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Abstract: Due to the imprecise nature of biological experiments, biological data is often characterized by the presence 
of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in 
laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce 
noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although 
many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set 
can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for 
noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques 
investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the 
pre-processed data.
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1. Introduction

Due to the imprecise nature of biological experiments, 
biological data is often characterized by the presence of 
redundant and noisy examples. This kind of data may origi-
nate, for example, from errors during data collection, such as 
contaminations of laboratorial samples. Gene expression data 
are examples of biological data that suffer from this problem. 
Although many Machine Learning (ML) algorithms can deal 
with noise, detecting and removing noisy instances from the 
training data set can help the induction of the target hypoth-
esis.

Noise can be defined as an example apparently incon-
sistent with the remaining examples in a data set. The 
presence of noise in a data set can decrease the predictive 
performance of Machine Learning (ML) algorithms, by 
increasing the model complexity and the time necessary for 
its induction. Data sets with noisy instances are common in 
real world problems, where the data collection process can 
produce noisy data.

Data are usually collected from measurements related 
with a given domain. This process may result in several prob-
lems, such as measurement errors, incomplete, corrupted, 
wrong or distorted examples. Therefore, noise detection is a 
critical issue, specially in domains demanding security and 
reliability. The presence of noise can lead to situations that 
degrade the system performance or the security and trustwor-
thiness of the involved information. A wide variety of noise 
detection applications can be found in different domains, 

such as fraud detection, loan application processing, intrusion 
detection, analysis of network performance and bottlenecks, 
detection of novelties in images, pharmaceutical research, 
and others17.

Different types of noise can be found in data sets, specially 
in those representing real problems (see Figure 1). In order to 
illustrate these different types, the instances of a given data 
set can be divided into five groups:

•	 Mislabeled cases: instances incorrectly classified in the 
data set generation process. These cases are noisy 
instances;

•	 Redundant data: instances that form clusters in the data 
set and can be represented by others. At least one of 
these patterns should be maintained so that the repre-
sentativeness of the cluster is conserved;

•	 Outliers: instances too distinct when compared to 
the other examples of the data set. These instances 
can be either noisy or very particular cases and their 
influence in the hypothesis induction should be mini-
mized;

•	 Borderlines: instances close to the decision border. 
These examples are quite unreliable, since even a 
small amount of noise can move them to the wrong 
side of the decision border;

•	 Safe cases: remaining instances, which should be saved 
for the learning process.
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Gene expression data are, in general, represented by 
complex, high dimensional data sets, which are susceptible 
to noise. In fact, biological or real world data sets, and gene 
expressions data sets are part of it, present a large amount of 
noisy cases.

When using gene expressions data sets, some aspects 
may influence the performance achieved by ML algorithms. 
Due to the imprecise nature of biological experiments, redun-
dant and noisy examples can be found at a high rate. Noisy 
patterns can corrupt the generated classifier and should be 
therefore removed21. Redundant and similar examples can be 
eliminated without harming the concept induction and may 
even improve it.

In order to deal with noisy data, several approaches and 
algorithms for noise detection can be found in the literature. 
This paper focus on the investigation of distance-based noise 
detection techniques, adopted in a pre-processing phase. This 
phase aims to identify possible noisy examples and remove 
them. In this work, three ML algorithms are trained with the 
original data sets and with different sets of pre-processed 
data produced by the application of noise detection tech-
niques. By evaluating the difference of performance among 
classifiers generated over original (without pre-processing) 
and pre-processed data, the effectiveness of distance-based 
techniques in recognizing noisy cases can be estimated.

There are other works18, 24 that look for noise in gene 
expression data sets but, different from this work, the experi-
ments reported in these papers eliminate only genes. In the 
experiments performed here, we use noise detection tech-
niques mainly to detect mislabeled tissues.

Details of the noise detection techniques used are 
presented in Section 2. The methodology employed in the 
experiments, the data sets used and ML algorithms adopted 
are described in Section 3. The results obtained are presented 
and discussed in Section 4. Finally, Section 5 has the main 
conclusions from this work.

2. Noise Detection

Different pre-processing techniques have been proposed 
in the literature for noise detection and removal. Statistical 
models were the earliest approaches used in this task, and 
some of them were applicable only to one-dimensional data 
sets17. In these approaches, noise detection is dealt with by 
techniques based on data distribution models3. The main 
problem of this method is the assumption that the data distri-
bution is known in advance, which is not true for most real 
world problems.

Clustering techniques8, 16 are also applied to noise detec-
tion tasks. In these approach, small groups of data, disperse 
among the existent examples, are regarded as possible noise. 
A third approach employs ML classification algorithms, 
which are used to detect and remove noisy examples34, 19. The 
work presented here follows a forth approach, in which noise 
detection problems are investigated by distance-based tech-
niques20, 30, 5, 32. These techniques are named distance-based 
because they use the distance between an example and its 
nearest neighbors.

Distance-based techniques are simple to implement 
and do not make assumptions about the data distribution. 
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Figure 1. Different types of noise present in data sets: a) Simple data set; b) Mislabeled cases; c) Redundant data; d) Outliers; e) Borderlines; 
and f) Safe cases22.



5Pre-processing for noise detection in gene expression classification data2009; 15(1)

However, they require a large amount of memory space 
and computational time, resulting in a complexity directly 
proportional to data dimensionality and number of exam-
ples17. The most popular distance-based technique referred in 
literature is the k-nearest neighbor (k-NN) algorithm, which 
is the simplest algorithm belonging to the class of instance-
based supervised ML techniques25.

Distance-based techniques use similarity measures to 
calculate the distance between instances from a data set and 
use this information to identify possible noisy data. One of 
main questions regarding distance-based techniques relates 
to the similarity measure used in the calculus of distances.

For high dimensional data sets, the commonly used 
Euclidian metric is not adequate1, since data is commonly 
sparse. The HVDM (Heterogeneous Value Difference Metric) 
metric is shown by36 as suitable to deal with high dimensional 
data and was therefore used in this paper. This metric is based 
on the distribution of the attributes in a data set, regarding 
their output values, and not only on punctual values, as is 
observed in the Euclidian distance and other similar distance 
metrics. Equation 1 presents the HVDM metric.

HVDM x z d x z
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where x and z are two instances with m attributes. The func-
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attributes, is shown in Equation 2.
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VDMa(xa, za) is the distance VDM (Value Difference 
Metric)29, adequate for nominal attributes and ρa is the 
standard deviation of attribute a in the data set. Since the 
data sets employed in this paper do not present nominal 
attributes, the second row of Equation 2 is not used in this 
work.

The k-nearest neighbor (k-NN) algorithm was used for 
finding the neighbors of a given instance. This algorithm 
classifies an instance according to the class of the majority of 
its  k nearest neighbors. The value of the k parameter, which 
represents the number of nearest neighbors of the instance, 
influences the performance of the k-NN algorithm. Typically, 
it is an odd and small integer, such as 1, 3 or 5.

The techniques evaluated in this paper are the noise detec-
tion filters Edited Nearest Neighbor (ENN), Repeated ENN 
(RENN) and AllkNN, all based on the k-NN algorithm.

In order to explain the techniques evaluated, let T be the 
original training set and S be a subset of T, obtained by the 
application of any of the distance-based techniques evalu-
ated. Now, suppose that T has n instances x1, ..., xn. Each 
instance x of T (and also of S) has k nearest neighbors.

The ENN algorithm was proposed in37. Initially, S = T, and 
an instance is considered noise and then removed from the 

data set if its class is different from the class of the majority of 
its k nearest neighbors. This procedure removes mislabeled 
data and borderlines. In the RENN technique, the ENN algo-
rithm is repeatedly applied to the data set until all its instances 
have the majority of its neighbors with the same class. Finally, 
the AllkNN algorithm was proposed in Tomek31 and is also 
an extension of ENN algorithm.This algorithm proceeds as 
follows: for i = (1, . . . , k), mark as incorrect (possible noise) 
any instance incorrectly classified by its i nearest neighbors. 
After the analysis of all instances in the data set, it removes 
the signalized instances.

Despite the large number of existent techniques used in 
noise detection problems, it is possible to find also recent 
studies that use hybrid systems, as well as ensembles of 
classifiers, to improve system performance and reduce defi-
ciencies of the applied algorithms. Hybridization is used 
variously to overcome deficiencies with one particular clas-
sification algorithm, exploiting the advantages of multiple 
approaches while overcoming their weaknesses17.

3. Experiments

The experiments performed employed the 10-fold 
cross validation methodology25. All selected data sets were 
presented to the noise detection techniques investigated. Next, 
their pre-processed versions, resulting from the application 
of each noise detection technique, were presented to the three 
ML algorithms employed. The original version of each data 
set used in the experiments was also presented directly to the 
ML algorithms, aiming to compare the performance obtained 
by ML algorithms with the original data sets and with their 
pre-processed versions. The error rate obtained by the ML 
algorithms was calculated by the average of the individual 
errors obtained for each test partition. Each noise detection 
technique was applied 10 times, one for each training parti-
tion of the data set produced by the 10-fold cross validation 
methodology.

The experiments were run in a 3.0 GHz Intel Pentium 4 
dual processor PC with 1.0 Gb of RAM memory. For the 
noise detection techniques evaluated, the code provided by35 
was used. The values of the k parameter, which define the 
number of nearest neighbors, were set as 1, 3 or 9, to follow a 
geometric progression that includes the number three, which 
is the default value of the mentioned code.

The ML algorithms investigated were C4.5, used for the 
induction of Decision Trees, RIPPER, which produces a set of 
rules from a data set and Support Vector Machines (SVMs), 
which looks for representative examples to improve the 
generalization of the decision border.

The C4.5 algorithm27 uses a greedy approach to progres-
sively grow a decision tree whose leaf nodes represent 
classes. C4.5 deals with noise data by using a pruning proce-
dure. In this procedure, ramifications of the trained tree that 
present, according to some criterion, low expressive power, 
are pruned. This procedure aims to simplify the built tree and 
to reduce its classification error rate.
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The RIPPER algorithm (Repeated Incremental Pruning 
to Produce Error Reduction)6 is a rule induction algorithm 
proposed to obtain low classification error rates even in the 
presence of noise and high dimensional data. Rule induction 
algorithms are more flexible than decision trees algorithms, 
like C4.5, since new rules can be added or modified as new 
data are included17.

SVMs are learning algorithms based on the statistical 
learning theory, through the principle of Structural Risk 
Minimization (SRM)33. SVMs accomplish a non-linear data 
analysis in a high dimension space where a maximum margin 
hyperplane can be built, allowing the separation of posi-
tive and negative classes. They present high generalization 
ability, are robust to high dimensional data and have been 
successfully applied to the solution of several classification 
problems28, 9.

In the experiments reported in this paper, we used data 
sets obtained from gene expression analysis, particularly 
tissue classification. Gene expression analysis problems are, 
in general, represented by complex and high dimensional 
data sets, which are very susceptible to noise. Table 1 shows 
the format of the gene expression data sets used in the experi-
ments. It shows that each data set can be represented by a 
table where the first row has the identification of a particular 
tissue, the expression levels of different genes for this tissue 
and the label associated to the tissue.

The main features of the gene expression data sets used in 
the experiments are described in Table 2. This table presents, 
for each data sets, its total number of instances, number of 
attributes or data dimensionality and existent classes.

Most of the data sets used in the experiments reported 
in this paper are related to the problem of cancer tissue 
classification. The development of efficient data analysis 
tools to support experts may allow better and earlier diag-

nosis of cancer, leading to more effective patient treatment 
and increase of survival rates. Several research groups are 
currently working with gene expression analysis of tumor 
tissues.

The ExpGen data set4 contains expression levels measure-
ments from 2467 genes obtained from 79 different laboratory 
experiments for genes functional classification. This applica-
tion consists in categorize a gene in a given class that represent 
its function in the cellular environment. From these experi-
ments, the data set is composed by only 207 genes, which 
could be categorized into five classes during the laboratorial 
experiments made.

The Golub data set15 has gene expression levels from 
patients with acute leukemia. The gene expression data were 
obtained from 72 microarray images, and measure expres-
sion levels of 6817 human genes. The disease was categorized 
in two different types, Acute Lymphoid Leukemia (ALL) and 
Acute Myeloid Leukemia (AML). The same pre-processing 
made in11 was applied to Golub data set to simplify its data.

The Leukemia data set is known in literature as St. Jude 
Leukemia38. It is composed by six different types of pediatric 
acute lymphoid leukemia and another group with examples 
which could not be categorized as one of the previous six 
types. The original data set has 12558 genes and so a pre-pro-
cessed version found in http://sdmc.lit.org.sg/GEDatasets 
and described by38 research was used, reducing the number 
of genes to 271.

The Lung data set has examples related to lung cancer, 
where, for each patient, the label can be normal tissue or 
three different types of lung cancer. The three different types 
of lung cancer analyzed are adenocarcinomas (ADs), squa-
mous cell carcinomas (SQs) and carcinoid (COID). This data 
set has 197 instances, with 1000 attributes each, and was 
presented in26.

The last data set analyzed, the Colon data set, is described 
in Alon  et al.2, and includes patients with and without colon 
cancer. The data set presents gene expression data obtained 
from 62 microarrays images, which measure expression levels 
of 6500 human genes. Pre-processing techniques reduced the 
number of input attributes to 2000.

For the SVMs training, the SVMTorch II7 software was 
employed. The values of different SVMs parameters were 
the default values of the software used, kept the same for all 
experiments. For the C4.5, training was carried out by the 
software provided by Quinlan27 and For the RIPPER algo-
rithm training, the Weka simulator from Waikato university13 
was adopted. The parameter values for the three algorithms 
were the default values suggested in the tools employed, 
which were kept the same for all experiments. Scripts in 
perl programming language were also developed to convert 
data sets to different formats demanded by Wilson’s35 code, 
SVMTorch II, Weka simulator and C4.5 algorithm.

To evaluate results obtained in the experiments, the statis-
tical test of Friedman14 and Dunn’s multiple comparisons 
post-hoc test12 were employed, according to the method-
ology described in10. Friedman’s test was adopted since it is 
recommended for the comparison of different ML algorithms 

Table 1. Format of gene expression data set.

Tissue 
 Gene expression levels 

Diagnosis 
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 

1 0.405 0.326 0.234 0.348 0.748 normal 

2 0.089 0.293 0.192 0.123 0.385 normal 

3 0.459 0.125 0.543 0.334 0.218 tumor 

4 0.123 0.389 0.238 0.651 0.972 normal 

5 0.951 0.040 0.490 0.283 0.321 normal 

6 0.297 0.859 0.219 0.783 0.984 tumor 

Table 2. Description of data sets analyzed.
Data set Instances Attributes  Classes 

ExpGen 207 79 B, H, T, R, P 

Golub 72 3571 ALL, AML 

Leukemia 327 
 

271 
 

BCR, E2A, HYP, MLL, 
T-ALL, TEL, OTHERS 

Lung 197 1000 AD, SQ, COID, NL 

Colon 62 2000 normal, tumor 
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applied to multiple data sets, and has the advantage of not 
assuming that the measurements have to follow a Normal 
distribution.

The null hypothesis assume that all analyzed algorithms 
are equivalent if their respective mean ranks are the same. 
If the null hypothesis is rejected, and therefore the analyzed 
algorithms are statistically different, a post-hoc test might 
be applied to detect which of the algorithms differ. Dunn’s 
statistical post-hoc test was applied, since it is recommended 
to situations where all algorithms analyzed are compared to a 
control algorithm, the strategy employed in the experiments 
performed in this paper.

4. Experimental Results

In the pre-processing, the amount of removed instances 
was different for each data set analyzed. However, it was 
between 20 and 30% of the total number, except for the Colon 
data set, original and simplified versions, which presented 
reductions between 30 and 40%.

The time spent in the pre-processing phase was meas-
ured to show how the application of the noise detection 
techniques investigated can affect the overall processing 
time. It is important to mention that pre-processing phase 
is only applied once for each data set analyzed, generating 
a pre-processed data set that can be used several times for 
different ML algorithms. The time consumed was always less 
than one minute. Another observation is related to data sets 
complexity: more time was spent in the pre-processing of 
more complex data sets.

In order to measure the effectiveness of noise detection 
techniques employed, the performance of the three ML 
algorithms concerning accuracy, complexity and processing 
time necessary to build the induced hypothesis were evalu-
ated with the original and the pre-processed data. For all 
experiments, the statistical tests were applied with 95% of 
confidence level.

For SVMs, in general, the error rates of the classifiers 
generated after the application of noise detection techniques, 
for all evaluated k values, were the same as those obtained for 
the original data sets. The same was true for the Colon data 
set, but only for some values of k. The pre-processed data 
sets Leukemia and ExpGen had only some similar results, 
but none better than those obtained for the original data sets, 
while Golub data set presented the worst results in all cases. 
The obtained results can be seen in Table 3, where the best 
results are highlighted in bold and error rates similar to the 
best ones for each data set are shown in italics. Standard devi-
ation rates are reported in parenthesis.

The analysis of the C4.5 classification error rates, which 
can be seen in Table 4, shows that the pre-processed data 
sets Leukemia, Lung and Golub presented similar and 
better results than those obtained for the original data sets. 
The ExpGen data set presented only few similar error rates 
compared to those obtained for the original data set. The pre-
processed data set Colon provided only worst results.

According to Table 5, the RIPPER algorithm presented 
similar error performance for the original and pre-processed 
data using the Leukemia, ExpGen and Colon data sets. In the 
last two data sets, some results were improved by the pre-
processing. The remaining pre-processed data sets Lung and 
Golub presented more improvements in ML accuracy after 
the pre-processing phase. For these two data sets, error rates 
were lower after pre-processing, for the majority of the exper-
iments carried out.

In the complexity analysis of the SVMs, the number of 
Support Vectors (SVs), data that determine the decision 
border induced by SVMs, was considered. A smaller number 
of SVs indicates less complexity of the induced model.

For the C4.5 algorithm, complexity was determined by 
the mean decision tree size induced. Reduced decision trees 
are easier to analyze and so result in comprehensiveness 
improvements for the model.

The complexity for RIPPER algorithm was observed by 
the number of rules produced during the training phase. 
The smaller the number of rules produced, the simpler the 
complexity of the generated model.

For all three ML algorithms investigated, the complexity 
was reduced when the pre-processed data sets were used, 
as presented in Tables 6, 7 and 8, respectively for the SVM, 
C4.5 and RIPPER algorithms. In these tables, the best results 
are highlighted in bold and complexities similar to the best 
ones, for each data set, are shown in italics. Standard devia-
tion rates are reported in parenthesis.

According to Tables 6, 7 and 8, most of the complexities 
were reduced after pre-processing, except for the Golub data 
set and the RIPPER algorithm, in which not all complexities 
were reduced.

For the SVMs, the smaller the pre-processed data set 
produced by noise detection techniques, the lower the 
number of SVs obtained and, consequently, the complexity of 
the model. For the C4.5 algorithm, the model complexity has 
decreased until a lower bound from which further reduction 
in pre-processed data set would not reduce the complexity.

For the RIPPER algorithm, the final models were also 
simplified, but with less reduction in the complexity. The 
complexity obtained using the original data for the Golub 
data set was maintained for its pre-processed versions.

The time taken by the SVM, C4.5 and RIPPER algorithms 
to induce hypothesis using the pre-processed data sets was 
always reduced when compared to those obtained with the 
original data sets, taking at most 1 second. For SVMs, the 
processing time was only slightly reduced in comparison to 
the time obtained for the original data sets.

The analysis of results presented in this paper shows that 
the three noise detection techniques evaluated presented 
similar results, in terms of amount of noise removed (data 
set reduction), time taken and effect on the ML algorithms 
performance. A possible explanation is that they all are noise 
filtering techniques based on k-NN algorithm. Besides, they 
are related, AllkNN is an ENN extension, while RENN is the 
ENN algorithm applied multiple times. For the gene expres-
sion data sets analyzed in this paper, the differences present 
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Table 3. SVMs error rates and standard deviation for the original and pre-processed data sets.
k Leukemia Lung Golub ExpGen Colon 

Original data 7.05(4.39) 29.42(3.74) 29.28(10.75) 7.66(6.82) 35.71(13.56) 

1 7.95(3.91) 29.42(3.74) 32.14(13.88) 7.69(5.13) 35.71(13.56) 

AllkNN 3 7.95(3.91) 29.42(3.74) 34.82(13.91) 8.19(3.90) 35.71(13.56) 

9 7.94(2.96) 29.42(3.74) 34.82(13.91) 8.69(3.76) 35.71(13.56) 

1 7.34(3.65) 29.42(3.74) 32.14(13.88) 8.67(4.34) 35.71(13.56) 

ENN 3 8.27(3.61) 29.42(3.74) 34.82(13.91) 7.71(3.32) 35.71(13.56) 

9 11.00(4.83) 29.42(3.74) 34.82(13.91) 9.64(5.48) 42.38(18.60) 

1 7.65(3.93) 29.42(3.74) 32.14(13.88) 8.67(4.34) 35.71(13.56) 

RENN  3 11.01(5.08) 29.42(3.74) 34.82(13.91) 7.71(3.32) 44.28(19.35) 
 9 13.43(6.26) 29.42(3.74) 56.25(20.15) 9.17(4.16) 64.28(13.56) 

Table 4. C4.5 error rates and standard deviation for the original and pre-processed data sets.
k  Leukemia  Lung  Golub  ExpGen  Colon 

Original data  17.18(6.98)  9.14(5.22)  16.44(8.12)  8.19(4.60)  20.97(13.45) 

 1  18.95(5.07)  6.06(5.15)  17.87(8.91)  8.16(7.46)  26.43(21.38) 
AllkNN  3  17.47(5.51)  7.56(4.21)  13.58(12.69)  8.65(4.91)  24.52(11.48) 

  9  18.70(5.58)  7.56(4.21)  11.97(14.24)  12.52(5.07)  30.70(5.29) 
  1  17.43(4.75)  5.56(4.97)  16.44(10.54)  9.18(6.10)  21.43(19.40) 
ENN  3  16.83(7.05)  8.08(4.83)  13.58(12.69)  12.03(7.47)  30.00(17.52) 
  9  17.43(6.19)  8.08(6.32)  11.08(12.66)  12.49(7.07)  32.86(19.30) 
  1  17.74(4.87)  6.06(4.58)  16.44(10.54)  9.66(6.32)  28.58(23.47) 
RENN  3  16.83(6.72)  7.58(4.87)  13.58(12.69)  12.50(7.10)  40.72(14.91) 
  9  16.81(4.98)  9.13(4.59)  29.48(18.04)  12.49(7.07)  35.72(13.55) 

Table 5. Error rates and standard deviation of RIPPER algorithm applied to original and pre-processed data sets.
k  Leukemia  Lung  Golub  ExpGen  Colon 

Original data  19.28(5.82)  11.05(8.39)  15.54(12.54)  12.98(6.71)  24.29(17.95) 
  1  21.46(8.97)  7.55(5.37)  12.50(12.05)  13.48(5.93)  24.05(13.06) 
AllkNN  3  19.96(9.72)  9.55(6.81)  15.18(14.76)  12.98(7.39)  26.19(13.88) 
  9  22.36(10.66)  9.55(6.81)  16.61(12.88)  15.36(8.82)  30.71(5.32) 
  1  20.52(7.87)  6.55(4.09)  12.50(12.05)  11.52(6.74)  27.38(15.07) 
ENN  3  20.52(4.48)  8.55(6.23)  15.18(12.18)  13.45(8.26)  25.71(15.79) 
  9  21.42(7.81)  9.05(6.96)  15.36(18.14)  15.36(9.90)  32.62(14.02) 
  1  22.39(8.10)  6.05(3.93)  12.50(12.05)  13.43(7.95)  27.62(13.85) 
RENN  3  19.64(7.44)  10.58(6.78)  13.75(11.23)  12.98(8.04)  39.05(20.02) 
  9  22.65(9.92)  12.11(7.08)  30.54(17.34)  13.93(8.15)  35.71(13.56) 

Table 6. Mean number of SVs produced by SVMs applied to original and pre-processed data sets.
k  Leukemia  Lung  Golub  ExpGen  Colon 

Original data  49.6(0.94)  177.3(0.48)  64.8(0.42)  35.7(1.09)  55.8(0.42) 
  1  40.0(0.90)  151.1(2.08)  54.6(0.70)  26.9(1.78)  38.8(2.97) 
AllkNN  3  38.1(1.56)  150.7(1.94)  51.9(1.91)  24.7(2.25)  34.3(2.67) 
  9  37.4(1.37)  149.6(2.17)  49.0(2.16)  22.5(1.85)  29.9(2.51) 
  1  40.3(0.68)  152.7(1.94)  54.8(0.92)  27.3(1.90)  39.4(3.10) 
ENN  3  38.1(1.21)  153.5(1.08)  53.0(1.56)  25.3(2.88)  35.4(1.43) 
  9  36.5(1.35)  152.5(1.35)  49.1(2.51)  22.9(1.07)  27.5(14.56) 
  1  40.0(0.84)  152.3(2.62)  54.8(0.92)  26.3(2.18)  38.3(4.24) 
RENN  3  37.5(2.61)  150.6(2.87)  52.7(1.89)  24.1(2.30)  19.0(16.43) 
  9  33.1(1.12)  147.6(14.81)  15.0(24.21)  22.3(2.11)  30.2(0.00) 
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Table 7. Mean decision tree size produced by C4.5 algorithm applied to original and pre-processed data sets.
k  Leukemia  Lung  Golub  ExpGen  Colon 

Original data  34.20(2.15)  9.40(0.84)  4.40(0.96)  14.00(1.41)  6.80(0.63) 

  1  24.60(2.27)  7.00(0.00)  4.00(1.05)  9.00(0.94)  4.40(0.96) 
AllkNN  3  21.40(1.84)  7.00(0.00)  3.40(0.84)  7.80(1.03)  3.40(0.84) 
  9  18.80(1.47)  7.00(0.00)  3.40(0.84)  7.00(0.00)  2.80(0.63) 
  1  23.80(1.68)  7.20(0.63)  4.00(1.05)  8.60(0.84)  4.40(0.96) 
ENN  3  21.60(1.35)  7.00(0.00)  3.40(0.84)  8.60(0.84)  3.60(0.96) 
  9  19.00(1.34)  7.00(0.00)  3.40(0.84)  8.20(1.40)  2.20(1.03) 
  1  22.40(2.12)  7.00(0.00)  4.00(1.05)  8.60(0.84)  4.40(0.96) 
RENN  3  19.80(1.40)  7.00(0.00)  3.40(0.84)  8.40(0.96)  2.20(1.03) 
  9  17.00(0.94)  6.80(0.63)  2.00(1.70)  8.00(1.41)  1.00(0.00) 

Table 8. Mean number of rules produced by RIPPER algorithm applied to original and pre-processed data sets.
k  Leukemia  Lung  Golub  ExpGen  Colon 

Original data  10.80(1.40)  5.00(0.67)  2.10(0.31)  5.70(0.67)  3.00(0.67) 
  1  9.30(1.06)  4.10(0.31)  2.20(0.42)  4.80(0.42)  2.40(0.51) 
AllkNN  3  8.70(1.06)  4.00(0.00)  2.30(0.48)  4.70(0.67)  2.40(0.51) 
  9  8.00(0.94)  4.00(0.00)  2.10(0.31)  4.10(0.57)  1.60(0.51) 
  1  9.60(1.07)  4.10(0.31)  2.20(0.42)  5.10(0.74)  2.30(0.48) 
ENN  3  9.10(1.45)  4.10(0.31)  2.20(0.42)  4.70(0.67)  2.10(0.31) 
  9  7.80(0.79)  4.20(0.42)  2.20(0.00)  4.40(0.84)  1.20(0.42) 
  1  9.60(0.96)  4.00(0.00)  2.20(0.00)  5.20(0.79)  2.40(0.51) 
RENN  3  8.80(0.92)  4.10(0.31)  2.10(0.31)  4.70(0.67)  1.30(0.48) 
  9  7.90(0.56)  4.10(0.57)  1.30(0.48)  4.20(0.63)  1.00(0.00) 

in these algorithms may not result in significant differences 
in the ML algorithms performance.

Most of the experiments presented satisfactory results, 
with lower error rates and better performance if compared to 
those obtained in the analysis of the original data sets, which 
demonstrates that noise detection techniques improved the 
performance of the ML algorithms evaluated. The C4.5 and 
RIPPER algorithms benefited from the application of noise 
detection techniques for most of the data sets investigated and 
reduced the complexity of the induced models. For the SVMs, 
the new results were slightly better, with lower complexity.

Furthermore, the gain in comprehensiveness and the 
reduction in time spent during training process is another 
advantage, since the complexities of all data sets were reduced 
after pre-processing (the noise detection and removal phase).

Therefore, the application of noise detection techniques 
in a pre-processing phase presents the advantage of reducing 
the complexity of classifiers induced by ML algorithms, 
as well as reducing the time spent in classifiers training, 
producing, in most experiments, better or similar classifica-
tion error results than those obtained for the original data 
sets. This indicates that the distance-based noise detection 
techniques kept the most expressive patterns of the data sets 
and allowed ML algorithms to induce simpler classifiers, as 
shown in the reduced complexity and lower classification 
error rates obtained.

5. Conclusions
This paper investigated the application of distance-based 

noise detection techniques in different gene expression classi-
fication problems. We did not found in the literature a single 
approach or algorithm able to detect noise without classifica-
tion accuracy reduction that was tested in several data sets. 
We also were not able to find noise detection experiments 
using gene expression data sets able to detect tissues that are 
probably noise. The closest works we found in gene expres-
sion analysis were the works from18, 24. However, these works 
detect and eliminate only genes, not tissues. The data sets 
employed here are related to both gene classification and 
tissue classification.

In the experiments performed here, three ML algorithms 
were trained over the original and pre-processed data sets. 
They were employed to evaluate the power of these tech-
niques in maintaining the most informative patterns. The 
results observed indicate that the noise detection techniques 
employed were effective in the noise detection process. These 
experiments shown the the incorporation of noise detection 
and elimination resulted in simplifications of the ML classifiers 
and in reduction in their classification error rates, specially 
for the C4.5 and RIPPER algorithms. Another advantage for 
these two algorithms was an increase in comprehensiveness.

We are now investigating new distance-based techniques 
for noise detection and developing ensembles of noise detec-



Journal of the Brazilian Computer Society10 Libralon GL, Carvalho ACPLF, Lorena AC

tion techniques aiming to further improve the gains obtained 
by the identification and removal of noisy data. Preliminary 
results, presented in Libralon23, suggest that ensembles of 
distance-based techniques can be a good alternative for noise 
detection in gene expression data sets.
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