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Abstract - Neural networks are an attractive alternative for modeling complex problems with too many 
difficulties to be solved by a phenomenological model. A feed-forward neural network was used to model a 
gas-centrifugal separation of uranium isotopes. The prediction showed good agreement with the experimental 
data. An optimization study was carried out. The optimal operational condition was tested by a new 
experiment and a difference of less than 1% was found. 
Keywords: neural networks, isotope separation, gas centrifugation, optimization, uranium isotopes, modeling. 

 
 
 

INTRODUCTION 
 

 Prediction of the separation of uranium isotopes 
by gas centrifuge process employing mathematical 
models is quite difficult. Calculations require the 
simultaneous solution of the gas motion equations 
(continuity equation, the Navier-Stokes equations 
and energy equation) and the diffusion equation. The 
diffusion equation may be solved independently of 
the gas motion equations, since the difference in 
mass between uranium isotopes is far smaller than 
the average of the masses, after the gas motion 
equations are solved. 
 The separation analysis of the countercurrent 
centrifuge was first defined by Cohen (1951) in the 
40’s through solution of the diffusion equation using 
the method developed by Furry et al. (1939) for the 
thermal diffusion column. This became a classic 
solution, known as the Cohen-Onsager equation. 
This solution made many simplifications, such as a 
constant axial countercurrent flow and a radial 
averaged concentration. These simplifying 

hypotheses, which introduce errors into the results as 
compared with actual centrifuges, have gradually 
been improved (Olander, 1972). Recent works have 
resorted two-dimensional analytical or numerical 
analysis (Soubbaramayer, 1979; Makihara and Ito, 
1988). Kai (1989) reviewed his studies conducted at 
the Power Reactor and Nuclear Fuel Development 
Corp. (PNC) with a two-dimensional numerical 
model, considering the nonlinear system, but also 
emphasizing the difficulties of predicting the 
separative performance of a real gas centrifuge. 
 Analytical or numerical solution of these model-
based equations, always requires the use of 
approximations, especially concerning the boundary 
conditions of the internal components. 
Consequently, none of the existing methods of 
calculation are valid for an actual centrifuge, 
although they are valuable for understanding the 
physical phenomena that take place within the gas 
centrifuge. 
 Using Zippe’s data (1960), Migliavacca et al. 
(1999) simulated the separation of uranium isotopes 
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with a neural network model. Good agreement was 
achieved.  

In the present work the use of neural networks for 
the simulation and optimization of the separative 
performance of a gas centrifuge is proposed using 
new experimental data acquired from Centro 
Tecnológico da Marinha em São Paulo and IPEN. 
 
 

NEURAL NETWORK 
 
 Neural networks are one of the fastest growing 
areas of artificial intelligence, particularly in 
chemical and nuclear engineering. Many 
applications in modeling and optimization of 
chemical processes are available in the open 
literature (Nascimento et al., 1999; Nascimento et 
al., 2000). In nuclear technology, the use of neural 
networks dates bake to the end of the 80’s. They 
have been widely used in high energy physics 
(Denby, 1992) and in nuclear power plants (Eryürek 
et.al., 1991).  
 The application of neural networks in the 
simulation of chemical and nuclear processes, 
specifically in isotope separation by the gas 
centrifuge, is at considerable interest due to the 
nonlinearity of the process. This technique results in 
numerical models that are valid for actual 
centrifuges, thereby avoiding some of the difficulties 
encountered with the phenomenological model. The 
success of this kind of modeling depends largely on 
knowledge of the main variables affecting the 
process and the availability of a good database with 
the necessary information on the desired domain. 
The neural network used in this work was the 
multilayer feedforward network with the three-
layered network, consisting of an input layer, a 
hidden layer and an output layer. The input layer 
consists of ni+1 neurons, where ni is the number of 
input variables, and there is no processing in this 
layer. Besides the inputs, a bias is introduced into 
the network. The inputs are normalized between 0.1 
and 0.9 in order to improve the convergence process. 
The number of neurons in the hidden layer is defined 
by the user. According to Pollard et al. (1992), the 
final precision is only slightly sensitive to the 
number of neurons in the hidden layer beyond a 
minimum value. The output layer consists of a 
number of neurons equivalent to the number of 
outputs of the process. 
 The backpropagation algorithm was used for 
training the three-layered feedforward neural 

networks used in this work (Rumelhart & McClelland, 
1986). This algorithm is a generalization of the 
steepest descent method. 
 

 
SIMULATION OF A GAS CENTRIFUGE VIA 

NEURAL NETWORK 
  

The separation parameters of a gas centrifuge can 
be experimentally determined in a separation 
experiment.  The centrifuge used was a three-pole 
centrifuge with the internal fluid flow driven by a 
stationary scoop at one end of the rotor and a 
rotating baffle at the other end. An orthogonal 
design of experiments was proposed to study the 
influence of four construction variables, namely the 
product and the waste scoops, the axial feed location 
and the dimension of the rotating baffle. A 
separation experiment was run for each arrangement 
proposed in the design of experiments. The neural 
network technique was applied to the results of one 
of the experiments proposed. In the separation 
experiment, the pressure of the feed, product and 
waste lines and the mass flows of product and waste 
were measured. The centrifuge was operated under 
different conditions, defined by the flow rates and 
the output pressure, and approximately equal flows 
of product and waste were assumed, in order to 
study the symmetric case of separation, defined by 
β=γ. For each operational condition, samples were 
taken and analyzed to obtain the abundance ratio of 
each stream processed by the gas centrifuge. The 
results for 58 experiments were obtained; each of 
them consisted of the values of the product and 
waste flow rates, the pressures in the feed line and in 
the product and waste throughput, and the 
abundance ratios of the enriched and depleted 
material. 
 A neural network approach for the centrifuge was 
then applied, using the following input variables: 

QP: mass flow of the product; 

QW: mass flow of the waste; 

pP:  pressure in the product line; 

    and output variables: 

pF:  pressure in the feed line; 

pW: pressure in the waste line; 

RP: abundance ratio of the product; 

RW: abundance ratio of the waste. 
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The abundance ratio of the feed gas is that of 
naturally occurring uranium. 
 
Learning and Testing with the Neural Network 
 
 The experimental data were divided into two 
groups: a learning set, with 29 data subsets, used for 
the process of training the neural network, and a test 
set, with 27 data subset, used for checking the 
training, which were selected randomly. Each data 
subset results from the mean value of three 
experimental determinations. A three-layered 
feedforward neural network was used and trained 
with the backpropagation algorithm. Four different 
networks were tested: networks with 5, 6, 7 and 8 
neurons in the hidden layer. The numbers of 
presentations used to train the neural network were 
between 50,000 and 100,000. Table 1 shows the 
errors calculated in each case for the learning set and 
for the test set. 
 Allowing for a larger number of presentations, it 
was verified that 100,000 presentations were enough 
to determine the configuration of the network. The 
convergence in this case showed an asymptotic 
behavior for both, learning and test set. With these 
results, a neural network with seven neurons in the 
hidden layer was chosen.  
 
Comparison of Experimental Versus Calculated 
Data 
 
 After training the neural network, the weights 
were chosen to minimize the error in the test set. The 
primary variables used were pressures pF and pW. 
However, the most important variables in practice 
are the separation factor, α, and the separative 
power, δU, that represents the separation 
performance of the centrifuge. The separative power 
�U is defined as the work required to separate a 
certain flow of material into two flows of different 
concentrations. 
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 Figure 1 shows a diagram of the model proposed 
to calculate the separation parameters of the gas 
centrifuge using the trained neural network. 
 Comparisons of the primary calculated variables, pF 
and pW, with the experimental values are shown in 
Figures 2 and 3, respectively. The agreement between 
the experimental and calculated values for those 
variables is satisfactory. Normally the training set is 
always fitted (neural networks as used in this work are 
referred to as universal approximators (Hornik et al., 
1989). The most important, however, is the prediction 
that the neural network made with the test set. 
 Parameters α and δU are calculated according to 
the diagram shown in Figure 1. The values of the 
abundance ratios are given by the neural network 
and the values of α and δU are calculated with 
equations (1) and (2). Figures 4 and 5 show the 
comparisons of the experimental and calculated 
values for these variables. The reason for calculating 
the values of α and δU by equations (1) and (2), and 
not directly from the neural network, was because 
they do not represent primary variables. Normally 
the values of α and δU are used for design purposes. 
The calculated values of these variables are in good 
agreement with the experimental values for both the 
learning and test sets. A good fitting in the test set 
means that the neural network can represent well the 
response surface of the real problem. 

Table 1: Total errors calculated after the training of neural networks 
with different numbers of neurons in the hidden layer 

 
 LEARNING SET TEST SET 

NH N. SETS RMST N. SETS RMSTT 

5 100 000 0.123 11 000 0.338 

6 100 000 0.070 100 000 0.185 

7 100 000 0.056 100 000 0.144 

8 50 000 0.114 100 000 0.313 
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Figure 1: Model for the calculation of the parameters 

of the gas centrifuge using a neural network 
 
 
 
 
 
 
 

  
Figure 2: Comparison of the experimental and the neural network calculated 

values for the pressure in the feed line, pF (arbitrary units). 
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Figure 3: Comparison of the experimental and the neural network calculated 

values for the pressure in the waste line, pW (arbitrary units). 
 
 
 
 

 
 

Figure 4: Comparison of the experimental and the neural network calculated 
values for the separation factor, α 
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Figure 5: Comparison of the experimental and the neural network calculated 

values for the separation power, δU 
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Figure 6: Response surface for the separative power of the centrifuge 
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OPTIMIZATION OF THE CENTRIFUGE 
  
 Once the neural network was trained to represent 
the centrifuge, the solution of the problem was 
mapped on a very fine grid in the domain of the 
learning set data. Figure 6 shows a typical surface of 
the solution of the separative power as a function of 
flows QP=QW and pressure pP. With these results, the 
conditions under which the separative power is 
maximized can be found by inspection of the surface 
shown in Figure 6.  
 A new experiment was then carried out under the 
conditions of the optimized δU, predicted by the 
simulated surface of δU as a function of QP and pP. 
The difference between the experimental results and 
the values calculated using the neural network model 
was close to 1%. 
 
 

CONCLUSION 
  
 Modeling by neural networks has been shown to 
be an important tool to simulate and optimize the 
separation of uranium isotopes process. 
Experimental data of good quality is fundamental for 
obtaining reasonable results. The neural network 
model obtained is valid only for the centrifuge used 
in the separation experiment. In the present case, the 
experimental data covered a large domain of 
variables employed in the model. This fact is very 
important in order to be confident that the neural 
network has learned most of the nonlinear 
information in the process. Separation of the 
uranium isotopes was optimized by direct inspection 
of the surface response generated by the neural 
network. The optimal condition was checked by an 
independent new experiment and there was a 
difference less than 1% between the experimental 
value and the prediction. 
 
 

NOMECLATURE 
 

ni number of input variables in the neural 
network model 

NH   number of neurons in the hidden layer 
N. SETS number of presentations of the data to 

the network 
pF    pressure in the feed line 
pP    pressure in the product line  
pW    pressure in the waste line  

QP    mass flow of the product 
QW   mass flow of the waste 
r number of input/output pairs in the 

learning set 
RMST sum of square errors between 

experimental and calculated values of 
the learning set 

RMSTT sum of square errors between 
experimental and calculated values of 
the test set  

RP    abundance ratio of the product 
RW    abundance ratio of the waste 
 
Greek Symbols 
 
α    separation factor (=RP/RW) 

β    head separation factor (=RP/RF) 

γ    tail separation factor (=RF/RW) 

δU   separative power 
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