu, then add optional edge Xuyju, add two forced
edges Xuyjw, for w 6= u, and add forced edge auyju.
The construction of the particular instance (V, E1, E2) is
concluded.

First, we show that, given a sandwich graph G′ of G1

and G2, if G′ contains an ocular graph as induced sub-
graph, then this ocular graph is in fact a Hajós graph. Re-
call that a triangle T = {t1, t2, t3} yields an ocular graph
if there are vertices s1, s2 and s3 such that vertex s1 is not
adjacent to t1 and is adjacent to t2 and t3, vertex s2 is not
adjacent to t2 and is adjacent to t1 and t3, and vertex s3

is not adjacent to t3 and is adjacent to t1 and t2. Further-
more, we show there are only two cases for a triangle to
yield an ocular graph.

Please refer to Figure 2. First, note that if the triangle
T = {yjr, yjs, yjt}, formed by the three clause vertices
of a clause cj , yields an ocular graph in G′, this subgraph
is in fact a Hajós graph, because there are no edges joining
two variable vertices of distinct variables. We call such a
subgraph of clause Hajós graph.

Now, see that if the triangle T = {ai, Xi, Xi}, formed
by three variable vertices of a variable xi, yields an ocular
graph in G′, this subgraph is also a Hajós graph, because
bi has degree two in G2 and there are no edges joining two
clause vertices of distinct clauses. We call such a graph
of variable Hajós graph.

The only other two possibilities of a triangle T are:
T = {bi, Xi, Xi}, for some i; and T = {v, l, z},
where v is a variable vertex, l is a clause vertex, and z
is a variable or a clause vertex. In the first possibility
T = {bi, Xi, Xi}, for some i, since bi has degree two in
G2, such T cannot yield an ocular graph in G′. In the sec-
ond possibility T = {v, l, z}, where v is a variable vertex,
l is a clause vertex, and z is a variable or a clause vertex,
since ai and yji have just one common neighbor in G2

and since the only common neighbors of yjr and Xs in
G2 are yjs and yjt it is clear that such T cannot yield an
ocular graph in G′.

We shall use the characterization of Theorem 3. By
the construction, it is clear that G1 and G2 contain, re-
spectively, a clause Hajós graph and a variable Hajós
graph, hence G1 and G2 are not hereditary clique-Helly.

Suppose first that C is satisfiable, and consider a truth
assignment for X such that each clause cj in C has at
least one true literal. To define the sandwich graph G, if
xi has value true, add to E, for every clause cj where xi

occurs as positive literal, the optional edge yjiXi; if xi

has value false, add to E, for every clause cj where xi oc-
curs as negative literal, the optional edge yjiXi. Note that
in the constructed sandwich graph G, for each variable
xi, either all optional edges incident to vertex Xi or all

optional edges incident to vertex Xi are present. There-
fore, each variable Hajós graph in G2 is avoided in G. In
addition, note that in the constructed sandwich graph G,
for each clause cj , at least one optional edge is added to
the corresponding forced clause Hajós graph. Therefore,
each clause Hajós graph in G1 is avoided in G.

Conversely, suppose that G is a hereditary clique-
Helly sandwich graph for the particular constructed in-
stance (V, E1, E2). It follows that G contains none of
the forbidden configurations depicted in Figure 1. By the
construction of the particular instance (V, E1, E2), graph
G1 contains a forced clause Hajós graph corresponding
to each clause. Therefore, in the hereditary clique-Helly
sandwich graph G, for each forced clause Hajós graph,
we must have at least one added optional edge. In ad-
dition, G cannot have for a variable xi, both an optional
edge incident to vertex Xi and an optional edge incident
to vertex Xi present, as this would give a variable Ha-
jós graph. Therefore we can construct a truth assignment
by setting variable xi as true if there exists in G an edge
yjiXi for some clause cj where xi occurs as positive lit-
eral, and by setting variable xi as false otherwise.

y23

b1

X1 X1

y11 y33

b3

X3
X3

y21

a2

b2

X2

a1

a3

y22

X2

y32y12

a4

b4

X4X4

y34y14

Figure 3. Example of constructed instance of (V, E1, E2)
corresponding to clauses {x1, x2, x4}, {x1, x2, x3}, {x2, x3, x4}

Figure 3 shows an example of an instance constructed
in Theorem 4. We have depicted the forced edges as con-
tinuous edges, and the optional edges as dotted edges.

In the sequel, we further study the properties of the
particular instance constructed in Theorem 4 and prove in
Theorem 5 and Theorem 6, respectively, that the CLIQUE-
HELLY SANDWICH PROBLEM and CLIQUE SANDWICH
PROBLEM are NP -complete.

CLIQUE-HELLY SANDWICH PROBLEM
Instance: Vertex set V , forced edge set E1, op-

tional edge set E2 \ E1.
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Question: Is there a graph G = (V, E), such
that E1 ⊆ E ⊆ E2 and G is clique-Helly?

Theorem 5 The CLIQUE-HELLY SANDWICH PROBLEM
is NP -complete.

Proof. The CLIQUE-HELLY SANDWICH PROBLEM is
in NP since a short certificate is a sandwich graph G that
is clique-Helly together with the polynomial-time algo-
rithm for clique-Helly recognition.

In order to establish the hardness of the problem,
we perform the same reduction from 3-SAT of Theo-
rem 4. It is sufficient to show that every sandwich graph
of (V, E1, E2) which is clique-Helly is also hereditary
clique-Helly. By contradiction, suppose that a sandwich
graph G of (V,E1, E2) is clique-Helly but is not heredi-
tary clique-Helly. By Theorem 3, G has as induced sub-
graph one of the graphs of Figure 1. Denote it by G′. By
the observations present in the proof of Theorem 4, G′

is indeed either a clause Hajós graph or a variable Hajós
graph. In both cases there are two variable vertices v1

and v2 in G′. Note these two variable vertices can be of
a same variable or not. Since G is clique-Helly, by Theo-
rem 2, there must exist a vertex v adjacent to every vertex
of G′. Recall every vertex of V is a clause vertex or a
variable vertex. Since the degree of a clause vertex is at
most 6, and in this case, its 6 neighbors do not induce a
Hajós graph, we conclude that v is a variable vertex. We
have a contradiction, because there is no variable vertex
outside of G′ adjacent to v1 and v2.

Now, we turn our attention to the CLIQUE GRAPH
SANDWICH PROBLEM and we present a simple proof of
its NP -completeness.

CLIQUE GRAPH SANDWICH PROBLEM
Instance: Vertex set V , forced edge set E1, op-

tional edge set E2 \ E1.
Question: Is there a graph G = (V, E), such

that E1 ⊆ E ⊆ E2 and G is clique graph?

First we need an auxiliary lemma. This lemma is a
consequence of a more general result established in [10].

Lemma 1 Let G be a graph containing a Hajós Graph
H as an induced subgraph. If the central triangle T of H
is not contained in a K4, then G is not a clique graph.

Proof. Assume to get a contradiction that we
have an RS-family C for G. We consider two cases
with respect to the central triangle T of H to be-
long to C or not. Let h1, h2, h3 be the vertices of
T , and h4, h5, h6 the other vertices of H , such that
h4h2, h4h3, h5h1, h5h2, h6h1, h6h3 ∈ E. In case ver-
tices hi, hj , hk define a triangle, denote this triangle by
Tijk. Let Hpq be a complete set of C covering edge hphq .

First, suppose that T /∈ C. Since T is not con-
tained in a K4, the subfamily of distinct complete sets
H12,H13, H23 of C does not satisfy the Helly property, a
contradiction.

Next, suppose that T ∈ C. If h2 6∈ H34 and h3 6∈ H24,
then H24,H34 and T do not satisfy the Helly property.
Therefore, there are complete sets C1, C2, C3 ∈ C such
that h1, h3, h6 ∈ C1, h1, h2, h5 ∈ C2, and h2, h3, h4 ∈
C3. And C1, C2, C3 contain a common vertex if and only
if T ⊂ K4, a contradiction.

Theorem 6 The CLIQUE GRAPH SANDWICH PROBLEM
is NP -complete.

Proof. The CLIQUE GRAPH SANDWICH PROBLEM is
in NP since a short certificate is a sandwich graph G that
is a clique graph, and a small RS-family for G together
with the polynomial-time algorithm for the Helly prop-
erty.

Again we perform a reduction from 3-SAT by us-
ing the same particular instance of Theorem 4. Let
(V,E1, E2) be the particular instance constructed. Since,
by Theorem 1, every hereditary clique-Helly graph is a
clique graph, it is sufficient to show that every sandwich
graph of (V, E1, E2) which is a clique graph is also hered-
itary clique-Helly. By contradiction, suppose that the
sandwich graph G of (V,E1, E2) is a clique graph but is
not hereditary clique-Helly. Hence, by Theorem 3 and the
observations of Theorem 4, G contains either a clause Ha-
jós graph or a variable Hajós graph as induced subgraph.
Denote it by G′. Since G is a clique graph, by Lemma 1,
the central triangle of G′ must be contained in a K4. If
G′ is a clause Hajós graph, then its central triangle is of
the form T = {ykr, yks, ykt}. Since, given u ∈ {r, s, t},
the only vertex adjacent to yku and not contained in G′

is a variable vertex au, and au is nonadjacent to the other
vertices of T , this central triangle is not in a K4. Finally,
if G′ is a variable Hajós graph, its central triangle is of
the form {ai, Xi, Xi}. This central triangle is not in a K4

because there is no vertex adjacent in G2 to these three
vertices.

3. CLIQUE-HELLY NONHEREDITARY
SANDWICH PROBLEM

We cannot conclude from Theorems 4 and 5 that the
sandwich problem for clique-Helly nonhereditary graphs
is NP -complete. Theorem 7 proves that the CLIQUE-
HELLY NONHEREDITARY SANDWICH PROBLEM is NP -
complete by a reduction from the NP -complete problem
SAT. These two decision problems are defined as follows.
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SAT
Instance: Set X = {x1, . . . , xn} of variables,

collection C = {c1, . . . , cm} of clauses
over X .

Question: Is there a truth assignment for X
such that each clause in C has at least one
true literal?

CLIQUE-HELLY NONHEREDITARY SAND-
WICH PROBLEM

Instance: Vertex set V , forced edge set E1, op-
tional edge set E2 \ E1.

Question: Is there a graph G = (V,E), such
that E1 ⊆ E ⊆ E2 and G is clique-Helly
nonhereditary?

Theorem 7 The CLIQUE-HELLY NONHEREDITARY
SANDWICH PROBLEM is NP -complete.

Proof. The CLIQUE-HELLY NONHEREDITARY
SANDWICH PROBLEM is in NP since a short certificate
is a sandwich graph G that is clique-Helly nonhereditary
together with the polynomial-time algorithms for clique-
Helly and hereditary clique-Helly recognition.

Let (X,C) be a generic instance of SAT. We assume
without loss of generality that each variable occurs both
as a positive and as a negative literal.

Each clause cj corresponds to a copy Hj of the Hajós
graph in G1. Each pair of distinct clauses cj , ck corre-
spond to an auxiliary vertex djk adjacent in G1 to two
vertices in each of the central triangles of the correspond-
ing Hajós graphs Hj and Hk (see Figure 4).

As each variable xi occurs both as a positive and as a
negative literal, for each variable xi, we have three ver-
tices: literal vertex xi represents the occurrences of vari-
able xi as a positive literal, literal vertex xi represents the
occurrences of variable xi as a negative literal, and vertex
Xi represents the variable. These three vertices xi, xi, Xi

induce a variable triangle Ti in G1.
We conclude the construction of particular instance

(V, E1, E2) by defining the optional edge set E2 \ E1.
Suppose literal ` ∈ cj . It corresponds to literal vertex
` ∈ V . We add to E2 \ E1 six optional edges `z, one
for each vertex z of the Hajós graph Hj . In addition, for
each auxiliary vertex djk, add to E2\E1 the optional edge
`djk.

Note that every sandwich graph of (V, E1, E2) is not
hereditary clique-Helly, because for each clause there is
a Hajós graph as induced subgraph of it. Therefore, any
sandwich graph of (V,E1, E2) is clique-Helly nonhered-
itary if and only if it is clique-Helly. We shall use the
characterization of Theorem 2 for clique-Helly graphs.

Suppose first that C is satisfiable, and consider a truth
assignment for X such that each clause cj in C has at least
one true literal. To define the sandwich graph G, add to E,

for each Hajós graph Hj corresponding to clause cj , the
optional edges that make precisely one of the true literals
of clause cj adjacent to every vertex of Hj , and adjacent
to every vertex djk. Let L be the set of the chosen true
literals. Note that every added optional edge has one end-
point in L. And for an extended triangle present in G1,
say T ′, with a vertex z, if `z, with ` ∈ L, was added
to E in the construction of G, then `z′, for every ver-
tex z′ ∈ V (T ′), was also added to E. This implies that
all the extended triangles of G1 have universal vertices in
G. It remains to analyze the extended triangles relative
to triangles of G not present in G1. Every such triangle
contains precisely one literal vertex and this vertex is uni-
versal with respect to the relative extended triangle.

djk

Hj Hk

xi

Xi

xi

Figure 4. In G2 extended triangle relative to triangle {xi, xi, djk} has
no universal vertex

Conversely, suppose that G is a clique-Helly sandwich
graph for the particular constructed instance (V,E1, E2).
Thus, every extended triangle of G has a universal ver-
tex. Let cj be a clause, and consider its corresponding
Hajós graph Hj . In G the extended triangle relative to the
central triangle of Hj has a universal vertex. This uni-
versal vertex is a literal vertex corresponding to a literal
of clause cj . For a variable xi, suppose that its positive
literal occurs in cj and its negative literal occurs in ck.
If in G both literal vertices xi and xi are universal with
respect to corresponding Hajós graphs Hj and Hk, then
the extended triangle relative to xi, xi, djk has no univer-
sal vertex. See Figure 4. Therefore, for each variable xi,
if its positive literal vertex is universal with respect to a
Hajós graph associated to a clause, then set variable xi as
true, otherwise set the variable xi as false. We have the
desired truth assignment.

Figure 5 shows an example of an instance constructed
in the proof of Theorem 7. We have depicted the forced
edges as continuous edges, and the optional edges inci-
dent to djk as dotted edges. Each Hajós graph Hj is
drawn inside a square and we have depicted the six op-
tional edges that make literal ` ∈ cj universal with re-
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Figure 5. Example of constructed instance of (V, E1, E2) corresponding to clauses {x1, x2, x4}, {x1, x2, x3}, {x2, x3, x4}

spect to the Hajós graph Hj by a dotted line joining ` to
the square.

4. CONCLUDING REMARKS
We have presented four NP -completeness proofs, es-

tablishing that CLIQUE-HELLY SANDWICH PROBLEM,
HEREDITARY CLIQUE-HELLY SANDWICH PROBLEM,
CLIQUE-HELLY NONHEREDITARY SANDWICH PROB-
LEM, and CLIQUE GRAPH SANDWICH PROBLEM are
NP -complete. We emphasize that the NP -completeness
of clique graph recognition is a recently solved problem
and directly implies the NP -completeness of CLIQUE
GRAPH SANDWICH PROBLEM. The present paper pro-
posed a simple NP -completeness proof for the sandwich
version of the problem.

One interesting line of research is to investigate other
complementary graph classes with respect to the com-
plexity of the corresponding sandwich problems. It is
well-known that one can decide in polynomial time if a
graph is chordal and if it is interval. Therefore one can
also decide in polynomial time if such a graph is chordal
but not interval. The complexity of the corresponding
sandwich problems: GRAPH SANDWICH PROBLEM FOR
CHORDAL GRAPHS and GRAPH SANDWICH PROBLEM
FOR INTERVAL GRAPHS was considered in [8], where
both sandwich problems are proved to be NP -complete.
In this case we can conclude that the GRAPH SAND-
WICH PROBLEM FOR CHORDAL NONINTERVAL GRAPHS
is also NP -complete. More generally, consider three

graph classes, say C1, C2, C3, such that C2 ⊂ C1 and
C3 = C1\C2. If both C1 and C2 are hereditary with respect
to induced subgraphs and if C1 corresponds to an NP -
complete sandwich problem, then C3 also corresponds to
an NP -complete sandwich problem. Indeed, we can con-
struct a polynomial-time reduction from GRAPH SAND-
WICH PROBLEM FOR C1 GRAPHS to GRAPH SANDWICH
PROBLEM FOR C3 GRAPHS by using a graph of class C1

that is a forbidden subgraph for class C2. We emphasize
that the present paper investigates the case where C1 is
not hereditary with respect to induced subgraphs. Indeed,
again consider three graph classes, say C1, C2, C3, such
that C2 ⊂ C1 and C3 = C1 \ C2. If both C1 and C2 corre-
spond to polynomial recognition problems, then C3 does
correspond to a polynomial recognition problem as well.
For the corresponding sandwich problems, we propose
the study of how the complexity of the sandwich problems
for C1 and C2 may determine the complexity of the sand-
wich problem for C3, even if both C1 and C2 correspond
to polynomial sandwich problems: given an instance of
the sandwich problem for C1, it may admit a sandwich
graph that belongs to C2 and another sandwich graph that
belongs to C3.
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