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Abstract - This work describes an application of maximum likelihood identification and statistical detection
techniques for determining the presence and nature of abnormal behaviors in latch fermentations. By
appropriately organizing these established techniques, anovel algorithm that is able to detect and isolate faults
in nonlinear and uncertain processes was developed. The technique processes residuals from a nonlinear filter
based on the assumed model of fermentation. This information is combined with mass balances to conduct
statistical tests that are used as the core of the detection procedure. The approach uses a sliding window to
capture the present statistical properties of filtering and mass-balance residuals. In order to avoid divergence
of the nonlinear monitor filter, the maximum likelihood states and parameters are periodically estimated. The
maximum likelihood parameters are used to update the kinetic parameter values of the monitor filter. If the
occurrence of a fault is detected, alternative faulty model structures are evaluated statistically through the use
of log-likelihood function values and c? detection tests. Simulation obtained for xanthan gum batch

fermentations are encouraging.

Keywords: fermentation process, stochastic model, maximum likelihood state.

INTRODUCTION

The importance of on-line monitoring of
biotechnological processes has increased during the
last twenty years. Advantages include gaining
knowledge about the state of the process and the
possibility of detecting and isolating abnormal
process developments at early stages. This reduces
process costs, contributes to process safety and helps
in trouble-shooting and process accommodation. The
main problem in fermentation monitoring and
control is the fact that process variables usually
cannot be measured on-line (e.g., biomass, substrate
and product concentrations). Monitoring and
controlling these processes can therefore be difficult
because only indirect measurements are available on-
line, while calculated values may be rather uncertain.

This can be due to uncertainty with respect to the
equations used, measurement errors or both. For
automatic control  this may have serious
consequences, especiadly as he actual variables of
interest often cannot be directly controlled and
related variables are controlled instead.

In fermentation processes, on-line and off-line
measurements are the main source of information
about the state of the process. In combination with
modetbased calculations, they are used to produce
estimations for monitoring purposes as well as for
automatic and manual process control. Model
parameters are adso edablished by means of
measurement. It is therefore important to have an
accurate and consistent set of measurements. In
practice, measurement errors will always occur. The
most common type is arelatively small random error
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due to minor disturbances in the measurement
equipment. The magnitude of these errors,
commonly referred as measurement noise, defines
the accuracy of the measurement. They are usually
regarded as zero-mean with Gaussian distribution.
This kind of noise can be diminated by the use of
state estimators such as Kalman filters. On the other
hand, multi rate estimators [Halme, 1987] are
observers that are well suited for state estimation in
fermentations. In these estimators, the measurement
vector is expanded to include infrequent off-line
measured variables when these measurements are
available. This expansion is only nade functional at
the time of measurement. To overcome problems
with the time delay caused by laboratory analysis the
technique uses stored data. The estimates are then
recalculated from the time of measurement to the
present as soon as the measurement value becomes
available. In many cases, there is a certain amount of
“overlap”  between  off-line  and  on-line
measurements. This overlap  together  with
conservation equations provides constraints to
improve the accuracy of the measurements and to
detect significant errors in the measurements or in
the model used by the fermentation observer. Faulty
sensors and omitted components can be detected in
this way. This results in enhanced reliability and
accuracy of on-line state and parameter estimates.
Much research on state estimation in bioprocesses
can be found in the literature. Some of the most
relevant are by Stephanopoulos and San [1984a and
b], Bastin and Dochain [1986, 1990] and Gudi et al.
[1994]. Two different detection methods can be used
for fault detection in batch fermentations. The first is
herein referred to as the “residual-based detection
method”. It focuses on the analysis of estimation
resduals of a Kamanfilter-type observer. The
second is herein referred to as the “baance-based
detection method” and it uses conservation principles
for testing the consistency of the variables measured.
Isermann [1984] and Frank [1990] offer survey of
the residual-based detection method. Alcorta Garcia
and Frank [1997] reviewed observer based
approaches to several classes of deterministic
nonlinear systems. Significant works related to the
balances-based detection method were published by
Wang and Stephanopoulos [1983] and Van der
Heijden [1994a and b]. Dondo [2003] proposed the
simultaneous use of both methods. The idea behind
the use of both methods is that the limitations of one
be compensated by the use of the other. In the
present work an evolution of the idea developed in
Dondo [2003], which is designed for obtaining
robust and accurate state estimation and fault

diagnostics
presented.

This work is organized as follows. section 2
discusses the specifics of estimation and detection in
batch fermentations. In section 3, a methodology of
date estimation and fault detection for batch
fermentations is presented. Numerical results are
shown in section 4 and the conclusions are outlined
in section 5.

under parametric uncertainty, is

PROBLEM DISCUSSION

Instrumentation faillures and abrupt kinetic
changes can be understood as a deviation of a
process variable that is not permitted and that leads
to an inability to maintain control of the running
fermentation. In the present work, these deviations
are genericaly referred to as faults. Fig. 1 shows a
block diagram for fault detection and isolation in
fermentations. Checking whether measured and/or
unmeasured estimated variables are within a given
tolerance of their normal values means detection. If
the check is not passed, this leads to afault message.
Tasks related to detection and isolation can be
divided into the fdlowing stages:

Residual generation: computation of functions
that are sensitive to the occurrence of afault.

Fault decision: checking residuals if there is a
fault.

Fault isolation: identification of fault occurrence
time, type, size and source.

Computational requirements are a practica
problem regarding fault detection because agorithms
for detection and diagnosis are often computation
intensive. Nevertheless, this is not a problem for the
reason that batch-fermentations are generally carried
out over many hours or even days. Furthermore, a
detection agorithm must have two important
capabilities:

The ability to quickly detect the occurrence of an
abnormal event within a short period following its
occurrence.

The &bility to correctly identify the event, its
occurrence time and its magnitude.

One of the fundamental aims of supervision of a
biotechnological process is to promptly detect and
identify abnormal behaviors (faults) in order to take
corrective action for maintaining the fermentation
running. This capability is crucia for enhancing the
reliability of the operating equipment and to ensuring
a profitable operation. Examples of sources of faults
in batch fermentations are

A measured variable has a significant error.
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« The system description is incorrect because a
component has a composition different from that
specified or a component is not included in the
description of the fermentation.

= Abrupt kinetic changes are produced during the
course of the fermentation.

« The assumed measurement variances are
incorrect resulting in a poorly tuned estimation
agorithm.

= Since detection methods must be sensitive to the
occurrence of faults but robust to noises, modeling

Bioreactor

errors and signal variations, the following trade-off
exist [Isermann, 1984]:

= Size of faults vs. detection time.

= Parameter estimation rate vs. false alarm rate.

= Detection timevs. false darm rate.

Methods that are designed for detection of abrupt
changes are usually not suitable for state and
parameter estimation and vice versa These
considerations call for developing an innovative
approach and have motivated the methodology
presented below.

Disturbances Noises

Sensors —— )

Measured
controlled

variable

Measured process variables

Residual generation

Fault decision logic

. . » Fault time
Fault isolation

procedures

— Fault signature

Figure 1: Conceptua structure of the methodology for fault detection and isolation in fermenters

THE ESTIMATION AND DETECTION
METHODOLOGY

An agrobic fermentation with production of a
single metabolite can be seen as three pardld
“chemical reactions’ denoted partiad metabolisms
[Minkevich, 1983]. These reactions are biomass
production, metabolite production and main substrate
oxidation. Thus, the aerobic growth of biomass (X)
consuming a carbon and energy source (S) and an
independent nitrogen source that can aso contain
carbon (Sy) while generating a metabolite P, CO,,
and H,O can be written as

Biomass production:

1 1
CaoHp2Oc2Ngo + CasHpaOcsNgs ®
Vxis Yxin (La)
1

CHp1OcNygy + v
X/CO2

H,0 +

co,
X/H20

Metabolite production:

1 1
CaoHpoOaNgy + 0, ®
Yers Yp/02 (Lb)

L o+t

CasHp3Oc3 +
Yp/H20 Yp/co2

co,

Main substrate oxidation:;

Ca2Hp2OcoN gy + 0,®

S/02

1 1

CO, + H,0
YS/COZ YS/HZO

Compositions of components X, S, P and S, are
expressed by their atomic formulae CHy;OciNg,
CaoHpzONe2,  CasHpsOs  and CayHpsOcsNas,
respectively (the metabolite is assumed to be a
nitrogen-free component). The kinetics of each
reaction are characterized by the evolution of each
one of the relevant reaction components: X, P and S
(quantity of oxidized main substrate). Expressions
(1) can be expressed as
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0
%X/S }/YX/N
0
e%(P/s }/YP/OZ
0
}/YP/OZ

@ D>

or
Cy,,,DI =0 (2.b)

where C, ;1S a matrix of stoichiometric yields Y/,
and Dl is a vector of net production of the system
components. Since element balances are constraints
that must dways be satisfied, they are constraints to
be met by the fermentation “reactions’. These
balances mean four constraints (one for each element
considered: C, H, O and N) to be met by the relation
between seven components (X, S, P, Sy, 0., CO, and
H,0). Thus, an aerobic fermentation with formation
of asingle metabolic product has ( 7-4 ) = 3 degrees
of freedom and unknown component evolutions may
be obtaned from the knowledge of the
stoichiometric yields Y,; and three component
evolutions. Thus, if there are more than three
measurements of component evolutions, an overlap
of measurements is produced. This overlap and
conservation equations (2) provide constraints to
improve the accuracy of measurements and to detect
significant errors in measurements or in the model
used by a fermentation observer. In this way,
congtraints (2) can be lumped into a conventional
detection methodology for building an efficient
estimation and detection procedure. To do this, let us
assume that the dynamic model of a batch
fermentation is represented by the usua nonlinear
state-space formulation:

ag (k) U 0
& DO, ] ('j ggQ OURdtB :
QSDCOZ Uon- line = g‘§ ‘t(k)chdtg N
g eDSu : =Q on-line
¢ eDX ¢S [S] N
g gDPHoff line (E.( g é [X] u =
- (k) A ! :

S 8 [P] Hoff-line a(k)

10
%X/COZ

e DS u
a
ug DS\
Yx/H20 UeDOZL:J &0
U_ &y (2.8
%P/COZ %P/Hzow DX u ‘;3‘0‘,1
¢ DP ﬂ €0y
}/YS/COZ }/YS/HZO 8aDCO,
&DH,0H
x =f(x,u,p) (3.)
y =c(x) (3.b)

In this formulation, kinetic parameters p appear in
the dynamic function f(-), while if some of the
fermentation components are measured, balances
congraints are in the state-measurement relations
c(-) [Dondo and Marqués, 2002]. In order to explain
this, let us assume that the fermentation states are the
biomass concentration [X], the metabolic product
concentration [P] and the amount of main substrate
oxidized OS7). The amount of oxygen consumed
(DO,) and the amount of carbon dioxide produced
(DCO,) are on-line measurements, and the biomass
concentration  [X], the metabolic product
concentration [P] and the man substrate
concentration [S] are off-line measurements. Thisis
probably the most common  measurement
arrangement in batch fermenters. From expression
(2.9) it is clear that the relation between these main
components is linear. Thus, the relation between
states and measurements is aso linear [Dondo and
Marqués, 2002], and it can be expressed as the
product of a matrix of stoichiometric coefficients C
by the vector of states X):

Yik) = CXigky (4.9

g 0 1 1 u
Y Y u

& P/02 s/02 u
é 1 1 1 eX X0
é as oU
éYX/COZ Ypicoz  Ysicoz ué a
é 1 1 a€ P (45)
é 1 g R U
& Yxis Yers s Ut (k)
é 1 0 0 u
é g
g 0 1 0 9
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Since most kinetic models of batch fermentations
are nonlinear and have parametric uncertainty,
adaptive nonlinear observers are used for monitoring
this kind of processes [Gudi et a., 1994; Dondo,
2003]. Although the use of off-line information
within the adaptive estimation procedure makes the
estimates more robust, the uncertainty of estimated
variables (given by the state covariance matrix) is
relatively high [Dondo, 2003]. This uncertainty is
also manifested as high values of the measurement
covariance matrix and reduces the sengitivity of any
detection test [Wilsky, 1986]. Hence, hypothesis
distinguishibility is rather difficult. Consequently, to
promptly detect a fault, a sensitive logic that takes
into account the past history of the system as well as
parametric uncertainty must be designed. The
approach to the estimation and detection problem
presented here relies on an intensive use of Statistica

criterions as indicators of a faulty process. These
criterions are based on “signatures’ of the
fermentation which are monitored and compared
with a priori estimations based on the unfaulty model
of the system. Statistical indicators are adso used to
determine the occurrence time of faults and their
identity. The operative logic of the estimation-detection
procedure is detailed in the following subsections.

Normal Process Operation

Let us assume that a multi rate extended Kaman
filter (EKF) is used as fermentation states and
parameters estimator (Table 1). The innovation
sequence of the filter is defined by

Gy = Yick) - CXe(k/k-1)) ©)

Tablel: The EKF as state and parameter estimator

Prediction equations

éxu &

+oe L'Pt

€ u ~énu <
epu(k/k-l) goUt(k-l) t(k—l)e 0

_ . a&Xfyu s T A 0
Pokik-1 = P t 0 géOQP+ ngx OH+ Q-dt
(k.1)€€ %]

Q gxup

Correction equations

&lu O
Vi :aTCxo]Pt(k/k-l) e *u+S:
00 g
&l .
K =PR(k/k1)@ <0V
€0q

éxu éxu
éu “éeuq +K (Vi) - SXe(k/k-1))
€P Gy Pl (k/k-1)

R = Poik-1 - K[exO]Pykik-1

In amultirate EKF, the dimensions of vectors yy) and ¢(xt«-1y) changein
accordance with the available measurements

where Y is the measurement vector value at time
t(k) and c(Xwx1) IS the prediction of the
measurement vector value based on prediction of the
state vector value X-1). If there are no convergence
problems and under the no-fault hypothesis (the
model corresponds to the redity and the
measurements are unbiased and corrupted by
independent sequences of “white noises’), sequence
Ok, should be a zeromean V., covariance
sequence, where 'V is defined by

o &, TU
Vi :SCXOHPt(k/k-l)g 0 8+s (6)

In eg. (6), o is the Jacobian matrix of c(Xk-1)),
Pukxay 1S the predicted state-covariance matrix at
time t(k) and Sis the matrix of noise variances of the
measurement vector. Faults and abrupt dynamic
changes are usually manifested as unexpected values
of Y. Therefore, a non-zeromean sequence
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indicates a possible fault. For testing the zero-mean
hypothesis, the following datistical indicators are
proposed:

K U
2 gtu) t(J)gr(J)
a

g =— e 0% g (7.9)
Wj =k W+lg M) H

k €4 2u
i 1 2 gt(j)
(S laiv a & u (7.b)
j=k- W+l t(]) q

Kk Eyi Tyitt iU
R S S-S0 V09 (7.0)
W=y A & o7 -
j=k-wg t(i) 4

In eq. (7.8), kx represents the sum of normalized
squared innovations on time forizon w and m; is
the dimension of the measurement vector at time t(j).
In eq. (7.b), I is the sum on time horizon w of the
squared innovations of measurement i normalized by
their variances vi>. Finaly, Iy, represents the sum of
normalized sguared innovations of al but i
measurements on time horizon w. The measurement
covariance Vy; is computed by the EKF. Matrix V'
'y and the variance n'y;,” are extracted from V). For
a selected window size, w, the effect on residuals at
times t(j) £ t(w) is neglected. Under the no-fault-
hypotheSiS, variables I[(k), Ilt(k) and f't(k) should be C2
distributed variables with S"-; my;, w and Si,"
(my)-1) degrees of freedom, respectively. Therefore,
by defining thresholds j ,j 'and j * with confidence
levels selected a-priori, it is possible to carry out the

&)31(k)

following tests:

lty £] P Normal operation

_ ' (8.9)
lty >] P Abnormal operation
t(k) £j' b Norma operation
o (®b)
Ity > i' P Abnormal operation
lio £] 7' P Normal operation
(8.)

liky > ~' P Abnormal operation

Statistical indicators, l(k), ft(k) and I-It(k), Computed
on the wlag dliding window, provide simple and
efficient detection tools. However, since the diding
window involves residuals from nonlinear filters and
alimited sample size, actua indicator values will not
be exactly c’-distributed. Detection thresholds cited
above, which are based on asymptotic properties,
should therefore be approximate. Thus, persistence
tests (the indicators must exceed their thresholds
over agiven time period) should be used to cut down
false alarms due to spurious and unmodeled events.

In order to avoid convergence problems due to
the effect of nonlinearities and to keep variables |y,
I and I'y, sensitive to occurrence of a fault, the
value of Py must be keep as small as possible
[Dondo, 2003]. For this purpose, each time that there
is an off-line measurement available, a maximum
likelihood optimization is used in a time window W
=1(0),...,t(k):

max L(p)=--¢ Q (Yt(J)' C(Xt(ml))) Vt(j)(yt(j) - (Xt (jrj1)) +In|vt(J)| ©)
e t()=to u
subject to
Q) K= Pt(j/j-l)C>T< Vt-(jl) (10.d)
[X]t(j/j-l) :[X]t(j-l) + O f(X,U,p)dt (10a~) [X]t(j) = [X]t(j/j-l) + K(yt(J) - C(Xt(j/j-l) )) (106)

t(j1)

)
O (1xP+Piy
(i)

Pl(j/j-l) = Pt(j—l) + T + Q)dt (10b)

— T
Vi) =\ exRri) Cx +S) (10.c

Pui) = R(rja) - KexPgija) (20.f)

This maximization fulfills two tasks: (i) it keeps
estimated parameters as near as possible to the true
parameter values D avoid divergence of the EKF
monitor and (ii) it keeps the covariance matrix Vi,
as small as possible in order to maintain ky, I, and
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I"qw Sengitive to minor variations in the innovation
sequence. This permits use of small sliding-window
Ims, W, and then variables I[(k), ft(k) and f't(k) will be
ableto quickly react to an unexpected event. The use
of smal diding windows is criticaly necessary
because of the use of adaptive observers. This is
because effects of unexpected measurement values
on innovations are manifested as correction of the
estimated parameter vaues and will promptly
disappear. Maximization (9) had been a very difficult
task, particularly in the case of nonlinear systems
[Young, 1981]. Main difficulties reported in the
literature are the need for considerable computational
power and the computation of analytical Jacobian
and Hessan for the maximization agorithm.
Nevertheless, these difficulties have been practically
overcome because of the tremendous advances in
computational power and the development of
efficient minimization methods that do not use
Jacobian and Hessian matrixes (Downhill simplex
method due to Nelder and Mead and Powell’s
method [Press et a., 1992]). Since the maximum
likelihood estimation gives the minimum-variance
estimates [Menddl, 1995] it is utilized for on-line
state and parameter estimation in a specified time-
window W = (tg ... fw) in order to reinitidize the
monitor Kalman filter with minimum variance states
and maximum likelihood parameters. Time-window
lag, W, must be large enough to alow a significant
collection of information, but small enough to avoid
lumping parameter variations.

On the other hand, if there are redundant state-
measurement  relations  when an  off-line
measurement is available, the following nonlinear
least-squares estimation of states and measurement
can be obtained:

V] -1
) 1 11 \
Xt(k) =X +&x Ox Y & Vi - SXeg)l (A1)

u 1
yt(k) = (X)) *Cx Ebx Cx b

. ] (12
Cx i - (X)) H

If the difference between xtL(Jk) and X IS not

acceptable, it is possible to re-estimate the state and
measurement vectors by recalculatl ng egs. (11) and

(12), replacing X by Xt(k) and c(Xw) by yt (k)
respectively. The procedure can be repeated until no
significant modifications of estimates are obtained
[Menddl, 1995]. Thus, the following residuals vector

and covariance matrix can be defined as follows
[Dondo, 2003]:

U
€y =Yk - Yiw (13)

_ f Tol, gla T

Now the following statistical indicators can be
computed:

heky =€t R e (15.9)
! .2
i K
{(k) é t() (15.b)
St(k) ﬂ

hity =€ 00 P' ey, (15.0)

where variance siz is extracted from variance matrix
P. Variable k" is computed using al but the i
measurement and P'. is caculated by eq (14),
eliminating columns and rows related to
measurement i from matrixes S and cx. If the
measurement arrangement is given by eq. (4.b), the
Jacobian ¢ isto be replaced by C, and, for tests hy,
h\, and Ky, the nonlinear least-squares egs. (11)
and (12) are ssimplified to the linear case:

Xt(k) =gc’cy CTyt(k) (16)

u AT~ L AT
Yy =CE& CH C vy 17)

If elements of e, are assumed to be zero-mean
and Gaussandistributed, under the no-fault
hypothesis, hy, Hyx and h'y are approximately c*-
distributed variables with (nrm), 1 and (n-m-1)
degrees of freedom, respectively. Thus, the
following tests can be conducted:

hiyw £9P Norma operation
(18.8)
hi >qP Abnorma operation

hit(k) £q' P Norma operation
o (18b)
‘o >d P Abnormal operation
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hito £ ' P Normal operation
‘ _ (18.c)
hi) >a' P Abnorma  operation

In expression (4.b) there are n = 3 statesand m =
5 measurements and therefore the degree of
redundancy is 2. Furthermore, as there are two on-
line measurements (DO, and DCO,), it follows that
It(k)OZ = It(k)-COZ and viceversa.

Variables defined by egs. (15), when available,
and by egs. (7) form a set of statistical indicators that
provide strong indications of the occurrence of a
fault. For example, if on-line measurement i is
suddenly biased, |4 should indicate the occurrence
of an unexpected event, 'l should show a sharp
increase in its value and I'y should be quas-
invariant to this bias. When an off-line measurement
is available, indicators hy, Hix and h'y, should also
have asimilar behavior.

Tests (8) and (18) give an intuitive justification
not only for use in fault detection, but aso for
formulating a detection/diagnosis scheme. This
approach consists of including in the extended
Kaman filter various possible faulty models,
estimating their parameters by a maximum-
likelihood approach while testing indicators hy, h't(k)
and h't(k) for these models and then choosing the
model with the maximum log-likelihood function.

ét(i)=t()

This diagnosis scheme will be detailed in the next
subsection.

Faulty Process Operation

If a fault is detected, its cause should be
identified. Once the information needed to detect and
diagnose faults (residuals and measurement history)
has been accumulated, it is necessary to interpret the
information in various ways. whether or not there is
a failure, the probability of occurrence of a failure
and the failure most likely to have occurred. Each
hypothesis (i.e, sensor drift, formation of a by-
product, etc) will demonstrate a specific time-
dependent pattern in measurement evolution and
tests l(k), Ilt(k), I_It(k), h[(k), hlt(k) and h_lt(k). The idea
behind this is that the signature of the measurement
evolution contains information on the kind and
magnitude of the fault. Thus, every suspected fault
characterized by a given type (I), identity (J),
magnitude (u) and occurrence time (t) is smulated,
and data from these smulations are used to estimate
the faulty model states and parameters and to define
hypothesis log-likelihood functions L, {u, t). The
technique can be viewed as an extension of the
generaized likelihood ratio method (GLR) [Wilsky,
1986] to the nonlinear case. The genera form of the
resulting log-likelihood maximization problem can
be written as

[o]
maq mac; max Ly(u) =-28 & (¥ig) - U i) Vih (Ve - 60U Dy +'”‘Vto>‘ (19)

eti)=o
subject to

t(j)
[X]t(j/]l) [X]t(, pt Ofuxuput)d (20
t(j4)

t0) ey (u, t)P+ 0

— A X ! - 20b

Puirin =P+ 0 € L (20b)
() E+PIx(u )T +Q g

V() = (cuit kRencut)x +) (209

K =Pyj/p2yCx (U )TV (U, )iy (20.d)

[X]t(j) :[X]t(j/j-l) +K(Yrg) - CuXegriay - ust)) (20.€)

Peiy =Rjrja) - Kex (W )Rj/ja) (20)

where p denotes the previoudy estimated parameters
of the unfaulty process model and (Yij) — CilXgj-
1)u,t)) denotes residuals from the (1, J) faulty-model
filter. Log-likelihood function values L,y ut) are
computed for each aternative fault location and
structure and are ranked from largest to smallest to
assess the appropriateness of a particular hypothesis
about the unknown event. In addition, the evolution
of indicators hy, hix and h'y, provides further
information for discriminating between different
hypotheses.
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a) Detection and I solation of Significant M easurement
Errors(l =1)

A measurement bias can frequently be found.
Then the mean of its measurement noise is different
from zero. Sensor drift or inaccurate calibration may
cause the bias. This type of error can be disastrous
when the measured variable is used to determine
another process variable for control purposes and it
must be promptly detected. But if on-line measured
variable i has a significant error, the i element of the
innovation sequence is biased, and therefore the
value of |, should increase, a sudden and large
change in the value of Iy, is expected and I"yy
should remain below its threshold. Furthermore,
when an off-line sample is analyzed, hy, Hy), and b
'« Should show a similar pattern. Thus, the error can
be detected by anadyzing the behavior of these
datigtical  indicators. Failure parameters are
estimated by maximizing the log-likelihood function
(19). In the same way, if off-line measured variable i
has a significant error, since indicators I, I and I
'« cannot be calculated, the value of ky, should
increase, a sudden and large change in the value of
h' is expected and h'yy, should remain below its
threshold.

If the state-measurement relations of the
fermentation observer are given by eg. (4.b),
variables J(k), |02t(k) and ICOZt(k) dlow detection of
significant errors in on-line measurements DO, and
DCOZ. Andogously, variables h[(k), hlt(k), and h-lt(k)
alow detection of d€gnificant errors in off-line
measurements DS, DX and DP. In principle two
simultaneous but related measurement errors can be
detected. For example, if there is a fault in the gas-
flow measurement device, DO, and DCO, will have a
correlated bias. Thus kg, P and I°%%, indicators
will not trigger the dlarm but indicators hy, Hi and
h'iw will do it. Since residual vectors are usualy
rather inaccurate, a search of two simultaneous error
sources  will not give trustworthy results.
Nevertheless, simulation of a hypothesis with a
simultaneous and corrdated drift in DO, and DCO,
should give the maximum log-likelihood-function
value.

b) Detection and Isolation of Incorrect System
Descriptions (I = 2)

If the evolution of some system components is
measured and introduced into eq. (2.b), due to
measurement noises this equality will never be
exactly satisfied. It can be better written as

Cy,,,Dl =n (21)

where n is a residuas vector. Its expected value
under the non-fault hypothesisis 0. But in addition to
measurement noises, error in the specified constraint
(2) may occasiondly be encountered. This may be
due to time-varying or ill-defined component
composition (i.e., biomass), a component omitted
from the balance equation or an alternative metabolic
pathway (e.g., partial substrate oxidation). This kind
of error will result in incorrect balance onstraints
and must be distinguished from measurement errors.
As adaptive observers are used for monitoring batch
fermentations, tests I, I and I"y are not sensitive
to this type of error. This is because the effect of
these errors is manifested as a correction of some
parameter values, resulting in residuals close to the
zeromean knowncovariance hypothess. Nevertheless,
snce the specified matrix Cy ;5 IS incorrect,
indicators h, Hix and h'y will trigger darms. To
summarize, aarms triggered by variables Ry, hy
and hlt(k), while variables l(k), 't(k) and f't(k) indicate
normal process operation, can be interpreted as an
incorrect system description. Other evidence that
permit to detect a composition error are (i) no
measurement error can cause aresidua vector of the
given form and (ii) measurement errors that may
cause aresidua vector of the given form are checked
by tests k), ' and I"y and found to be correct.

Incorrect Component Composition

Composition of X and P (if P is a complex
product) may not be exactly known or may be time-
varying, resulting in incorrect or time-varying
element constraints, e.g., the biomass N content can
vary with time. Therefore, the detection and
diagnosis of other errors will be rather difficult.
Nevertheless, there may be heuristic information that
can be used within expressions (2) and (17) for
reducing uncertainty about the biomass composition.
For example, it is known that the biomass C content
is fc » 0.48 with a relative variance of 5% and that
the degree of reduction in the biomass “mol” ~ is g »
4.25 with a relative variance of 4% [Erikson et d.,
1978]. These data together with the elemental
composition of S, & and element balances can be
used to derive linear relationships between Y*y\
Y*ys and Y*ycop.  With this information and
measurements i), the isolation problem can be
written as the maximization of the log-likelihood
function (19) subject to the EKF equations that
include a modified yields matrix C':
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u
% X102 )/YP/OZ )/YS/OZ u
u
u
C = é}/Y X/CO2 }/YP/COZ %ycozu (22)
)/ }/ 1 4
Y x/s Ypis u
? o U
é u
é 0 1 0 o]

Missing Components

An analogous procedure is useful to identify the
formation of a suspect by-product. Thus, its isolation
can be written as the maximization problem given by
egs. (19) and (20), but now C* includes a column of
stoichiometric yields of the suspected by-product q
in the measured components:

}/YX/OZ %P/OZ %5/02 }/YqIOZ
e)<(></coz %P/COZ }/YS/COZ %q/coz

(23)

[ x¥ en ex¥ enly ex en} en Y en Y ey end

C=é % /1/ ¢
é Yxis Yeris Yq/s
€ 1 0
é
é 0 1 0 0

The mol of biomass is defined by the formula
CHpOuN . The degree of reduction of amol of biomass
isdefined as 4+b1-2¢1-3d1 [Erikson et d., 1978].

No distinction can be made between an omitted
component and a component composition error.
However, many components are precisely defined
(O, CO, and many times S), a limited number of
components (X and sometimes P) lack a defined
elemental composition and a limited number of
substances are suspected to be omitted by-products.
Thus, if probable composition errors for X and P do
not cause residuals of the given form, it can be
inferred that a component is omitted from constraints
(2). It must be noted that, since the matrix C*
defined by eq. (23) has one more column than the
matrix C* defined by eg. (22), the degree of freedom
is reduced to 1 and therefore the threshold g has to
be corrected. Finaly, if a component composition
error or a missing component is detected, the states
and parameters of the process can be re-estimated by
maximization of the loglikelihood function (19)
from the identified occurrence time to the present.

c) Detection and Isolation of Abrupt Kinetic
Changes(l =3)

Abrupt kinetic changes ae caused by
physiological disturbances that are manifested as

parametric or structural changes in the process
dynamic f(-).Therefore they do not affect the state
measurement relations c¢(-). Thus, if this kind of
dlsturbance is produced, indicators hy, Hqo and H
'« Will not trigger alarms because constraints (2) are
still valid. Nevertheless, abrupt changes in kinetic
parameter values will be reflected as a nonwhite-
noise innovation sequence that will increase the
vaue of indicators kg, I and I'gy. Summarizing,
alarms tl‘lggered by indicators It(k)v It(k) and It(k)1
while variables hy, Ht(k), and Ht(k, indicate normal
process operation, mean abrupt kinetic changes. As
for the previous hypotheses, they are to be isolated
by maximization of the log-likelihood function (19)
for various possible kinetic models.

d) Detection of Poorly Specified Variances (I = 4)

A practical detection algorithm must be able to
detect smdl errors and must be reliable. These two
properties are in conflict with one another. In order
to achieve high reliability, strong indications of error
are necessary. But high sensitivity to error means
that indicators may respond to minor disturbances.
This, however, may also be caused by measurement
noises or modeling errors instead of rea faults. If
specified measurement variances are too small,
detection tests It(k); Ilt(k), f't(k), h(k), Ht(k) and Ht(k) will
be very sendtive and they will produce too many
fadse darms. On the other hand, large specified
variances will cause excessve smoothing and
detection tests will be insensitive to real faults. Thus,
well-tuned filters are crucial for detection reliability
and sensitivity. Incorrect measurement variances can
only be detected if sufficient samples have been
taken. Thus, measurement variances can be
estimated on-line and compared with specified
variances for performing the following tests:

U
Sj

o
:»1'3 Estimated variances, u?, (24)
2T<<1ID
SI

are larger than the specified ones, u_i2 :
U
Estimated variances, u?, are smaller than the

specified ones, u?.
U 0
2

i »1p Estimated variances, u?, (25
2

s.

are similar to the specified ones, u? .
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Measurement variances can be evaluated in aw’
lag diding window by

U k
1
h

_ o} RV
w1 .+1(d““ ) (26)

Furthermore, effects of poorly specified variances
can be evduated by on-line computing resdua means.

N T S
— i
rT]t(k) _W a gt(j) (27)
j=k- w'+1

Values for these means significantly different
from zero indicate that the observer had “lost”
information due to specified variances that were too
large. If gpecified variances are incorrect, the
estimated ones can replace them and the estimation
procedure can continue with the new variances.

In order to avoid frequent retuning of the filters and
interference with detection tests, time windows w’ used
for monitoring resdud means and variances must be
considerably larger than the ones used for detection
purposes. Noise corrdation tests are dso advisable,
especidly in the case of on-line measurement.

COMPUTATIONAL IMPLEMENTATION AND
TESTSRESULTS

The joint estimation-detection algorithm performs
three tasks: (i) It propagates the states of the system
and the error covariance matrix from one observation
time to the next one. (ii) It conducts tests to
determine whether or not afault has occurred. Thisis
done by generating k), fiw and I'y, indicators in a
diding window of selected size and, if an off-line
sample is available, by computing hy, h'y and h'y
indicators. These variables are compared with their
critical thresholds as described previously and a fault
condition is identified when a critical vaue is
exceeded. (iii) It updates the state and parameter
estimates and the error covariance matrix after a
measurement is processed. This update is done using
the EKF correction eguations if no off-line
measurement is available or by maximization of the
log-likelihood function (9) if an off-line measurement
is avaldble A flow chat that summarizes the
estimati on-detection procedure is presented in Fig. 2.

The Case Study

Shu and Yang [1991] studied the effects of the
temperature on xanthan gum batch fermentations.

They proposed a kinetic model in which growth is
modeled by the logistic equation. The equation of
Luedeking-Piret was used to model the product
formation rate and the glucose consumption rate. The
parameters of these equations were expressed as
functions of temperature. These equations and the
structured model proposed by Pons et al. [1989]
were used to construct a stochastic model (Table 2)
for utilization as a fermentation ssmulator [Dondo,
2000]. On the other hand, Cacik et a. [2001] used
the model of Shu and Yang for calculating an
optimal temperature profile that permits a given
quantity of product to be obtained in a minimum
time. The resulting profile shows an abrupt
temperature change at atime that is a function of the
initial biomass concentration and of the desired final
product concentration. When this profile is applied to
a rea fermentation it may produce unexpected
abnormal behaviors [Dondo, 2000]. Thus, it will be
applied to a modified fermenter simulator. The
modifications were introduced for simulating the
following abnormal behaviors:

M easurement biases;

Errors in some stoichiometric yields Y5

Generation of an unidentified by-product (acetate
sats);

Intracellular accumulation of metabolic products
as a conseguence of abrupt changes in temperature;

Abrupt changes in some kinetic parameters as a
consequence of abrupt changes in temperature.

Equations for smulating these abnormal
behaviors are presented in the appendix. Models of
the observers used by the estimation-detection
procedure are also summarized in the appendix.

Test Results

Test cases are presented below to demonstrate the
ability of the estimation-detection program to detect
different faults. For each test, the system was
simulated with measurement noises included and the
faults were imposed at a specified time. The
estimation-detection  agorithm  processed the
measurements on-line. The aim was to assess the
ability of detectors to accurately determine the
presence of an abnormal behavior within a short time
following the actua occurrence of the event as well
as the reliability of the detector in not giving false
alarms. For each observer, continuous-time nonlinear
differential equations were used to predict the states
of the system from one observation to the next by
usng a Runge-Kutta 4th-5th order algorithm
[Forsythe et a., 1977]. The Jacobian matrix
computed in the linearization process was used to
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compute the differential Ricatti equation and the
covariance matrix for each time interval. By using
the EKF monitor, the updated estimates and the
updated covariance matrix were computed and used
asinitial conditions for the next interval. Afterwards,
if there was an off-line measurement available,
maximum likelihood estimates were obtained by
usng the downhill-smplex minimization method
[Press et al., 1992]. The monitor filter provided
initial states and parameter values and after the
optimization it was reinitidized with maximum-
likelihood states, parameters and covariances. The
routines were written in a commercia programming

EKF
prediction

|

No

A

language and optimizations carried out for 20
seconds in a Pentium 166 Mhz 64 MB RAM PC.
The monitor filter aso computes the innovation
covariance matrix thet is used to calculate decision
variables Iy, 1k and 'y on a 12 samplelag dliding
window. Alarm thresholds have been fixed in the
values described on (Table 3).

When an adam was triggered, maximum
likelihood suspected faults were diagnosed.
Computation times for testing each hypothesis were
on the order of 15 seconds and ten different
hypotheses were evaluated. The reliability of the
resulting diagnosis was also studied.

Faulty process operation

M easurement
history

Detection tests Takethe \
o T Vi sample !
! Initial
] conditions of
} hypothesis
Detection tests i
i -i I
e, g Mgy e, !
) Mg i I
Yes !
Increase of f- !
Fault —»  linesampling i
frequency I
|
No l I
Yes ML stateand  |qe— v
Fault parameter i
\ estimation for Feedinthe
new
faulty _ hvoothes
EKF' hypothesis lypothesis
correction No
Fault.
corlfgctfon Alternative
model
Evaluation
criteria
ML state and
parameter
estimation
> Most
" probable fault
identified
Unfaulty process operation
A
Process the next Takecorrective
measurement actions

Figure 2. Overview of the estimation-detection methodology.
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Table 2: Stochastic model used as fermentation ssmulator

Kinetic equations

o]
Biomass production: (?[ —=X
e Asg
. : 6e S 0O
Gum production: P= aX+ bX_Q
S+ ksz
& i 0
X P
Glucose catabolism: & o—+ kATPX
gYX/ATP Ypiatp Z
3+12(P/O)
Total gl nsumption: L E p o0
otal glucose consumption: 5=.¢ . +SRE
gYX/S Yprs +
a
Carbon dioxide production: co, = X P Sh
, =
Yxico2 Ypico2 Ysicoz
Oxygen consumption: o, =P . =)
=
Yp02 Ysio2
Deterministic parameters Stochastic parameters
Yx/atp = 10.5 Yxn =N(m=8.0,s=0.5)
Ygo2 = 0.9375 dp = N(m=0.38, s = 0.03)
Ysicoz = 0.687 P/O= N(m: 13,s= 04)
PM p= 906.2 kMATp: N(m: 05, S= 01)
Yatr’ =10.9 ks=N(m=1.8,s=0.4)

Stoichiometric yieldsthat depend on stochastic parameters

Yrcoa= 36.872 - 5.24cp

Yps=0.97875 - 0.1625dp

Ypio2=20.9124 - 13.3120p

YnapHze = 2.44 + 3do

Yxicop=2.96 + 1.19Yxn

Yyxs=-0.78 + 0.32Yyn
PMp

YpiaTp =
Yatp- YNADH2/PYATPINADH2

Kinetic parameters. The kinetic parameters are modeled as the sum of the equations
p(u) proposed by Shu and Y ang and two stochastic disturbances Dpy and Dp,, as follows:

p(u) = p(u)+ Dpo+ Dpy(u-29°C) p(u) = my(u), X<(u), au), b(u)
These disturbances are model ed as zero-mean Gaussians with variances detailed below:

p(u) p(u) s”Dpo s”Dpy
my(u) [0.0405(u -11.69)(1- 26U~ 3517)] 0.02? 0.0052
X<(u) (1.58 + 2.02 e 220uy/(1 + €250- ) 0.40° 0.100
a(u) [0.209 (u - 20.44)(1-g *486u- 3275))] 0.60° 0.100
b(u) 1.61, 10%3g%80u 0.02? 0.0042

M easurement equations
(K - = - =
DOy =() Oaflt+N(O:s =003, DSig =So - [S+N(0,s =005
DXy =[X]+N(0,s = 0.10),
RO
DCOgx) = Q CO,dt +N(0, s =0.03) DP,(k) =[P] + N(0,s =0.25),,

Brazilian Journal of Chemical Engineering Vol. 21, No. 03, pp.367- 392, July- September 2004



380 R. Dondo

Table 3: Alarm thresholds (Approximate confidence level: 95%)

Indicator

Threshold

1.50
1.40
1.40
6.00
4.00
4.00
4.00
4.00
4.00
5.00
5.00
5.00
5.00
5.00

a) Unfaulty Fermentation

To observe the behavior of the estimation-
detection methodology, an unfaulty case is presented.
Initial conditions and stochastic parameters used to
smulate this run are presented in Table 4. Fig. 3
shows the evolution of indicators l, %% and 1°%%,
and Table 5 shows the evolution of indicators k),

hiw and h'yy for this case. These indicators were
compared to their thresholds for detection tests and no
faults were detected. Thus, estimated dtates are
assumed to be correct. They can be compared with
‘red’ dtates in Figs. 4. Note that, in spite of errors in
some stoichiometric yields and uncertainty in the
kinetic parameters, an excdlent agreement between
estimated and real state variables was obtained.

Table 4: Initial conditions and stochastic parameter s used to simulate the unfaulty fermentation

"Real" initial concentrations:

Xo=00133 g/, S = 25.045 g/l.

Stochastic parameters

P/O=1.298,dp=0.41, ks= 1.066 g S
YX/N =7.88 [¢] X/g N, kATpm =0.589 mol ATP/g Xh

Stoichiometric yields

Yx/s =1.741 g X/g S ijcoz =12.335
gX/gCO, Yps = 0.9121 g Plg S

Yp/coz =32.99 g P/g (:()2y Yp/02 =15.45 g P/g 02
YnapHzp = 3.67 mol ATP/g P

Kinetic disturbances

Dy o = -0.036 h', DX g0 = 0.155 g X/

Day = -0.541 g Plg X, Dby = 0.0113 g Plg X h
Dmy . = -0.0004 h'Y/°C, DX s, = -0.0070 g X/I°C
Da, = 0.130 g P/g X°C, Db, = 0.0031 g P/g X h°C

1.2 t(k)
......... [0z |
k)

104 ___. |coz

0.0

112

410

08
{06

104

40.2

+40.0

10

Time (h)

30 40

Figure 3: Evolution of indicators hy, %y and 1%, for the unfaulty run
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Table 5: Evolution of indicators hy, hy and hy, for the unfaulty run

t(k) hg | W% | "™ | b | % | h | W% [ W% | S | % | hPg
2.76 3.7% 0.477 1.468 1.563 0.176 0.109 3.316 2.325 2.230 3.618 3.685
5.76 3.401 0.416 2.307 0.58 0.055 0.043 2.984 1.094 2.821 3.345 3.358
8.76 0.015 0.002 0.006 0.006 0.001 0.000 0.013 0.009 0.009 0.014 0.014
11.76 1.100 0.270 0.295 0.452 0.052 0.031 0.830 0.806 0.648 1.048 1.069
14.76 4.627 1.679 2.664 0.247 0.019 0.019 2.949 1.963 4.380 4.608 4.608
17.76 0.709 0.483 0.006 0.184 0.023 0.012 0.226 0.702 0.525 0.685 0.696
20.76 0.310 0.055 0.103 0.129 0.015 0.009 0.255 0.207 0.182 0.296 0.301
23.76 0.278 0.089 0.057 0.111 0.013 0.008 0.189 0.220 0.167 0.265 0.270
26.76 4.029 2.301 1.706 0.020 0.000 0.002 1.728 2.323 4.009 4.029 4.027
29.76 1.631 0.782 0.159 0.581 0.070 0.039 0.850 1472 1.051 1.562 1592
32.76 1.044 0.148 0.385 0.432 0.049 0.030 0.896 0.659 0.612 0.995 1.014
35.76 0.038 0.031 0.002 0.004 0.001 0.000 0.007 0.036 0.034 0.037 0.038
38.76 3.712 2.630 1.065 0.013 0.005 0.000 1.083 2.648 3.699 3.708 3.712
41.76 2.610 0.967 0.440 1.014 0.120 0.069 1.643 2171 1.596 2491 2.541
20 T T T T T T
——— "Redl" biomass concentration (g/l)
- - — - Estimated biomass concentration (¢/1) e o= S o T u_ h— =
11— "Red" quantity of oxidized main substrate (g/l) )
- — — - Estimated quantity of oxidized main substrate (g/l)
1
154
1.04
0.5
0.0 =" ; . . : . - .
0 10 20 30 40
Time (h)
Figure 4.a: Real and estimated values of states X and S° for the unfaulty run
20 T y T T T T
184 —"Red" product concentration (g/l)
16—- ------ Estimated product concentration (g/l) ]
14 .
12 .
10 .
8 - -
6 - -
44 i
2 - -
0 T T T T T T T T
0 10 30 40

Figure 4.b: Real and estimated values for the state P for the unfaulty run
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b) Faulty Scenarios

Test cases are presented below to demonstrate the
ability of the estimation-detection program to
identify an unexpected event and its characteristic
parameters. In these tests, the stochastic model was
started with the parameters in Table 4 under normal
operating conditions and the states were propagated
before a given bias was imposed a a given
occurrence time. Fault parameters are summarized in
Table 6. The tests always detected the occurrence of
a fault, reflecting the increased detection power
arising from multiple tests as can be seen in Table 7
and Figs. 5 to 7. Fault isolation is achieved by
hypothesizing aternative sources and by using the
maximum likelihood identification procedure in a
ten-hour time window (the six hours previous to the
alarm launch plus four hours from the alarm launch
for collection of dynamic information). The
identification is to estimate faulty parameters and
log-likelihood functions for each aternative. The
capability of the technique to distinguish between

R. Dondo

alternative hypotheses is reflected by the results in
Table 8. Thefirst table compares the term S;j=©~®
[(Yig) — CxUt)) Vi (g — cxuit))’] of the
likelihood function (19) for each hypothesis (1,J).
This is the critical term in eg. (19), since St(i)=t0t(j):t(k)
I/ ;%2 was amost constant. The second table
compares Sy=o" " (hg) for al hypotheses. Note
that this summation provides useful information for
further discriminating between different hypotheses.
Log-likelihood values for many hypotheses are
rather smilar, indicating similarity of dynamics for
different error sources. Furthermore, as can be
expected, measurement faults are clearly easier to
distinguish than incorrect system descriptions.
Nevertheless, the true hypothesis was correctly
selected in most cases, even with high noise and
parametric uncertainty. Estimated faulty parameters
are shown in Table 9. They can be compared with
true fault parameters presented in Table 6. The
results show that faulty parameters can be estimated
with fairly good precision.

Table 6: Fault parametersfor smulated faulty runs

Type I dentity OC(EIL_JirrTr]?ce Bias magnitude
Oxygen (J= 1) t3 20h +15% OUR.@0.014 gO,/lh
Carbon dioxide (J=2) t320h -20% CPR @-0.019 gCO,/Ih
Measurement errors(l = 1) Main substrate (J = 3) t3 22h -10% [S] @0.70 g Sl
Biomass (J=4) t3 23h +35% [X] @0.55 g X/I
Product (J = 5) t3 16h -7% [P] @0.15g P/l
Biomass N-content (J= 1) t30h Yy =5.20 gX/gN
Incorrect system Product composition (J= 2) t30h d=0.52
description (I =2) Missing component (J= 3) t330h 0.04 g/lh
Intracel lular product accumulation (J= 4) t3 28h 0.18gP/l h
Kinetic disturbances (I = 3) t3 28h Xs=3.9g X/l; b=0.27 gP/gXh

Table 7: Evolution of indicators hy, hi and hyg, for faulty runs

tk) | hgw | h% | h%% | hSg [ h% | hig | h®w [ h % | hSe | h¥a | hPg
(1=1J=3)
2.76 3.794 0.477 1.468 1.563 0.176 0.109 3.316 2.325 2.23 3.618 3.685
5.76 3.401 0.416 2.307 0.58 0.055 0.043 2.984 1.094 2.821 3.345 3.358
8.76 0.015 0.002 0.006 0.006 1E-3 0 0.013 0.009 0.009 0.014 0.014
11.76 1.1 0.27 0.295 0.452 0.052 0.031 0.83 0.806 0.648 1.048 1.069
14.76 4.627 1.679 2.664 0.247 0.019 0.019 2.949 1.963 4.38 4.608 4.608
17.76 0.709 0.483 0.006 0.184 0.023 0.012 0.226 0.702 0.525 0.685 0.696
20.76 0.31 0.055 0.103 0.129 0.015 0.009 0.255 0.207 0.182 0.296 0.301
23.76 105.59 20.581 33.233 43.761 4.991 3.03 85.016 72.364 61.836 100.60 102.56
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(I=1.J=4)
2.76 | 3.794 | 0477 | 1468 | 1.563 | 0.176 | 0.109 | 3.316 | 2.325 2.23 3.618 3.685
576 | 3.401 | 0416 | 2.307 0.58 0.055 | 0.043 | 2984 | 1.004 | 2.821 | 3.345 3.358
8.76 | 0.015 | 0002 | 0.006 | 0.006 1E-3 0 0.013 | 0009 | 0.009 | 0.014 0.014
11.76 1.1 0.27 0295 | 0452 | 0052 | 0.031 0.83 0.806 | 0.648 | 1.048 1.069
14.76 | 4.627 | 1679 | 2664 | 0247 | 0019 | 0019 | 2949 | 1.963 4.38 4.608 4.608
17.76 | 0709 | 0.483 | 0006 | 0.184 | 0.023 | 0012 | 0226 | 0702 | 0525 | 0.685 0.696
20.76 | 0.31 0055 | 0.103 | 0129 | 0.015 | 0009 | 0255 | 0207 | 0.182 | 0.296 0.301
2376 | 5.042 | 2016 | 0746 | 1.921 | 0228 | 0131 | 3.026 | 4296 | 3.121 | 4.815 4.911
26.76 | 6.56 0.03 4217 | 1968 | 0.204 | o0.141 6.53 2.342 | 4592 | 6.355 6.419
(I=1,J=5)
2.76 | 3.794 | 0477 | 1.468 | 1.563 | 0.17/6 | 0.109 | 3.316 | 2.325 2.23 3.618 3.685
576 | 3.401 | 0416 | 2.307 0.58 0.055 | 0.043 | 2984 | 1.004 | 2.821 | 3.345 3.358
8.76 | 2437 | 0002 | 1472 | 0819 | 0087 | 0058 | 2436 | 0965 | 1.619 | 2.351 2.379
11.76 | 2469 | 0.617 | 0.652 | 1.013 | 0.117 0.07 1.852 | 1.817 | 1456 | 2.352 2.399
14.76 | 0616 | 0.058 0.42 0.118 | 0.011 | 0009 | 0559 | 0.196 | 0.498 | 0.605 0.608
17.76 | 0.115 1E-3 0.066 | 0.041 | 0004 | 0003 | 0114 | 0049 | 0.074 0.11 0.112
20.76 | 1.276 0.25 0.4 0.529 0.06 0037 | 1026 | 0876 | 0747 | 1.216 1.24
2376 | 16.681 | 1621 | 7.025 | 65802 | 0758 | 0475 | 1506 | 9.656 | 9.879 | 15922 | 16.206
(1=23=1)
2.76 | 3.647 0.45 1.422 | 1502 | 0.169 | 0.105 | 3.198 | 2.225 | 2.145 | 3.479 3.543
576 | 3.159 | 0509 | 2114 0.46 0.043 | 0034 | 2651 | 1.045 2.7 3.117 3.125
8.76 | 0203 | 0047 | 0.057 | 0.084 0.01 0.006 | 0156 | 0.146 | 0.119 | 0.193 0.197
11.76 | 0101 | 0019 | 0032 | 0042 | 0005 | 0003 | 0.082 | 0069 | 0059 | 0.096 0.098
14.76 | 5248 | 4185 | 0842 | 0179 | 0.031 0.01 1.063 | 4.406 | 5069 | 5.217 5.238
17.76 | 10133 | 3.839 | 1648 | 3917 | 0462 | 0268 | 6295 | 8486 | 6.216 | 9.671 9.865
(1=2,3=2)
2.76 | 3.779 | 0476 | 1462 | 1558 | 0.175 | 0.108 | 3.303 | 2.317 | 2222 | 3.604 3.671
5.76 | 3.364 0.42 2.28 0568 | 0054 | 0042 | 2943 | 1.083 | 2.796 3.31 3.322
8.76 | 0.024 | 0.003 0.01 0.01 1E-3 1E-3 0.021 | 0.014 | 0014 | 0023 0.023
11.76 | 0955 | 0252 | 0241 | 0391 | 0045 | 0027 | 0703 | 0.715 | 0.565 0.91 0.929
1476 | 4283 | 1775 | 2325 | 0.159 | 0.011 | 0013 | 2508 | 1.958 | 4.123 | 4.272 4.27
17.76 | 1.001 | 0579 | 0075 | 0367 | 0045 | 0025 | 0512 | 1.016 | 0724 | 1.047 1.067
20.76 | 0991 | 0115 | 0.394 | 0407 | 0046 | 0028 | 0875 | 0597 | 0584 | 0.945 0.962
2376 | 0.063 | 0023 | 0036 | 0003 | 0000 | 0000 | 0040 | 0027 | 0059 | 0.062 0.062
26.76 | 3.636 | 2908 | 0568 | 0130 | 0022 | 0008 | 0728 | 3.068 | 3.506 | 3.613 3.628
2076 | 4732 | 1254 | 1188 | 1.934 | 0223 | 0133 | 3478 | 3544 | 2799 | 4.509 4.599
3276 | 4.932 | 0448 | 2116 | 2005 | 0.223 0.14 4484 | 2816 | 2928 | 4.709 4.792
3576 | 1.852 | 0024 | 1.032 | 0675 | 0073 | 0048 | 1828 | 0819 | 1.176 | 1.779 1.804
38.76 | 5.489 | 3991 | 0005 | 1.249 | 0161 | 0083 | 1498 | 5484 | 4.240 | 5.328 5.406
4176 | 10807 | 1.959 | 3.546 | 4.482 0.51 0.311 | 8848 | 7261 | 6.325 | 10297 | 10.496
(1=2,3=3)
2.76 3.794 | 0.477 | 1.468 | 1563 | 0.176 | 0.109 | 3.316 | 2.325 | 2.230 | 3.618 3.685
5.76 3.401 | 0416 | 2307 | 0580 | 0055 | 0043 | 2984 | 1.004 | 2821 | 3.345 3.358
8.76 0.015 | 0.002 | 0.006 | 0006 | 0001 | 0000 | 0013 | 0.009 | 0009 | 0.014 0.014
11.76 1.1 0.27 0295 | 0452 | 0.052 | 0.031 0.83 0.806 | 0.648 | 1.048 1.069
14.76 | 4627 | 1.679 | 2664 | 0247 | 0019 | 0019 | 2949 | 1.963 | 4.380 | 4.608 4.608
17.76 | 0709 | 0483 | 0006 | 0184 | 0023 | 0012 | 0226 | 0702 | 0525 | 0.685 0.696
20.76 0.31 0055 | 0103 | 0129 | 0.015 | 0009 | 0255 | 0207 | 0.182 | 0.296 0.301
2376 | 0278 | 0.089 | 0057 | 0111 | 0013 | 0008 | 0189 | 0220 | 0.167 | 0.265 0.27
26.76 | 4.029 | 2301 | 1.706 0.02 0.000 | 0.002 | 1728 | 2.323 | 4.009 | 4.029 4.027
2076 | 2609 | 1.024 | 0399 | 0999 | 0.118 | 0068 | 1585 | 2209 | 1.610 | 2.491 2.54
3276 | 6301 | 0806 | 2423 | 2598 | 0202 | 0181 | 5494 | 3.877 | 3.702 | 6.009 6.12
(1=2,3=4)
2.76 3.794 | 0477 | 1.468 | 1563 | 0.176 | 0.109 | 3.316 | 2.325 | 2.230 | 3.618 3.685
5.76 3.401 | 0416 | 2307 | 0580 | 0055 | 0043 | 2984 | 1.004 | 2821 | 3.345 3.358
8.76 0.015 | 0.002 | 0.006 | 0.006 | 0001 | 0.001 | 0013 | 0.009 | 0009 | 0.014 0.014
11.76 | 1.100 0.27 0295 | 0452 | 0.052 | 0.031 0.83 0.806 | 0.648 | 1.048 1.069
14.76 | 4627 | 1.679 | 2664 | 0247 | 0019 | 0019 | 2949 | 1.963 | 4.380 | 4.608 4.608
17.76 | 0709 | 0483 | 0.006 | 0184 | 0023 | 0012 | 0226 | 0702 | 0525 | 0.685 0.696
20.76 | 0.310 | 0055 | 0103 | 0129 | 0015 | 0009 | 0255 | 0.207 | 0.182 | 0.296 0.301
2376 | 0278 | 0089 | 0057 | 0111 | 0013 | 0008 | 0189 | 0220 | 0.167 | 0.265 0.27
26.76 | 4.029 | 2301 | 1.706 0.02 0.001 | 0002 | 1728 | 2323 | 4.009 | 4.029 4.027
2076 | 1631 | 0782 | 0159 | 0581 | 0.070 | 0.039 0.85 1.472 | 1051 | 1.562 1.592
32.76 | 0075 | 0028 | 0012 | 0029 | 0003 | 0002 | 0047 | 0062 | 0.046 | 0.071 0.073
35.76 | 7.764 | 1.770 | 2203 | 3203 | 0.368 | 0221 | 5995 | 5561 | 4561 | 7.397 7.543
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Figure 5: Evolution of indicators b, 1% and 1°%, for the case of abiasin the O, measurement
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Figure 6: Evolution of indicators L, 1% and I°®, for the case of abias in the CO, measurement
16 T T T T T T 16
t(k)

IS |02 al4
] t() i
12477 12 W 1.2
] |' !
1.0 ! o)
] ( i | u Al

. 4 " :. }‘ i
0.8- % | L i i o8
] HIE 2 RPN TR A
||'!"l Ealy ' o = L’I- p III\I 1. !IE
06:: - *. ';;ll,' 1“‘4 i ; i i :' 1 406
':'--,: e i i ;i' 'll‘l =, A Lot H Hibs
044t ¢ TRURARE | AR 1 *}\ VI Jo4
. Vi y (R b i |
0.2 402
00+ . . . . . . 00
0 10 20 30
Time (h)

Figure 7: Evolution of indicators l, 1% and I°®%, for the case of kinetic disturbances
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Tables 8: Hypothesis discriminability. The columnsin thefir <t table show a comparison
of theterm Syj=0 ™™ [(yig) — G (Ut )) Vi) (igy — Cia(x,u t))] of the log-likelihood
function (16) of all hypotheses (I,J). Columnsin the second table show a comparison

of S (hy) of all hypotheses. (Grey boxes denote the most probable fault)

I 1 2 3
J 1 2 3 4 5 1 2 3 4

1 1 365.25 | 344.56 | 1005.2 | 450.78 | 219.76 | 309.68 | 127.36 | 21811 | 664.52 | 726.93
2 472,08 | 217.86 | 1003.3 | 448.70 | 219.76 | 374.45 | 12341 | 215.76 | 653.78 | 474.98
3 900.24 | 388.90 | 509.42 | 276.60 | 184.12 | 21578 | 132.69 | 19553 | 528.69 | 696.83
4 976.35 | 423.36 | 1003.2 | 405.93 | 217.75 | 372.65 | 133.76 | 224.04 | 701.00 | 796.39
5 979.49 | 420.87 | 1004.2 | 458.99 | 214.74 | 37298 | 133.76 | 22397 | 701.13 | 81551

2 1 891.40 | 238.12 | 666.24 | 349.46 | 195.08 | 25550 | 122.09 | 216.75 | 666.40 | 822.36
2 798.24 | 408.07 | 835.62 | 41559 | 216.51 | 339.07 | 133.76 | 213.79 | 542.79 | 788.70
3 657.03 | 417.98 | 570.22 | 205.08 | 190.64 | 324.21 | 133.37 | 195.04 | 64891 | 731.42
4 946.14 | 312.65 | 941.00 | 443.76 | 218.26 | 304.77 | 133.76 | 223.30 | 463.68 | 691.82

3 13953 | 872.87 | 1500.7 | 463.78 | 341.18 | 399.75 | 133.76 | 514.21 | 685.64 | 447.91

I 1 2 3
J 1 2 3 4 5 1 2 3 4

1 1 21.07 9.38 388.69 | 3175 | 127.82 | 95.75 11.60 58.80 48.76 10.96
2 21.98 6.59 390.07 | 31.58 12782 | 102.35 | 11.24 55.65 51.63 28.13
3 58.00 57.32 | 11450 | 160.08 | 53.24 37.60 18.93 21.28 17.46 | 102.47
4 57.55 19.60 | 349.50 | 40.39 15512 | 12450 | 12.32 51.26 72.20 35.52
5 56.38 57.24 | 156.68 | 42.68 32.67 48.08 5.38 17.29 84.66 96.20

2 1 159.44 | 98.17 176.31 | 16340 | 64.80 32.73 25.01 33.68 17.22 535
2 4041 2611 | 22346 | 37.71 11423 | 138.53 | 10.40 39.20 | 110.16 4.48
3 34.44 2393 | 230.87 | 75.59 90.37 67.35 10.71 34.41 26.66 30.66
4 48.52 2966 | 33544 | 36.70 | 12554 | 162.18 | 12.16 52.27 112.07 6.84

3 52.79 10.18 | 388.69 | 34.22 127.83 | 102.35 | 11.04 57.88 51.33 7.10

Table 9: Detection and diagnosisresults for faultsin Table 6.

| U U Detection Alarm
t u time launcher

J

1 1 21.75h 0.02g 0,/ h 25.00h It(k)oZ
2 21.75h -0.025g CO,/l h 22.75h ligy ©%?
3 17.75h -0.60g Sl 23.75h Py
4 20.75h 0.60g X/l 26.75h g
5 20.75h -0.30g P/ 23.75h i

2 1 <11.75h 7.50g X/gN 17.75h hgo
2 40.75h 0.40 41.75h Py
3 26.75h 0.05g/ h 32.75h hyo

3 31.75h Xs=2.8gX/ 33.52h lgg ©°2

¢) Estimation of Measurement Variances

In Figures 8 and 9 estimated means and
variances of measurement residuals for the run in
section 4.2.1 are plotted. They were calculated in a
w = 75sample lag-time window for on-line
measurements and w' = 5sample lag-time window
for off-line measurements. Note that a relatively
accurate prediction of online measurement
variances can be obtained. For off-line measurements,
the estimated variances are not very accurate.

Residual means for ontline measurements are
approximately zero-mean but clearly correlated and
nonwhite-noise distributed. Residual means for off-
line measurements are clearly biased. Thisis dueto
the effect of nonlinearities and compensation for
yield errors. Thus, it would be wrong to blindly
trust detection tests. Rather, one must expect
sudden and large changes in the values of statistical
indicators. With this relaxation, failure detectors
can give very good results as was shown
previoudly.
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Figure 9.a: Estimated residual variances of O, and CO, measurements for the unfaulty run
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Figure 9.b: Estimated residual variances of S, X and P measurements for the unfaulty run

CONCLUSIONS

An approach to estimate state and parameters and
to isolate unexpected events in batch fermentations
with nonlinear and uncertain dynamics was
developed. It is based on the application of several
statistical detection tests and maximum likelihood
state and parameter estimation techniques. The
approach is designed for faulty structure
discrimination. A maximum likelihood filter is used
to identify faults. For computationa efficiency, the
fault parameters are estimated in a fixed-size diding
window. Under null hypothesis, the outputs of the
algorithm are the fermentation state and parameter
values. Under fault hypothesis, the outputs are states,
maximumtlikelihood fault parameters and log-
likelihood function values. These values are used for
satistical comparison with the dternative faulty
hypothesis. The origina contributions of the method
are

The application of multiple tests, including
measurement-dedicated detection tests of the
residuals of the monitor filter and balance equations.

The on-line implementation of maximum-
likelihood state and parameter estimation within the
detection procedure for both the unfaulty process
model and faulty models using a robust (Jacobian
free and Hessian-free) optimization method.

The technique was illustrated for simulated
xanthan gum batch fermentations and ten different
faulty scenarios were smulated. In spite of
nonlinearities, parametric uncertainty and kinetic

variations, hypothesis discriminability was very
good.

Areas of continuing work include the application
and development of data-fusion techniques to fuse
data from tests with maximumlikelihood estimates
for gaining computational efficiency and hypothesis
discriminability in small sample data. Research on
the use of the agorithm in multiple-faults tests and
in real fermentations is also advisable.

NOMENCLATURE

Critical threshold of statistical indicator |
! Critical threshold of statistical indicator |
- Critical threshold of statistical indicator I
Critical threshold of statistical indicator h
Critical threshold of statistical indicator H
! Critical threshold of statistical indicator h'
Di?urbance of the specific biomass growth
(h7)
Disturbance of the growth-associated
specific metabolite production (g P/g X)
Disturbance of the dseady specific
metabolite production (g P /g X h)
O, Cumulative carbon dioxide production (g
CON)

Disturbance of the specific substrate
consumption for cellular maintenance (g
Sig X h)

8 g g S o 0 90 =

%
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Cumulative oxygen consumption (g O./1)
Cumulative main substrate consumption
(CD)

Disturbance of the dationary biomass
concentration (g/l)

Residuas from the state and parameter
estimation filter

Residuals from the
estimation of measurements
Residuals vector from the element-balances
constraints

Measurement i residuals-variance
Measurement i residuals-mean

Specific biomass growth on the logistic
equation (H*)

Time window for estimating the maximum
likelihood states and parameters
Growth-associated  specific
production (g P /g X)

Steady specific metabolite production (g P
/g X h)

Carbon dioxide production rate (g CO, /l h)
State-gpace dynamic of the fermentation
State-measurements relationship (nonlinear
case)

Jacobian matrix of the vector of state-
measurements rel ationships
State-measurement  relationships  (linear

bal ance-based

metabolite

Matrix of stoichiometric yields

Global balance-based fault indicator
Balance-based fault indicator dedicated to
measurement i.

Balance-based fault indicator dedicated to
al but measurement i.

Specific substrate consumption for cells
maintenance (g g X h)

Global residuakbased fault indicator
Residual-based fault indicator dedicated to
measurement i.

Residual-based fault indicator dedicated to
all but measurement i.

Log-likelihood function

Oxygen uptake rate (g O,/ h)

Vector of kinetic parameters

Metabolic product concentration (g P /1)
States covariance matrix

Covariance matrix of measurements
estimated by using balances constraints
System noise covariance matrix

S M easurement-noise variance matrix

S Main substrate concentration (g S/1.)

S Nitrogen source concentration (g S/1.)

s Cumulative amount of oxidized main
substrate (g.S/It.)

u Control variable

\% Covariance matrix of the estimation
resduas

ww Siding-window lags

X Biomass concentration (g X /1)

X State-variable vector

Xs Stationary biomass concentration (g X /1)

y M easurement vector

Y Stoichiometric yield of component | to
component J(g 1/g J)
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APPENDIX

A.1. FERMENTER SSMULATOR

A stochastic model [Dondo, 2000] is used as
fermenter smulator. In this mode (Table 2), initia
conditions, kinetic parameters and physiological
parameters are stochastically generated.

A.2. EQUATIONSFOR SSIMULATION OF
FAULTS:

M easurement biases (I = 1)

Faulty measurements are simulated as the sum of
non-unfaulty measurements v, & measurement bias

574 (1991).

Stephanopoulos, G. and San, K.Y., Studies on On+
line Bioreactor Identification. | Theory,
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Van der Heijden, R.T., Heijnen, JJ., Hellinga, C.,
Romein, B. and Luyben, K. H., Linear Constraint
Relations in Biochemica Reaction Systems. |
Classification of the Cauculability and the
Balanceability of Conversion Rates, Biotechnol.
Bioeng., Vol. 43, 1, 3-10 (1994a).

Wang, N. and Stephanopoulos, G., Application of
Macroscopic Balances to the Identification of
Gross Measurement Errors, Biotechnol. Bioeng.,
Vol. 25, 2177-2208 (1983).

Wilsky, A., Detection of Abrupt Changes in
Dynamic Systems, Lecture Notes in Control and
Information Sciences, 27-49, Springer-Verlag
(1986).

Young, P., Parameter Estimation for Continuous
Time Models — A Survey, Automatica, Vol. 17,
No. 1, 23-39 (1981).

Dfu, t) and uncorrelated zero-mean Gaussian noises
Ni(w)-

Yi=1,3(U, o = Yy + Da(u, t) + Vi
J=0,C0, S X,P
Incorrect system description (I =2)

Errors in the stoichiometric yields Y;,; Faulty
measurements are obtained smulating the
fermentation with imposed unexpected values of
some physiological parameters.

Generation of unidentified by-products. Faulty
measurements are the product of an expanded
matrix, which incorporates a column of vyield
coefficients that relate the production of the by-
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product q with the net production or consumption of temperature jump.
measured component J, by an expanded state vector,
which incorporates the by-product as a new state.

é
Yi=2,3(U, )y =€C

J:021C021S,X|P

1 Ue x 6

68 Yo g&ut)g

A.3. ALGORITHM MODELS

+Nyo) The state variables are the biomass concentration

® [X], the product concentration [P] and the quantity of

oxidized main substrate (S°). Equations n{u), Xs(u),
au) and b(u) and K7(u) represent the kinetic
parameters as functions of the temperature [Shu and

Abrupt changesin someKkinetic parameters(l = 3) Yang, 1991]. Dm DXs, Da, Db and DK® are
disturbance parameters used to compensate for the
The system has the same structure as the nominal uncertainty of these functions in respect to the
dynamic but with a different and deterministic complex fermentation dynamic. The structures of
initialization of parameters Xs and b after the observersare
Monitor filter:
_ é X 6.0
w0 &mwDmel- — 22X
¢ X o dMOTME X ok |
e Pyg ¢ - a
egr 0 € (a(u)+Da)X+(b(u)+Db)X U
e~ u § R R a
eDmy € (K (u) + DK )X u
ény U=¢ a
eDXsy & 0 a
éDal § 0 u
e U % a
gboy ¢ 0 y
A R/ e u
X7l e 0 y
€ 0 |
é 1 1 1 0
é a
& DO, o &Y¥xio2  Ypoz Ysioz
CBhry U ¢ e 1 1 1 0 .
QgDCOZlbn'Ii”e+ &y Y Y aeX - X
¢ &DSy + _é'Xx/coz P/CO2 s/coz(j€ = u
¢ aon = é 1 1 Ug lL]j
¢eXa T ¢y Y L s g
g AP i i é "x/s P/S U (k)
EF Bt - tine ax € 1 0 0 u
é a
e 0 1 0 @

Maximum-likelihood filter for estimation of kinetic parameters:

7
P

e
e
e

&

Xu

u
u
U
u

7

X o u
& mu) +Dnﬁ[- — 2 X
€ XsW)+DXsg g

(a(u) + Da)X + (b(u) + Db) X
(KR(u)+DKR)X

(DXD> (D> (D> (D> (D> D> D> D> (D

ceooooc
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e 1 1 1 u

ey Y Yoo U
a& DO, U ) g 'x/02 P/02 S/02 u
Gé u = e 1 1 1
(}g:)COZLbn-Iine+ éY Y Y uex Xo
C o + _@'xi/ico2 P/CO2 S/cozue a
¢ &X¢ = 8 1 ¢ U

e U + & Yxis Ypis ( Ut (k)

g EP Ebtt - ine ak € 1 0 o U

é ]

é 0 1 0 ¢

Maximum:-likelihood filter for estimation of fault parameters:

é X 6 u
e(n(u)+Drr) =X
8 §" XoW) + DXs (1 @D W) 5 ¢
XU & (
epu_e , a
éFi~ea ¥
%RL,J g (a(u) + Da) X+(b(u) + Db(1+d(3) Ot ,u))) X g
e a
é R R a
& (K (u) + DK )X El
é u
€ Prd3ntw, ST gy d@ADEW U
& Ypi02 s/02 Ac/O2 U
é u
@O0 U 0 QX Xg PHARINLY ST o0 dRADE ),
gDCOZUon line + gYX/COZ Ypico2 sico2 Ac/CO2 ﬂ
¢ DSy i =a a
¢ ex D6 XX ProRIULY L0 gn 2 dRADEY) g
- é Y Y ; ' a
=] = a XIS P/S Acl/S 0
g @ Hoff line (k) & i
& X - Xo+d(L4)D(t,u) +d(2,3)D(t ,u) G
é u
2 P+d(15)D(t u) B
where that hypothesis (1,J) is tracked:
Y x/c02=2.96+1.19[8.0+ d (21)D(t ,u) ] 4.3 j1if parametersof hypothesis(l.J)
I =]
Y s =0.78+0.32[8.0+ d (21)D(t ,u)] 1 are estimatedOotherwise
Y b1c0r=36.872-5.24[0.38+ d (2,2)D(t ,u)] while D(t,u) is a linear function of the fault

occurrence time and magnitude:
Y p1s =0.97875-0.1625[0.38+ d (2,2)D(t ,u)]

i
Y £10,=20.9124-13.312[0.38+ d (2,2) D(t ,u)] o,y =1 ° t<t

In thismode, d(1,J) is abinary variable denoting fut-1) t3t
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A4 INITIALIZATION OF ESTIMATORS
Monitor filter:

Trace P," =[0.020, 0.005, 0.005, 0.050, 0.100,
0.200, 0.050, 0.020]>

Trace Q" =[0.000, 0.000, 0.000, 0.005, 0.020,
0.015, 0.003, 0.003] *

Trace S™ = [0.05, 0.05, 0.10, 0.15, 0.40]>

Maximum-likelihood filter for estimation of kinetic
parameters:

Po=PRg=0 (From the monitor filter)
Trace Q" =[0.001, 0.001, 0.001] *
Trace S™ = [0.05, 0.05, 0.10, 0.15, 0.40]>

Maximum likelihood filter for estimation of faulty

R. Dondo

parameters:

Po=PR=0 (From the monitor filter)

Trace Q' =[0.003, 0.003, 0.003] 2

Trace S™ =[0.05, 0.05, 0.10, 0.15, 0.40]*

Other parameters:

On-line sampling and estimation frequency: 25 h*

Average off-line sampling frequency (monitor
mode): 0.33h™*

Average off-line sampling frequency (diagnostic
mode): 1.00 h™

Average off-line measurements delay: 0.25 h

Siding window lag for estimation of Kkinetic

parameters (W)6.00 h

Brazilian Journal of Chemical Engineering



