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Abstract - This work describes an application of maximum likelihood identification and statistical detection 
techniques for determining the presence and nature of abnormal behaviors in batch fermentations. By 
appropriately organizing these established techniques, a novel algorithm that is able to detect and isolate faults 
in nonlinear and uncertain processes was developed. The technique processes residuals from a nonlinear filter 
based on the assumed model of fermentation. This information is combined with mass balances to conduct 
statistical tests that are used as the core of the detection procedure. The approach uses a sliding window to 
capture the present statistical properties of filtering and mass-balance residuals. In order to avoid divergence 
of the nonlinear monitor filter, the maximum likelihood states and parameters are periodically estimated. The 
maximum likelihood parameters are used to update the kinetic parameter values of the monitor filter. If the 
occurrence of a fault is detected, alternative faulty model structures are evaluated statistically through the use 
of log-likelihood function values and χ2 detection tests. Simulation obtained for xanthan gum batch 
fermentations are encouraging. 
Keywords: fermentation process, stochastic model, maximum likelihood state.  

 
 
  

INTRODUCTION 
 

The importance of on-line monitoring of 
biotechnological processes has increased during the 
last twenty years. Advantages include gaining 
knowledge about the state of the process and the 
possibility of detecting and isolating abnormal 
process developments at early stages. This reduces 
process costs, contributes to process safety and helps 
in trouble-shooting and process accommodation. The 
main problem in fermentation monitoring and 
control is the fact that process variables usually 
cannot be measured on-line (e.g., biomass, substrate 
and product concentrations). Monitoring and 
controlling these processes can therefore be difficult 
because only indirect measurements are available on-
line, while calculated values may be rather uncertain. 

This can be due to uncertainty with respect to the 
equations used, measurement errors or both. For 
automatic control this may have serious 
consequences, especially as the actual variables of 
interest often cannot be directly controlled and 
related variables are controlled instead.  

In fermentation processes, on-line and off-line 
measurements are the main source of information 
about the state of the process. In combination with 
model-based calculations, they are used to produce 
estimations for monitoring purposes as well as for 
automatic and manual process control. Model 
parameters are also established by means of 
measurement. It is therefore important to have an 
accurate and consistent set of measurements. In 
practice, measurement errors will always occur. The 
most common type is a relatively small random error 
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due to minor disturbances in the measurement 
equipment. The magnitude of these errors, 
commonly referred as measurement noise, defines 
the accuracy of the measurement. They are usually 
regarded as zero-mean with Gaussian distribution. 
This kind of noise can be eliminated by the use of 
state estimators such as Kalman filters. On the other 
hand, multi rate estimators [Halme, 1987] are 
observers that are well suited for state estimation in 
fermentations. In these estimators, the measurement 
vector is expanded to include infrequent off-line 
measured variables when these measurements are 
available. This expansion is only made functional at 
the time of measurement. To overcome problems 
with the time delay caused by laboratory analysis the 
technique uses stored data. The estimates are then 
recalculated from the time of measurement to the 
present as soon as the measurement value becomes 
available. In many cases, there is a certain amount of 
“overlap” between off-line and on-line 
measurements. This overlap together with 
conservation equations provides constraints to 
improve the accuracy of the measurements and to 
detect significant errors in the measurements or in 
the model used by the fermentation observer. Faulty 
sensors and omitted components can be detected in 
this way. This results in enhanced reliability and 
accuracy of on-line state and parameter estimates.  

Much research on state estimation in bioprocesses 
can be found in the literature. Some of the most 
relevant are by Stephanopoulos and San [1984a and 
b], Bastin and Dochain [1986, 1990] and Gudi et al. 
[1994]. Two different detection methods can be used 
for fault detection in batch fermentations. The first is 
herein referred to as the “residual-based detection 
method”. It focuses on the analysis of estimation 
residuals of a Kalman-filter-type observer. The 
second is herein referred to as the “balance-based 
detection method” and it uses conservation principles 
for testing the consistency of the variables measured. 
Isermann [1984] and Frank [1990] offer survey of 
the residual-based detection method. Alcorta García 
and Frank [1997] reviewed observer based 
approaches to several classes of deterministic 
nonlinear systems. Significant works related to the 
balances-based detection method were published by 
Wang and Stephanopoulos [1983] and Van der 
Heijden [1994a and b]. Dondo [2003] proposed the 
simultaneous use of both methods. The idea behind 
the use of both methods is that the limitations of one 
be compensated by the use of the other. In the 
present work an evolution of the idea developed in 
Dondo [2003], which is designed for obtaining 
robust and accurate state estimation and fault 

diagnostics under parametric uncertainty, is 
presented. 

This work is organized as follows: section 2 
discusses the specifics of estimation and detection in 
batch fermentations. In section 3, a methodology of 
state estimation and fault detection for batch 
fermentations is presented. Numerical results are 
shown in section 4 and the conclusions are outlined 
in section 5. 
 
 

PROBLEM DISCUSSION 
 

Instrumentation failures and abrupt kinetic 
changes can be understood as a deviation of a 
process variable that is not permitted and that leads 
to an inability to maintain control of the running 
fermentation. In the present work, these deviations 
are generically referred to as faults. Fig. 1 shows a 
block diagram for fault detection and isolation in 
fermentations. Checking whether measured and/or 
unmeasured estimated variables are within a given 
tolerance of their normal values means detection. If 
the check is not passed, this leads to a fault message. 
Tasks related to detection and isolation can be 
divided into the following stages: 
§ Residual generation: computation of functions 
that are sensitive to the occurrence of a fault. 
§ Fault decision: checking residuals if there is a 
fault. 
§ Fault isolation: identification of fault occurrence 
time, type, size and source. 

Computational requirements are a practical 
problem regarding fault detection because algorithms 
for detection and diagnosis are often computation 
intensive. Nevertheless, this is not a problem for the 
reason that batch-fermentations are generally carried 
out over many hours or even days. Furthermore, a 
detection algorithm must have two important 
capabilities: 
§ The ability to quickly detect the occurrence of an 
abnormal event within a short period following its 
occurrence.  
§ The ability to correctly identify the event, its 
occurrence time and its magnitude. 
§ One of the fundamental aims of supervision of a 
biotechnological process is to promptly detect and 
identify abnormal behaviors (faults) in order to take 
corrective action for maintaining the fermentation 
running. This capability is crucial for enhancing the 
reliability of the operating equipment and to ensuring 
a profitable operation. Examples of sources of faults 
in batch fermentations are 
§ A measured variable has a significant error. 
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§ The system description is incorrect because a 
component has a composition different from that 
specified or a component is not included in the 
description of the fermentation. 
§ Abrupt kinetic changes are produced during the 
course of the fermentation. 
§ The assumed measurement variances are 
incorrect resulting in a poorly tuned estimation 
algorithm. 
§ Since detection methods must be sensitive to the 
occurrence of faults but robust to noises, modeling 

errors and signal variations, the following trade-off 
exist [Isermann, 1984]: 
§ Size of faults vs. detection time. 
§ Parameter estimation rate vs. false alarm rate. 
§ Detection time vs. false alarm rate. 

Methods that are designed for detection of abrupt 
changes are usually not suitable for state and 
parameter estimation and vice versa. These 
considerations call for developing an innovative 
approach and have motivated the methodology 
presented below. 

 

 
Figure 1:  Conceptual structure of the methodology for fault detection and isolation in fermenters 

 
 

THE ESTIMATION AND DETECTION 
METHODOLOGY 

 
An aerobic  fermentation with production of a 

single metabolite can be seen as three parallel 
“chemical reactions” denoted partial metabolisms 
[Minkevich, 1983]. These reactions are biomass 
production, metabolite production and main substrate 
oxidation. Thus, the aerobic growth of biomass (X) 
consuming a carbon and energy source (S) and an 
independent nitrogen source that can also contain 
carbon (SN) while generating a metabolite P, CO2, 
and H2O can be written as 
 
Biomass production: 
 

a 2 b2 c2 d 2 a 4 b 4 c 4 d 4
X / S X / N

b1 c1 d1 2 2
X / H 2 O X / C O 2

1 1
C H O N C H O N

Y Y

1 1
CH O N H O C O

Y Y

+ →

+ +

(1.a) 

 
Metabolite production: 

a 2 b 2 c2 d 2 2
P / S P / O 2

a 3 b 3 c3 2 2
P / H 2 O P / C O 2

1 1
C H O N O

Y Y

1 1
C H O H O C O

Y Y

+ →

+ +

  (1.b) 

 
Main substrate oxidation: 
 

a 2 b 2 c 2 d 2 2
S / O 2

2 2
S / C O 2 S / H 2 O

1
C H O N O

Y

1 1
CO H O

Y Y

+ →

+

     

 
Compositions of components X, S, P and SN are 

expressed by their atomic formulae CHb1Oc1Nd1, 
Ca2Hb2Oc2Nd2,, Ca3Hb3Oc3 and Ca4Hb4Oc4Nd4, 
respectively (the metabolite is assumed to be a 
nitrogen-free component). The kinetics of each 
reaction are characterized by the evolution of each 
one of the relevant reaction components: X, P and SR 
(quantity of oxidized main substrate). Expressions 
(1) can be expressed as 
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N

X / S X / N X/CO2 X/H2O 2

P / S P / O 2 P/CO2 P/H2O

P / O 2 S/CO2 S/H2O 2

2

S
S1 1 1 10 1 0Y Y Y Y 0O

1 1 1 10 0 1 0XY Y Y Y
0P1 1 11 0 0 0Y Y Y CO

H O

∆ 
 ∆   

   ∆       =∆     
     ∆     
  ∆   

 ∆  

                 (2.a) 

 
or 
 

I / JYC I 0∆ =             (2.b) 
 
where CY I/J is a matrix of stoichiometric yields YI/J 
and ∆I is a vector of net production of the system 
components. Since element balances are constraints 
that must always be satisfied, they are constraints to 
be met by the fermentation “reactions”. These 
balances mean four constraints (one for each element 
considered: C, H, O and N) to be met by the relation 
between seven components (X, S, P, SN, O2, CO2 and 
H2O). Thus, an aerobic fermentation with formation 
of a single metabolic product has ( 7-4 ) = 3 degrees 
of freedom and unknown component evolutions may 
be obtained from the knowledge of the 
stoichiometric yields YI/J and three component 
evolutions. Thus, if there are more than three 
measurements of component evolutions, an overlap 
of measurements is produced. This overlap and 
conservation equations (2) provide constraints to 
improve the accuracy of measurements and to detect 
significant errors in measurements or in the model 
used by a fermentation observer. In this way, 
constraints (2) can be lumped into a conventional 
detection methodology for building an efficient 
estimation and detection procedure. To do this, let us 
assume that the dynamic model of a batch 
fermentation is represented by the usual nonlinear 
state-space formulation: 
 

x f(x,u,p)
•

=            (3.a) 

 
y c(x)=               (3.b) 
 

In this formulation, kinetic parameters p appear in 
the dynamic function f(•), while if some of the 
fermentation components are measured, balances 
constraints are in the state-measurement relations 
c(•) [Dondo and Marqués, 2002]. In order to explain 
this, let us assume that the fermentation states are the 
biomass concentration [X], the metabolic product 
concentration [P] and the amount of main substrate 
oxidized (∆SR). The amount of oxygen consumed 
(∆O2) and the amount of carbon dioxide produced 
(∆CO2) are on-line measurements, and the biomass 
concentration [X], the metabolic product 
concentration [P] and the main substrate 
concentration [S] are off-line measurements. This is 
probably the most common measurement 
arrangement in batch fermenters. From expression 
(2.a) it is clear that the relation between these main 
components is linear. Thus, the relation between 
states and measurements is also linear [Dondo and 
Marqués, 2002], and it can be expressed as the 
product of a matrix of stoichiometric coefficients C 
by the vector of states xt(k): 
 

t(k) t(k)y Cx=            (4.a) 

 

[ ]
[ ]
[ ]

t (k )

P /O2 S / O 202
t(k)

2 on line
X/CO2 P/CO2 S/CO20 on line

0
X/S

off line t(k)

off line t(k)

1 1
0

OURdt Y YO
1 1 1CO

CPRdt Y Y Y
S

1S SX Y
XP
P

−
−

−

−

  
   ∆      ∆     
     = =∆        − ∆       ∆           

∫
∫ 0

R
t(k)P / S

X X
P

1
1 SY

1 0 0

0 1 0

 
 
 
 

 − 
           

 
 
  

      (4.b)  



 
 
 
 

Measurement Processing for State Estimation                                                                      371 
 

 
Brazilian Journal of Chemical Engineering Vol. 21,  No. 03,  pp. 367 - 392,  July - September  2004 

 
 
 
 

Since most kinetic models of batch fermentations 
are nonlinear and have parametric uncertainty, 
adaptive nonlinear observers are used for monitoring 
this kind of processes [Gudi et al., 1994; Dondo, 
2003]. Although the use of off-line information 
within the adaptive estimation procedure makes the 
estimates more robust, the uncertainty of estimated 
variables (given by the state covariance matrix) is 
relatively high [Dondo, 2003]. This uncertainty is 
also manifested as high values of the measurement 
covariance matrix and reduces the sensitivity of any 
detection test [Wilsky, 1986]. Hence, hypothesis 
distinguishibility is rather difficult. Consequently, to 
promptly detect a fault, a sensitive logic that takes 
into account the past history of the system as well as 
parametric uncertainty must be designed. The 
approach to the estimation and detection problem 
presented here relies on an intensive use of statistical  

criterions as indicators of a faulty process. These 
criterions are based on “signatures” of the 
fermentation which are monitored and compared 
with a priori estimations based on the unfaulty model 
of the system. Statistical indicators are also used to 
determine the occurrence time of faults and their 
identity. The operative logic of the estimation-detection 
procedure is detailed in the following subsections. 
 
Normal Process Operation 
 

Let us assume that a multi rate extended Kalman 
filter (EKF) is used as fermentation states and 
parameters estimator (Table 1). The innovation 
sequence of the filter is defined by 
 

t(k) t (k) t (k /k 1)y c(x )−γ = −                                       (5)
  

 
Table 1: The EKF as state and parameter estimator 

 
Prediction equations 

t(k)

t ( k / k 1 ) t(k 1) t(k1)

x x f(x,u,p)
dt

p p 0− − −

     
= +     

     ∫  

t ( k )
X T

t ( k / k 1) t ( k 1) X

t ( k 1)

f
P P P P f 0 Q dt

0− −

−

    = + + +      ∫  

 

Correction equations 
 

[ ]
T
X

t(k) X t ( k / k 1)
c

V c 0 P S
0

−

  
= +     

 

T
1X

t ( k / k 1 ) t(k)
c

K P V
0

−
−

 
=  

 
 

t (k) t ( k / k 1)
t(k) t ( k / k 1)

x x
K(y c(x ))

p p −
−

   
= + −   

   
 

[ ]t (k) t (k /k 1) X t(k /k 1)P P K c 0 P− −= −  

In a multirate EKF, the dimensions of vectors yt(k) and c(xt (k/k-1)) change in 
accordance with the available measurements 

 
where yt(k) is the measurement vector value at time 
t(k) and c(xt(k/k-1)) is the prediction of the 
measurement vector value based on prediction of the 
state vector value xt(k/k-1). If there are no convergence 
problems and under the no-fault hypothesis (the 
model corresponds to the reality and the 
measurements are unbiased and corrupted by 
independent sequences of “white noises”), sequence 
γt(k), should be a zero-mean Vt(k) covariance 
sequence, where V t(k) is defined by 

T
X

t(k) X t (k /k 1)
c

V c 0 P S
0

−
 

 = +     
       (6)

  
In eq. (6), cX is the Jacobian matrix of c(xt(k/k-1)), 

Pt(k/k-1) is the predicted state-covariance matrix at 
time t(k) and S is the matrix of noise variances of the 
measurement vector. Faults and abrupt dynamic 
changes are usually manifested as unexpected values 
of yt(k). Therefore, a non-zero-mean sequence 
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indicates a possible fault. For testing the zero-mean 
hypothesis, the following statistical indicators are 
proposed: 
 

t ( j) t(j)
T 1k

t(j)
t(k)

t(j)j k w 1

V1
l

w m

−

= − +

 γ γ
 =
 
 

∑       (7.a) 

 
2ik

t(j)i
t(k) 2i

j k w 1 t(j)

1
l

w v= − +

 γ =
 
 

∑         (7.b) 

 

t(j) t ( j )

T 1i i ik t(j)i
t(k)

t(j)j k w 1

V1
l

w m 1

−− − −
−

= − +

 γ γ =  −
  

∑     (7.c)

  
In eq. (7.a), lt(k) represents the sum of normalized 

squared innovations on time horizon w and mt(j) is 
the dimension of the measurement vector at time t(j). 
In eq. (7.b), lit(k) is the sum on time horizon w of the 
squared innovations of measurement i normalized by 
their variances vi

2. Finally, l-it(k) represents the sum of 
normalized squared innovations of all but i 
measurements on time horizon w. The measurement 
covariance Vt(j) is computed by the EKF. Matrix V-

i
t(j) and the variance νi

t(j)
2 are extracted from Vt(j). For 

a selected window size, w, the effect on residuals at 
times t(j) ≤ t(w) is neglected. Under the no-fault-
hypothesis, variables lt(k), lit(k) and l-it(k) should be χ2 
distributed variables with Σw

j=1 mt(j), w and Σj=1
w 

(mt(j)-1) degrees of freedom, respectively. Therefore, 
by defining thresholds ϕ, ϕ i and ϕ -i with confidence 
levels selected a-priori, it is possible to carry out the  

following tests: 
 

t(k)

t(k)

l Normal operation

l Abnormal operation

≤ ϕ ⇒

> ϕ ⇒
     (8.a) 

 
i i
t(k)

i i
t(k)

l Normal operation

l Abnormal operation

≤ ϕ ⇒

> ϕ ⇒
     (8.b) 

 
i i

t(k)

i i
t(k)

l Normal operation

l Abnormal operation

− −

− −

≤ ϕ ⇒

> ϕ ⇒
     (8.c)

   
Statistical indicators, lt(k), lit(k) and l-it(k), computed 

on the w-lag sliding window, provide simple and 
efficient detection tools. However, since the sliding 
window involves residuals from nonlinear filters and 
a limited sample size, actual indicator values will not 
be exactly χ2-distributed. Detection thresholds cited 
above, which are based on asymptotic properties, 
should therefore be approximate. Thus, persistence 
tests (the indicators must exceed their thresholds 
over a given time period) should be used to cut down 
false alarms due to spurious and unmodeled events. 

In order to avoid convergence problems due to 
the effect of nonlinearities and to keep variables lt(k), 
lit(k) and l-it(k) sensitive to occurrence of a fault, the 
value of Pt(k/k-1) must be keep as small as possible 
[Dondo, 2003]. For this purpose, each time that there 
is an off-line measurement available, a maximum 
likelihood optimization is used in a time window Ω 
= t(0),...,t(k): 

 

( ) ( )
0

t(j) t(k)
T 1

t(j) t ( j / j 1 ) t(j) t(j) t ( j / j 1 ) t(j)
t(j) t

1
max L(p) y c(x ) V y c(x ) ln V

2

=
−

− −
=

 
 = − − − +
 
 

∑                       (9) 

 
subject to 
 

[ ] [ ]
t(j)

t ( j / j 1 ) t ( j1 )
t ( j1 )

x x f(x,u,p)dt
− −

−

= + ∫    (10.a)  

 

( )
t ( j )

T
t ( j / j 1 ) t ( j 1 ) X X

t ( j 1 )

P P f P Pf Q dt− −
−

= + + +∫  (10.b) 

 

( )T
t(j) X t ( j / j 1 ) XV c P c S−= +        (10.c) 

  
T 1

t ( j / j 1 ) X t( j)K P c V−
−=         (10.d)  

 
[ ] [ ] t ( j ) t ( j / j 1 )t(j) t ( j / j 1 )
x x K(y c(x ))−−

= + −  (10.e) 

 
t(j) t ( j / j 1 ) X t ( j / j 1 )P P Kc P− −= −              (10.f)  

 
This maximization fulfills two tasks: (i) it keeps 

estimated parameters as near as possible to the true 
parameter values to avoid divergence of the EKF 
monitor and (ii) it keeps the covariance matrix Vt(k) 
as small as possible in order to maintain lt(k), lit(k) and 



 
 
 
 

Measurement Processing for State Estimation                                                                      373 
 

 
Brazilian Journal of Chemical Engineering Vol. 21,  No. 03,  pp. 367 - 392,  July - September  2004 

 
 
 
 

l-it(k) sensitive to minor variations in the innovation 
sequence. This permits use of small sliding-window 
lags, w, and then variables lt(k), lit(k) and l-it(k) will be 
able to quickly react to an unexpected event. The use 
of small sliding windows is critically necessary 
because of the use of adaptive observers. This is 
because effects of unexpected measurement values 
on innovations are manifested as correction of the 
estimated parameter values and will promptly 
disappear. Maximization (9) had been a very difficult 
task, particularly in the case of nonlinear systems 
[Young, 1981]. Main difficulties reported in the 
literature are the need for considerable computational 
power and the computation of analytical Jacobian 
and Hessian for the maximization algorithm. 
Nevertheless, these difficulties have been practically 
overcome because of the tremendous advances in 
computational power and the development of 
efficient minimization methods that do not use 
Jacobian and Hessian matrixes (Downhill simplex 
method due to Nelder and Mead and Powell’s 
method [Press et al., 1992]). Since the maximum 
likelihood estimation gives the min imum-variance 
estimates [Mendel, 1995] it is utilized for on-line 
state and parameter estimation in a specified time-
window Ω = (t(0) … t(k)) in order to reinitialize the 
monitor Kalman filter with minimum variance states 
and maximum likelihood parameters. Time-window 
lag, Ω, must be large enough to allow a significant 
collection of information, but small enough to avoid 
lumping parameter variations. 

On the other hand, if there are redundant state-
measurement relations when an off-line 
measurement is available, the following nonlinear 
least-squares estimation of states and measurement 
can be obtained: 
 

1T T
t(k) t(k) X X X t(k) t(k)x x c c c y c(x )

∧ −
   = + −     (11) 

 
1T

t(k) X X Xt(k)

T
X t(k) t(k)

y c(x ) c c c

c y c(x )

∧ − = +  

 − 

        (12)

  

If the difference between t(k)x
∧

 and xt(k) is not 
acceptable, it is possible to re-estimate the state and 
measurement vectors by recalculating eqs. (11) and 

(12), replacing xt(k) by t (k)x
∧

and c(xt(k)) by t(k)y
∧

, 
respectively. The procedure can be repeated until no 
significant modifications of estimates are obtained 
[Mendel, 1995]. Thus, the following residuals vector 

and covariance matrix can be defined as follows 
[Dondo, 2003]: 
 

t(k) t (k ) t(k)y y
∧

ε = −          (13) 
 

1T T1
X X X XP S Sc c S c c S

−−
ε  = −        (14)

  
Now the following statistical indicators can be 

computed: 
 

1T
t(k)t(k) t(k)h P −

ε= ε ε            (15.a) 
 

2i
t(k)i

t(k) i
t(k)

h
 ε
 =
 σ 

            (15.b) 

 

t(k)

1Ti i i i
t(k)t(k)h P

−− − − −
ε= ε ε           (15.c)

  
where variance σi

2 is extracted from variance matrix 
Pε. Variable ht(k)

-i is computed using all but the i 
measurement and P-i

ε is calculated by eq. (14), 
eliminating columns and rows related to 
measurement i from matrixes S and cX. If the 
measurement arrangement is given by eq. (4.b), the 
Jacobian cX is to be replaced by C, and, for tests ht(k), 
hi

t(k), and h-i
t(k), the nonlinear least-squares eqs. (11) 

and (12) are simplified to the linear case: 
 

1T T
t(k) t(k)x C C C y

∧ − =            (16) 

 
1T T

t(k)t(k)y C C C C y
∧ − =          (17)

  
If elements of εt(k) are assumed to be zero-mean 

and Gaussian-distributed, under the no-fault 
hypothesis, ht(k), hi

t(k) and h-i
t(k) are approximately χ2-

distributed variables with (n-m), 1 and (n-m-1) 
degrees of freedom, respectively. Thus, the 
following tests can be conducted: 
 

t(k)

t(k)

h Normal operation

h Abnormal operation

≤ θ ⇒

> θ ⇒
       (18.a) 

 
i i
t(k)

i i
t(k)

h Normal operation

h Abnormal operation

≤ θ ⇒

> θ ⇒
       (18.b) 
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i i
t(k)

i i
t(k)

h Normal operation

h Abnormal operation

− −

− −

≤ θ ⇒

> θ ⇒
      (18.c)

  
In expression (4.b) there are n = 3 states and m = 

5 measurements and therefore the degree of 
redundancy is 2. Furthermore, as there are two on-
line measurements (∆O2 and ∆CO2), it follows that 
lt(k)

O2 = lt(k)
-CO2 and viceversa. 

Variables defined by eqs. (15), when available, 
and by eqs. (7) form a set of statistical indicators that 
provide strong indications of the occurrence of a 
fault. For example, if on-line measurement i is 
suddenly biased, lt(k) should indicate the occurrence 
of an unexpected event, lit(k) should show a sharp 
increase in its value and l-it(k) should be quasi-
invariant to this bias. When an off-line measurement 
is available, indicators ht(k), hi

t(k) and h-i
t(k) should also 

have a similar behavior.  
Tests (8) and (18) give an intuitive justification 

not only for use in fault detection, but also for 
formulating a detection/diagnosis scheme. This 
approach consists of including in the extended 
Kalman filter various possible faulty models, 
estimating their parameters by a maximum-
likelihood approach while testing indicators ht(k), hi

t(k) 
and h-i

t(k) for these models and then choosing the 
model with the maximum log-likelihood function. 

This diagnosis scheme will be detailed in the next 
subsection. 
 
Faulty Process Operation 
 

If a fault is detected, its cause should be 
identified. Once the information needed to detect and 
diagnose faults (residuals and measurement history) 
has been accumulated, it is necessary to interpret the 
information in various ways: whether or not there is 
a failure, the probability of occurrence of a failure 
and the failure most likely to have occurred. Each 
hypothesis (i.e., sensor drift, formation of a by-
product, etc) will demonstrate a specific time-
dependent pattern in measurement evolution and 
tests lt(k), lit(k), l-it(k), ht(k), hi

t(k) and h-i
t(k). The idea 

behind this is that the signature of the measurement 
evolution contains information on the kind and 
magnitude of the fault. Thus, every suspected fault 
characterized by a given type (I), identity (J), 
magnitude (υ) and occurrence time (τ) is simulated, 
and data from these simulations are used to estimate 
the faulty model states and parameters and to define 
hypothesis log-likelihood functions LI,J(υ, τ). The 
technique can be viewed as an extension of the 
generalized likelihood ratio method (GLR) [Wilsky, 
1986] to the nonlinear case. The general form of the 
resulting log-likelihood maximization problem can 
be written as 

( ) ( )
0

t(j) t(k)
T 1

I J IJ t(j) t ( j / j1 ) t(j) t(j) t ( j / j 1 ) t(j)
t(j) t

1
max max max L ( , ) y c(x, , ) V y c(x, , ) ln V

2

=
−

− −
=

 
 υ τ = − − υ τ − υ τ +
 
 

∑  (19) 

subject to  
 

[ ] [ ]
t(j)

IJt ( j / j 1 ) t(j 1)
t ( j 1 )

x x f (x,u,p, , )dt− −
−

= + υ τ∫     (20.a) 

 

t ( j )
X

t ( j / j 1 ) t ( j 1 )
T

t ( j 1 ) X

f ( , )P
P P dt

P f ( , ) Q
− −

−

 υ τ +
 = +
 + υ τ + 

∫     (20.b) 

 

( )T
t(j) X t ( j / j 1 ) XV( , ) c( , ) P c( , ) S−υ τ = υ τ υ τ +     (20.c) 

 

T 1
t ( j / j 1 ) X t(j)K P c ( , ) V( , )−

−= υ τ υ τ         (20.d) 

[ ] [ ] t(j) IJ t ( j / j 1 )t(j) t ( j / j 1 )x x K(y c (x , , ))−−= + − υ τ  (20.e) 

t(j) t ( j / j 1 ) X t ( j / j 1 )P P Kc ( , )P− −= − υ τ         (20.f) 
 
where p denotes the previously estimated parameters 
of the unfaulty process model and (yt(j) – cIJ(xt(j/j-

1),υ,τ)) denotes residuals from the (I, J) faulty-model 
filter. Log-likelihood function values LI,J(υ,τ) are 
computed for each alternative fault location and 
structure and are ranked from largest to smallest to 
assess the appropriateness of a particular hypothesis 
about the unknown event. In addition, the evolution 
of indicators ht(k), hi

t(k) and h-i
t(k) provides further 

information for discriminating between different 
hypotheses. 
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a) Detection and Isolation of Significant Measurement 
Errors (I = 1) 
 

A measurement bias can frequently be found. 
Then the mean of its measurement noise is different 
from zero. Sensor drift or inaccurate calibration may 
cause the bias. This type of error can be disastrous 
when the measured variable is used to determine 
another process variable for control purposes and it 
must be promptly detected. But if on-line measured 
variable i has a significant error, the i element of the 
innovation sequence is biased, and therefore the 
value of lt(k) should increase, a sudden and large 
change in the value of lit(k) is expected and l-it(k) 
should remain below its threshold. Furthermore, 
when an off-line sample is analyzed, ht(k), hi

t(k), and h-

i
t(k) should show a similar pattern. Thus, the error can 
be detected by analyzing the behavior of these 
statistical indicators. Failure parameters are 
estimated by maximizing the log-likelihood function 
(19). In the same way, if off-line measured variable i 
has a significant error, since indicators lt(k), lit(k) and l-
i
t(k) cannot be calculated, the value of  ht(k) should 
increase, a sudden and large change in the value of 
hi

t(k) is expected and h-i
t(k) should remain below its 

threshold.  
If the state-measurement relations of the 

fermentation observer are given by eq. (4.b), 
variables lt(k), lO2

t(k) and lCO2
t(k) allow detection of  

significant errors in on-line measurements ∆O2 and 
∆CO2. Analogously, variables ht(k), hi

t(k), and h-i
t(k) 

allow detection of significant errors in off-line 
measurements ∆S, ∆X and ∆P. In principle two 
simultaneous but related measurement errors can be 
detected. For example, if there is a fault in the gas-
flow measurement device, ∆O2 and ∆CO2 will have a 
correlated bias. Thus lt(k), lO2

t(k) and lCO2
t(k) indicators 

will not trigger the alarm but indicators ht(k), hi
t(k) and 

h-i
t(k) will do it. Since residual vectors are usually 

rather inaccurate, a search of two simultaneous error 
sources will not give trustworthy results. 
Nevertheless, simulation of a hypothesis with a 
simultaneous and correlated drift in ∆O2 and ∆CO2 
should give the maximum log-likelihood-function 
value.  
 
b) Detection and Isolation of Incorrect System 
Descriptions (I = 2) 
 

If the evolution of some system components is 
measured and introduced into eq. (2.b), due to 
measurement noises this equality will never be 
exactly satisfied. It can be better written as 

I / JYC I∆ = ν             (21) 
 
where ν is a residuals vector. Its expected value 
under the non-fault hypothesis is 0. But in addition to 
measurement noises, error in the specified constraint 
(2) may occasionally be encountered. This may be 
due to time-varying or ill-defined component 
composition (i.e., biomass), a component omitted 
from the balance equation or an alternative metabolic 
pathway (e.g., partial substrate oxidation). This kind 
of error will result in incorrect balance constraints 
and must be distinguished from measurement errors. 
As adaptive observers are used for monitoring batch 
fermentations, tests lt(k), lit(k) and l-it(k) are not sensitive 
to this type of error. This is because the effect of 
these errors is manifested as a correction of some 
parameter values, resulting in residuals close to the 
zero-mean known-covariance hypothesis. Nevertheless, 
since the specified matrix CY I/J is incorrect, 
indicators ht(k), hi

t(k) and h-i
t(k) will trigger alarms. To 

summarize, alarms triggered by variables ht(k), hi
t(k) 

and h-i
t(k), while variables lt(k) , lit(k) and l-it(k) indicate 

normal process operation, can be interpreted as an 
incorrect system description. Other evidence that 
permit to detect a composition error are (i) no 
measurement error can cause a residual vector of the 
given form and (ii) measurement errors that may 
cause a residual vector of the given form are checked 
by tests lt(k), lit(k) and l-it(k) and found to be correct.  
 
Incorrect Component Composition 
 
  Composition of X and P (if P is a complex 
product) may not be exactly known or may be time-
varying, resulting in incorrect or time-varying 
element constraints, e.g., the biomass N content can 
vary with time. Therefore, the detection and 
diagnosis of other errors will be rather difficult. 
Nevertheless, there may be heuristic information that 
can be used within expressions (2) and (17) for 
reducing uncertainty about the biomass composition. 
For example, it is known that the biomass C content 
is fC ≈ 0.48 with a relative variance of 5% and that 
the degree of reduction in the biomass “mol”  * is γX ≈ 
4.25 with a relative variance of 4% [Erikson et al., 
1978]. These data together with the elemental 
composition of S, SN and element balances can be 
used to derive linear relationships between Y*X/N, 

Y*X/S and Y*X/CO2.  With this information and 
measurements yt(k), the isolation problem can be 
written as the maximization of the log-likelihood 
function (19) subject to the EKF equations that 
include a modified yields matrix C*: 
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*
P/O2 S / O 2X/O2

*
P/CO2 S/CO2X/CO2*

*
P / SX / S

1 1 1
Y YY

1 1 1
Y YY

C 1 1 1YY
1 0 0
0 1 0

 
 
 
 
 =  
 
 
 
  

     (22) 

 
Missing Components  
 

An analogous procedure is useful to identify the 
formation of a suspect by-product. Thus, its isolation 
can be written as the maximization problem given by 
eqs. (19) and (20), but now C* includes a column of 
stoichiometric yields of the suspected by-product q 
in the measured components: 
 

q/O2X / O 2 P/O2 S/O2

q/CO2X/CO2 P/CO2 S/CO2*

X / S P / S q / S

11 1 1 YY Y Y
11 1 1

YY Y Y
C 1 1 11Y Y Y

1 0 0 0
0 1 0 0

 
 
 
 
 =  
 
 
 
  

      (23) 

 
The mol of biomass is defined by the formula 

CHb1Oc1Nd1. The degree of reduction of a mol of biomass 
is defined as 4+b1-2c1-3d1 [Erikson et al., 1978]. 

No distinction can be made between an omitted 
component and a component composition error. 
However, many components are precisely defined 
(O2, CO2 and many times S), a limited number of 
components (X and sometimes P) lack a defined 
elemental composition and a limited number of 
substances are suspected to be omitted by-products. 
Thus, if probable composition errors for X and P do 
not cause residuals of the given form, it can be 
inferred that a component is omitted from constraints 
(2). It must be noted that, since the matrix C* 
defined by eq. (23) has one more column than the 
matrix C* defined by eq. (22), the degree of freedom 
is reduced to 1 and therefore the threshold θ has to 
be corrected. Finally, if a component composition 
error or a missing component is detected, the states 
and parameters of the process can be re-estimated by 
maximization of the log-likelihood function (19) 
from the identified occurrence time to the present. 
 
c) Detection and Isolation of Abrupt Kinetic 
Changes (I = 3) 
 

Abrupt kinetic changes are caused by 
physiological disturbances that are manifested as 

parametric or structural changes in the process 
dynamic f(•).Therefore they do not affect the state 
measurement relations c(•). Thus, if this kind of 
disturbance is produced, indicators ht(k), hi

t(k) and h-

i
t(k) will not trigger alarms because constraints (2) are 
still valid. Nevertheless, abrupt changes in kinetic 
parameter values will be reflected as a nonwhite-
noise innovation sequence that will increase the 
value of indicators lt(k), lit(k) and l-it(k). Summarizing, 
alarms triggered by indicators lt(k), lit(k) and l-it(k), 
while variables ht(k), hi

t(k), and hi
t(k) indicate normal 

process operation, mean abrupt kinetic changes. As 
for the previous hypotheses, they are to be isolated 
by maximization of the log-likelihood function (19) 
for various possible kinetic models. 
 
d) Detection of Poorly Specified Variances (I = 4) 
 

A practical detection algorithm must be able to 
detect small errors and must be reliable. These two 
properties are in conflict with one another. In order 
to achieve high reliability, strong indications of error 
are necessary. But high sensitivity to error means 
that indicators may respond to minor disturbances. 
This, however, may also be caused by measurement 
noises or modeling errors instead of real faults. If 
specified measurement variances are too small, 
detection tests lt(k), lit(k), l-it(k), ht(k), hi

t(k) and hi
t(k) will 

be very sensitive and they will produce too many 
false alarms. On the other hand, large specified 
variances will cause excessive smoothing and 
detection tests will be insensitive to real faults. Thus, 
well-tuned filters are crucial for detection reliability 
and sensitivity. Incorrect measurement variances can 
only be detected if suffic ient samples have been 
taken. Thus, measurement variances can be 
estimated on-line and compared with specified 
variances for performing the following tests: 

2
i

_
2
i

1
1

∧
>> ⇒σ

<< ⇒
σ

 Estimated variances, 2
i

∧

υ ,                  (24) 

are larger than the specified ones, 2
i

_
υ .   

Estimated variances, 2
i

∧

υ , are smaller than the 

specified ones, 
_
2
iυ . 

2
i

_
2
i

1

∧

σ ≈ ⇒

σ

Estimated variances, 2
i

∧

υ ,         (25) 

are similar to the specified ones, 
_
2
iυ .  
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Measurement variances can be evaluated in a w’ 
lag sliding window by 
 

t(j)

k
2 i 2
i

j k w ' 1

1
( )

w ' 1

∧

= − +

σ = γ
− ∑                                  (26) 

 
Furthermore, effects of poorly specified variances 

can be evaluated by on-line computing residual means: 
 

t ( j )

k
i

i t (k)
j k w ' 1

1
w '

∧

= − +

µ = γ∑           (27)

  
Values for these means significantly different 

from zero indicate that the observer had “lost” 
information due to specified variances that were too 
large. If specified variances are incorrect, the 
estimated ones can replace them and the estimation 
procedure can continue with the new variances.  

In order to avoid frequent retuning of the filters and 
interference with detection tests, time windows w’ used 
for monitoring residual means and variances must be 
considerably larger than the ones used for detection 
purposes. Noise correlation tests are also advisable, 
especially in the case of on-line measurement.  
 
 
COMPUTATIONAL IMPLEMENTATION AND 

TESTS RESULTS 
 

The joint estimation-detection algorithm performs 
three tasks: (i) It propagates the states of the system 
and the error covariance matrix from one observation 
time to the next one. (ii) It conducts tests to 
determine whether or not a fault has occurred. This is 
done by generating lt(k), lit(k) and l-it(k) indicators in a 
sliding window of selected size and, if an off-line 
sample is available, by computing ht(k), hi

t(k) and h-i
t(k) 

indicators. These variables are compared with their 
critical thresholds as described previously and a fault 
condition is identified when a critical value is 
exceeded. (iii) It updates the state and parameter 
estimates and the error covariance matrix after a 
measurement is processed. This update is done using 
the EKF correction equations if no off-line 
measurement is available or by maximization of the 
log-likelihood function (9) if an off-line measurement 
is available. A flow chart that summarizes the 
estimation-detection procedure is presented in Fig. 2. 
 
The Case Study 
 

Shu and Yang [1991] studied the effects of the 
temperature on xanthan gum batch fermentations. 

They proposed a kinetic model in which growth is 
modeled by the logistic equation. The equation of 
Luedeking-Piret was used to model the product 
formation rate and the glucose consumption rate. The 
parameters of these equations were expressed as 
functions of temperature. These equations and the 
structured model proposed by Pons et al. [1989] 
were used to construct a stochastic model (Table 2) 
for utilization as a fermentation simulator [Dondo, 
2000]. On the other hand, Cacik et al. [2001] used 
the model of Shu and Yang for calculating an 
optimal temperature profile that permits a given 
quantity of product to be obtained in a minimum 
time. The resulting profile shows an abrupt 
temperature change at a time that is a function of the 
initial biomass concentration and of the desired final 
product concentration. When this profile is applied to 
a real fermentation it may produce unexpected 
abnormal behaviors [Dondo, 2000]. Thus, it will be 
applied to a modified fermenter simulator. The 
modifications were introduced for simulating the 
following abnormal behaviors: 
§ Measurement biases; 
§ Errors in some stoichiometric yields YI/J; 
§ Generation of an unidentified by-product (acetate 
salts); 
§ Intracellular accumulation of metabolic products 
as a consequence of abrupt changes in temperature; 
§ Abrupt changes in some kinetic parameters as a 
consequence of abrupt changes in temperature. 

Equations for simulating these abnormal 
behaviors are presented in the appendix. Models of 
the observers used by the estimation-detection 
procedure are also summarized in the appendix. 
 
Test Results 
 

Test cases are presented below to demonstrate the 
ability of the estimation-detection program to detect 
different faults. For each test, the system was 
simulated with measurement noises included and the 
faults were imposed at a specified time. The 
estimation-detection algorithm processed the 
measurements on-line. The aim was to assess the 
ability of detectors to accurately determine the 
presence of an abnormal behavior within a short time 
following the actual occurrence of the event as well 
as the reliability of the detector in not giving false 
alarms. For each observer, continuous-time nonlinear 
differential equations were used to predict the states 
of the system from one observation to the next by 
using a Runge-Kutta 4th-5th order algorithm 
[Forsythe et al., 1977]. The Jacobian matrix 
computed in the linearization process was used to 
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compute the differential Ricatti equation and the 
covariance matrix for each time interval. By using 
the EKF monitor, the updated estimates and the 
updated covariance matrix were computed and used 
as initial conditions for the next interval. Afterwards, 
if there was an off-line measurement available, 
maximum likelihood estimates were obtained by 
using the downhill-simplex minimization method 
[Press et al., 1992]. The monitor filter provided 
initial states and parameter values and after the 
optimization it was reinitialized with maximum-
likelihood states, parameters and covariances. The 
routines were written in a commercial programming 

language and optimizations carried out for 20 
seconds in a Pentium 166 Mhz 64 MB RAM PC. 
The monitor filter also computes the innovation 
covariance matrix that is used to calculate decision 
variables lt(k), lit(k) and l-it(k) on a 12 sample lag sliding 
window. Alarm thresholds have been fixed in the 
values described on (Table 3).  

When an alarm was triggered, maximum 
likelihood suspected faults were diagnosed. 
Computation times for testing each hypothesis were 
on the order of 15 seconds and ten different 
hypotheses were evaluated. The reliability of the 
resulting diagnosis was also studied. 
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Figure 2: Overview of the estimation-detection methodology. 
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Table 2: Stochastic model used as fermentation simulator  

 
Kinetic equations 

Biomass production:  M
S

X
X 1 X

X

•  
=µ − 

 
 

Gum production:  
S

S
P a X bX

S k

• •   
= +    +  

 

Glucose catabolism: 
 

M
ATP

X/ATP P/ATP
R

X P
k X

Y Y
S

3 12(P/O)

• •

•

 
 + +   =

+
 

Total glucose consumption: 
 

R

X / S P /S

X P
S S

Y Y

• • ••  
 = − + +   

 

Carbon dioxide production: 
R

2
X/CO2 P/CO2 S/CO2

X P S
CO

Y Y Y

•• •
•

= + +  

Oxygen consumption: 
R

2
P / O 2 S/O2

P S
O

Y Y

••
•

= +  

Deterministic parameters Stochastic parameters 

YX/ATP = 10.5 
YS/O2 = 0.9375 
YS/CO2 = 0.687 
PM P = 906.2 
YATP

0 =10.9 

YX/N = N(µ = 8.0, σ = 0.5) 
δp = N(µ = 0.38, σ = 0.03) 
P/O = N(µ = 1.3, σ = 0.4) 
kM

ATP = N(µ = 0.5, σ = 0.1 ) 
ks = N(µ = 1.8, σ = 0.4) 

Stoichiometric yields that depend on stochastic parameters 

YP/CO2 = 36.872 - 5.24δp 
YP/S = 0.97875 - 0.1625δp 
YP/O2 = 20.9124 - 13.312δp 
YNADH2/P  =  2.44 + 3δp 
YX/CO2 = 2.96 + 1.19YX/N 

YX/S = -0.78 + 0.32YX/N 

P
P/ATP 0

ATP NADH2/P ATP/NADH2

PM
Y

Y Y Y
=

−
 

Kinetic parameters: The kinetic parameters are modeled as the sum of the equations 
π(u) proposed by Shu and Yang and two stochastic disturbances ∆p0 and ∆pu as follows: 
p(u) = π(u)+ ∆p0 + ∆pu(u-29°C)                                         p(u) = µM(u), XS(u), a(u), b(u) 
These disturbances are modeled as zero-mean Gaussians with variances detailed below: 

p(u) π(u) σ2 ∆p0 σ2 ∆pu 
µM(u) [0.0405(u -11.69)(1- e 0.26(u - 35.17))] 0.022 0.0052 
XS(u) (1.58 + 2.02 e 29.0-u)/(1 + e(29.0 - u)) 0.402 0.1002 
a(u) [0.209 (u - 20.44)(1-e 0.486(u - 32.75))] 0.602 0.1002 
b(u) 1.61 x 1013e-9580/u 0.022 0.0042 

Measurement  equations 
t(k)

2t(k) 2 t (k)
0

O O dt N(0, 0.03)
•

∆ = + σ =∫  

t (k)

2t(k) 2 t(k)
0

CO CO dt N(0, 0.03)
•

∆ = + σ =∫  

t(k) 0 t(k)S S [S] N(0, 0.05)∆ = − + σ =  

t(k) t (k)X [X] N(0, 0.10)∆ = + σ =  

t (k) t(k)P [P] N(0, 0.25)∆ = + σ =  

 
 



 
 
 
 

380                   R. Dondo 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

Table 3: Alarm thresholds (Approximate confidence level: 95%) 
 

Indicator Threshold 
lt(k) 1.50 
lO2

t(k) 1.40 
lCO2

t(k) 1.40 
ht(k) 6.00 
hO2

t(k) 4.00 
hCO2

t(k) 4.00 
hS

t(k) 4.00 
hX

t(k) 4.00 
hP

t(k) 4.00 
h-O2

t(k) 5.00 
h-CO2

t(k) 5.00 
h-S

t(k) 5.00 
h-X

t(k) 5.00 
h-P

t(k) 5.00 
 
a) Unfaulty Fermentation 
 

To observe the behavior of the estimation-
detection methodology, an unfaulty case is presented. 
Initial conditions and stochastic parameters used to 
simulate this run are presented in Table 4. Fig. 3 
shows the evolution of indicators lt(k), lO2

t(k) and lCO2
t(k) 

and Table 5 shows the evolution of indicators ht(k), 

hi
t(k) and h-i

t(k) for this case. These indicators were 
compared to their thresholds for detection tests and no 
faults were detected. Thus, estimated states are 
assumed to be correct. They can be compared with 
‘real’ states in Figs. 4. Note that, in spite of errors in 
some stoichiometric yields and uncertainty in the 
kinetic parameters, an excellent agreement between 
estimated and real state variables was obtained. 

 
Table 4: Initial conditions and stochastic parameters used to simulate the unfaulty fermentation 

 
"Real"  initial concentrations: X0 = 0.0133 g/l, S0 = 25.045 g/l. 

Stochastic parameters  P/O = 1.298, δp = 0.41, kS = 1.066 g S/l 
YX/N = 7.88 g X/g N, kATP

m = 0.589 mol ATP/g X h 

Stoichiometric yields  

YX/S = 1.741 g X/g S, YX/CO2 = 12.335 
g X/g CO2, YP/S = 0.9121 g P/g S 
YP/CO2 = 32.99 g P/g CO2, YP/O2 = 15.45 g P/g O2 
YNADH2/P  = 3.67 mol ATP/g P 

Kinetic disturbances 

∆µM 0 = -0.036 h-1, ∆XS 0 = 0.155 g X/l 

∆a0 = -0.541 g P/g X, ∆b0 = 0.0113 g P/g X h 
∆µM u = -0.0004 h-1/°C, ∆XS u = -0.0070 g X/l°C 
∆au = 0.130 g P/g X°C, ∆bu = 0.0031 g P/g X h°C 

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 l
t(k)

 lO2
t(k)

 lCO2
t(k)

Time (h)  
Figure 3: Evolution of indicators lt(k), lO2

t(k) and lCO2
t(k) for the unfaulty run 
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Table 5: Evolution of indicators ht(k), hi
t(k) and hi

t(k) for the unfaulty run 
 

t(k) ht(k)  hO2
t(k)  hCO2

t(k)  hS
t(k)  hX

t(k)  hP
t(k)  h-O2

t(k)  h-CO2
t(k)  h-S

t(k)  h-X
t(k)  h-P

t(k)  
2.76 
5.76 
8.76 
11.76 
14.76 
17.76 
20.76 
23.76 
26.76 
29.76 
32.76 
35.76 
38.76 
41.76 

3.794 
3.401 
0.015 
1.100 
4.627 
0.709 
0.310 
0.278 
4.029 
1.631 
1.044 
0.038 
3.712 
2.610 

0.477 
0.416 
0.002 
0.270 
1.679 
0.483 
0.055 
0.089 
2.301 
0.782 
0.148 
0.031 
2.630 
0.967 

1.468 
2.307 
0.006 
0.295 
2.664 
0.006 
0.103 
0.057 
1.706 
0.159 
0.385 
0.002 
1.065 
0.440 

1.563 
0.58 
0.006 
0.452 
0.247 
0.184 
0.129 
0.111 
0.020 
0.581 
0.432 
0.004 
0.013 
1.014 

0.176 
0.055 
0.001 
0.052 
0.019 
0.023 
0.015 
0.013 
0.000 
0.070 
0.049 
0.001 
0.005 
0.120 

0.109 
0.043 
0.000 
0.031 
0.019 
0.012 
0.009 
0.008 
0.002 
0.039 
0.030 
0.000 
0.000 
0.069 

3.316 
2.984 
0.013 
0.830 
2.949 
0.226 
0.255 
0.189 
1.728 
0.850 
0.896 
0.007 
1.083 
1.643 

2.325 
1.094 
0.009 
0.806 
1.963 
0.702 
0.207 
0.220 
2.323 
1.472 
0.659 
0.036 
2.648 
2.171 

2.230 
2.821 
0.009 
0.648 
4.380 
0.525 
0.182 
0.167 
4.009 
1.051 
0.612 
0.034 
3.699 
1.596 

3.618 
3.345 
0.014 
1.048 
4.608 
0.685 
0.296 
0.265 
4.029 
1.562 
0.995 
0.037 
3.708 
2.491 

3.685 
3.358 
0.014 
1.069 
4.608 
0.696 
0.301 
0.270 
4.027 
1.592 
1.014 
0.038 
3.712 
2.541 

 

0 10 20 30 40
0.0

0.5

1.0

1.5

2.0

Time (h)

 "Real" biomass concentration (g/l)
 Estimated biomass concentration (g/l)
  "Real" quantity of oxidized main substrate (g/l)
  Estimated quantity of oxidized main substrate (g/l)

 
Figure 4.a: Real and estimated values of states X and SR for the unfaulty run 
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 Estimated product concentration (g/l)

Time (h)  
Figure 4.b: Real and estimated values for the state P for the unfaulty run 
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b) Faulty Scenarios  
 

Test cases are presented below to demonstrate the 
ability of the estimation-detection program to 
identify an unexpected event and its characteristic 
parameters. In these tests, the stochastic model was 
started with the parameters in Table 4 under normal 
operating conditions and the states were propagated 
before a given bias was imposed at a given 
occurrence time. Fault parameters are summarized in 
Table 6. The tests always detected the occurrence of 
a fault, reflecting the increased detection power 
arising from multiple tests as can be seen in Table 7 
and Figs. 5 to 7. Fault isolation is achieved by 
hypothesizing alternative sources and by using the 
maximum likelihood identification procedure in a 
ten-hour time window (the six hours previous to the 
alarm launch plus four hours from the alarm launch 
for collection of dynamic information). The 
identification is to estimate faulty parameters and 
log-likelihood functions for each alternative. The 
capability of the technique to distinguish between 

alternative hypotheses is reflected by the results in 
Table 8. The first table compares the term Σt(j)=t0

t(j)=t(k) 
[(yt(j) – cIJ(x,υ,τ)) V-1

t(j) (yt(j) – cIJ(x,υ,τ))T] of the 
likelihood function (19) for each hypothesis (I,J). 
This is the critical term in eq. (19), since Σt(j)=t0

t(j)=t(k)  
lnVt(j) was almost constant. The second table 
compares Σt(j)=t0

t(j)=t(k) (ht(k)) for all hypotheses. Note 
that this summation provides useful information for 
further discriminating between different hypotheses. 
Log-likelihood values for many hypotheses are 
rather similar, indicating similarity of dynamics for 
different error sources. Furthermore, as can be 
expected, measurement faults are clearly easier to 
distinguish than incorrect system descriptions. 
Nevertheless, the true hypothesis was correctly 
selected in most cases, even with high noise and 
parametric uncertainty. Estimated faulty parameters 
are shown in Table 9. They can be compared with 
true fault parameters presented in Table 6. The 
results show that faulty parameters can be estimated 
with fairly good precision. 

 
 

Table 6: Fault parameters for simulated faulty runs  
 

Type  Identity 
Occurrence 

Time Bias magnitude 

Oxygen (J = 1) t ≥ 20 h +15% OUR.≅ 0.014 gO2/lh 

Carbon dioxide (J = 2) t ≥ 20 h -20% CPR ≅ -0.019 gCO2/lh 

Main substrate (J = 3) t ≥ 22 h -10% [S] ≅ -0.70 g S/l 

Biomass (J = 4) t ≥ 23 h +35% [X] ≅ 0.55 g X/l 

Measurement errors (I = 1) 

Product (J = 5) t ≥ 16 h -7% [P] ≅ -0.15 g P/l 

Biomass N-content (J = 1) t ≥ 0 h YX/N = 5.20 gX/gN 

Product composition (J = 2) t ≥ 0 h δp = 0.52 

Missing component (J = 3) t ≥ 30 h 0.04 g/lh 

Incorrect system  

description (I = 2) 

Intracellular product accumulation (J = 4) t ≥ 28 h 0.18 g P/l h 

Kinetic disturbances (I = 3) - t ≥ 28 h XS = 3.9 g X/l; b =0.27 gP/gXh 

 
 

Table 7: Evolution of indicators ht(k), hi
t(k) and hi

t(k) for faulty runs  
 

t(k) h t(k) hO2
t(k) hCO2

t(k) hS
t(k) hX

t(k) hP
t(k) h -O2

t(k) h -CO2
t(k) h -S

t(k) h -X
t(k) h -P

t(k) 
(I = 1, J = 3) 

2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 

3.794 
3.401 
0.015 

1.1 
4.627 
0.709 
0.31 

105.59 

0.477 
0.416 
0.002 
0.27 

1.679 
0.483 
0.055 

20.581 

1.468 
2.307 
0.006 
0.295 
2.664 
0.006 
0.103 

33.233 

1.563 
0.58 

0.006 
0.452 
0.247 
0.184 
0.129 

43.761 

0.176 
0.055 
1E-3 
0.052 
0.019 
0.023 
0.015 
4.991 

0.109 
0.043 

0 
0.031 
0.019 
0.012 
0.009 
3.03 

3.316 
2.984 
0.013 
0.83 

2.949 
0.226 
0.255 

85.016 

2.325 
1.094 
0.009 
0.806 
1.963 
0.702 
0.207 

72.364 

2.23 
2.821 
0.009 
0.648 
4.38 

0.525 
0.182 

61.836 

3.618 
3.345 
0.014 
1.048 
4.608 
0.685 
0.296 

100.60 

3.685 
3.358 
0.014 
1.069 
4.608 
0.696 
0.301 

102.56 
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Continuation Table 7 

(I = 1, J = 4) 
2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 
26.76 

3.794 
3.401 
0.015 

1.1 
4.627 
0.709 
0.31 

5.042 
6.56 

0.477 
0.416 
0.002 
0.27 

1.679 
0.483 
0.055 
2.016 
0.03 

1.468 
2.307 
0.006 
0.295 
2.664 
0.006 
0.103 
0.746 
4.217 

1.563 
0.58 

0.006 
0.452 
0.247 
0.184 
0.129 
1.921 
1.968 

0.176 
0.055 
1E-3 
0.052 
0.019 
0.023 
0.015 
0.228 
0.204 

0.109 
0.043 

0 
0.031 
0.019 
0.012 
0.009 
0.131 
0.141 

3.316 
2.984 
0.013 
0.83 

2.949 
0.226 
0.255 
3.026 
6.53 

2.325 
1.094 
0.009 
0.806 
1.963 
0.702 
0.207 
4.296 
2.342 

2.23 
2.821 
0.009 
0.648 
4.38 

0.525 
0.182 
3.121 
4.592 

3.618 
3.345 
0.014 
1.048 
4.608 
0.685 
0.296 
4.815 
6.355 

3.685 
3.358 
0.014 
1.069 
4.608 
0.696 
0.301 
4.911 
6.419 

(I = 1, J = 5) 
2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 

3.794 
3.401 
2.437 
2.469 
0.616 
0.115 
1.276 
16.681 

0.477 
0.416 
0.002 
0.617 
0.058 
1E-3 
0.25 

1.621 

1.468 
2.307 
1.472 
0.652 
0.42 

0.066 
0.4 

7.025 

1.563 
0.58 

0.819 
1.013 
0.118 
0.041 
0.529 
6.802 

0.176 
0.055 
0.087 
0.117 
0.011 
0.004 
0.06 

0.758 

0.109 
0.043 
0.058 
0.07 

0.009 
0.003 
0.037 
0.475 

3.316 
2.984 
2.436 
1.852 
0.559 
0.114 
1.026 
15.06 

2.325 
1.094 
0.965 
1.817 
0.196 
0.049 
0.876 
9.656 

2.23 
2.821 
1.619 
1.456 
0.498 
0.074 
0.747 
9.879 

3.618 
3.345 
2.351 
2.352 
0.605 
0.11 

1.216 
15.922 

3.685 
3.358 
2.379 
2.399 
0.608 
0.112 
1.24 

16.206 
(I = 2, J = 1) 

2.76 
5.76 
8.76 

11.76 
14.76 
17.76 

3.647 
3.159 
0.203 
0.101 
5.248 
10.133 

0.45 
0.509 
0.047 
0.019 
4.185 
3.839 

1.422 
2.114 
0.057 
0.032 
0.842 
1.648 

1.502 
0.46 

0.084 
0.042 
0.179 
3.917 

0.169 
0.043 
0.01 

0.005 
0.031 
0.462 

0.105 
0.034 
0.006 
0.003 
0.01 

0.268 

3.198 
2.651 
0.156 
0.082 
1.063 
6.295 

2.225 
1.045 
0.146 
0.069 
4.406 
8.486 

2.145 
2.7 

0.119 
0.059 
5.069 
6.216 

3.479 
3.117 
0.193 
0.096 
5.217 
9.671 

3.543 
3.125 
0.197 
0.098 
5.238 
9.865 

(I = 2, J = 2) 
2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 
26.76 
29.76 
32.76 
35.76 
38.76 
41.76 

3.779 
3.364 
0.024 
0.955 
4.283 
1.091 
0.991 
0.063 
3.636 
4.732 
4.932 
1.852 
5.489 
10.807 

0.476 
0.42 

0.003 
0.252 
1.775 
0.579 
0.115 
0.023 
2.908 
1.254 
0.448 
0.024 
3.991 
1.959 

1.462 
2.28 
0.01 

0.241 
2.325 
0.075 
0.394 
0.036 
0.568 
1.188 
2.116 
1.032 
0.005 
3.546 

1.558 
0.568 
0.01 

0.391 
0.159 
0.367 
0.407 
0.003 
0.130 
1.934 
2.005 
0.675 
1.249 
4.482 

0.175 
0.054 
1E-3 
0.045 
0.011 
0.045 
0.046 
0.000 
0.022 
0.223 
0.223 
0.073 
0.161 
0.51 

0.108 
0.042 
1E-3 
0.027 
0.013 
0.025 
0.028 
0.000 
0.008 
0.133 
0.14 

0.048 
0.083 
0.311 

3.303 
2.943 
0.021 
0.703 
2.508 
0.512 
0.875 
0.040 
0.728 
3.478 
4.484 
1.828 
1.498 
8.848 

2.317 
1.083 
0.014 
0.715 
1.958 
1.016 
0.597 
0.027 
3.068 
3.544 
2.816 
0.819 
5.484 
7.261 

2.222 
2.796 
0.014 
0.565 
4.123 
0.724 
0.584 
0.059 
3.506 
2.799 
2.928 
1.176 
4.240 
6.325 

3.604 
3.31 

0.023 
0.91 

4.272 
1.047 
0.945 
0.062 
3.613 
4.509 
4.709 
1.779 
5.328 
10.297 

3.671 
3.322 
0.023 
0.929 
4.27 

1.067 
0.962 
0.062 
3.628 
4.599 
4.792 
1.804 
5.406 

10.496 
(I = 2, J = 3) 

2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 
26.76 
29.76 
32.76 

3.794 
3.401 
0.015 

1.1 
4.627 
0.709 
0.31 

0.278 
4.029 
2.609 
6.301 

0.477 
0.416 
0.002 
0.27 

1.679 
0.483 
0.055 
0.089 
2.301 
1.024 
0.806 

1.468 
2.307 
0.006 
0.295 
2.664 
0.006 
0.103 
0.057 
1.706 
0.399 
2.423 

1.563 
0.580 
0.006 
0.452 
0.247 
0.184 
0.129 
0.111 
0.02 

0.999 
2.598 

0.176 
0.055 
0.001 
0.052 
0.019 
0.023 
0.015 
0.013 
0.000 
0.118 
0.292 

0.109 
0.043 
0.000 
0.031 
0.019 
0.012 
0.009 
0.008 
0.002 
0.068 
0.181 

3.316 
2.984 
0.013 
0.83 

2.949 
0.226 
0.255 
0.189 
1.728 
1.585 
5.494 

2.325 
1.094 
0.009 
0.806 
1.963 
0.702 
0.207 
0.220 
2.323 
2.209 
3.877 

2.230 
2.821 
0.009 
0.648 
4.380 
0.525 
0.182 
0.167 
4.009 
1.610 
3.702 

3.618 
3.345 
0.014 
1.048 
4.608 
0.685 
0.296 
0.265 
4.029 
2.491 
6.009 

3.685 
3.358 
0.014 
1.069 
4.608 
0.696 
0.301 
0.27 

4.027 
2.54 
6.12 

(I = 2, J = 4) 
2.76 
5.76 
8.76 

11.76 
14.76 
17.76 
20.76 
23.76 
26.76 
29.76 
32.76 
35.76 

3.794 
3.401 
0.015 
1.100 
4.627 
0.709 
0.310 
0.278 
4.029 
1.631 
0.075 
7.764 

0.477 
0.416 
0.002 
0.27 

1.679 
0.483 
0.055 
0.089 
2.301 
0.782 
0.028 
1.770 

1.468 
2.307 
0.006 
0.295 
2.664 
0.006 
0.103 
0.057 
1.706 
0.159 
0.012 
2.203 

1.563 
0.580 
0.006 
0.452 
0.247 
0.184 
0.129 
0.111 
0.02 

0.581 
0.029 
3.203 

0.176 
0.055 
0.001 
0.052 
0.019 
0.023 
0.015 
0.013 
0.001 
0.070 
0.003 
0.368 

0.109 
0.043 
0.001 
0.031 
0.019 
0.012 
0.009 
0.008 
0.002 
0.039 
0.002 
0.221 

3.316 
2.984 
0.013 
0.83 

2.949 
0.226 
0.255 
0.189 
1.728 
0.85 

0.047 
5.995 

2.325 
1.094 
0.009 
0.806 
1.963 
0.702 
0.207 
0.220 
2.323 
1.472 
0.062 
5.561 

2.230 
2.821 
0.009 
0.648 
4.380 
0.525 
0.182 
0.167 
4.009 
1.051 
0.046 
4.561 

3.618 
3.345 
0.014 
1.048 
4.608 
0.685 
0.296 
0.265 
4.029 
1.562 
0.071 
7.397 

3.685 
3.358 
0.014 
1.069 
4.608 
0.696 
0.301 
0.27 

4.027 
1.592 
0.073 
7.543 
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Figure 5: Evolution of indicators lt(k), lO2

t(k) and lCO2
t(k) for the case of a bias in the O2 measurement 
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Figure 6: Evolution of indicators lt(k), lO2

t(k) and lCO2
t(k) for the case of a bias in the CO2 measurement 
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Figure 7: Evolution of indicators lt(k), lO2
t(k) and lCO2

t(k) for the case of kinetic disturbances  
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Tables 8: Hypothesis discriminability. The columns in the first table show a comparison  
of the term Σ t(j)=t0

t(j)=t(k) [(yt(j) – cIJ(x,υ,τ)) V-1
t(j) (yt(j) – cIJ(x,υ,τ))T] of the log-likelihood  

function (16) of all hypotheses (I,J). Columns in the second table show a comparison  
of Σ (ht(k)) of all hypotheses. (Grey boxes denote the most probable fault) 

 
I    1    2   3 
 J 1 2 3 4 5 1 2 3 4  
1 1 365.25 344.56 1005.2 450.78 219.76 309.68 127.36 218.11 664.52 726.93 
 2 472.08 217.86 1003.3 448.70 219.76 374.45 123.41 215.76 653.78 474.98 
 3 900.24 388.90 509.42 276.60 184.12 215.78 132.69 195.53 528.69 696.83 
 4 976.35 423.36 1003.2 405.93 217.75 372.65 133.76 224.04 701.00 796.39 
 5 979.49 420.87 1004.2 458.99 214.74 372.98 133.76 223.97 701.13 815.51 
2 1 891.40 238.12 666.24 349.46 195.08 255.50 122.09 216.75 666.40 822.36 
 2 798.24 408.07 835.62 415.59 216.51 339.07 133.76 213.79 542.79 788.70 
 3 657.03 417.98 570.22 205.08 190.64 324.21 133.37 195.04 648.91 731.42 
 4 946.14 312.65 941.00 443.76 218.26 304.77 133.76 223.30 463.68 691.82 
3  1395.3 872.87 1500.7 463.78 341.18 399.75 133.76 514.21 685.64 447.91 

 
I    1    2   3 
 J 1 2 3 4 5 1 2 3 4  
1 1 21.07 9.38 388.69 31.75 127.82 95.75 11.60 58.80 48.76 10.96 
 2 21.98 6.59 390.07 31.58 127.82 102.35 11.24 55.65 51.63 28.13 
 3 58.00 57.32 114.50 160.08 53.24 37.60 18.93 21.28 17.46 102.47 
 4 57.55 19.60 349.50 40.39 155.12 124.50 12.32 51.26 72.20 35.52 
 5 56.38 57.24 156.68 42.68 32.67 48.08 5.38 17.29 84.66 96.20 
2 1 159.44 98.17 176.31 163.40 64.80 32.73 25.01 33.68 17.22 5.35 
 2 40.41 26.11 223.46 37.71 114.23 138.53 10.40 39.20 110.16 4.48 
 3 34.44 23.93 230.87 75.59 90.37 67.35 10.71 34.41 26.66 30.66 
 4 48.52 29.66 335.44 36.70 125.54 162.18 12.16 52.27 112.07 6.84 
3  52.79 19.18 388.69 34.22 127.83 102.35 11.04 57.88 51.33 7.10 

 
Table 9: Detection and diagnosis results for faults in Table 6. 

 
I  ∧

τ  
∧
υ  

Detection 
time 

Alarm 
launcher 

 J     
1 1 21.75 h 0.02 g O2 /l h 25.00 h lt(k)

O2 
 2 21.75 h -0.025 g CO2/l h 22.75 h lt(k)

CO2 
 3 17.75 h -0.60 g S/l 23.75 h ht(k) 
 4 20.75 h 0. 60 g X/l 26.75 h ht(k) 
 5 20.75 h -0.30 g P/l 23.75 h ht(k) 
2 1 <11.75 h 7.50 g X/g N 17.75 h ht(k) 
 2 40.75 h 0.40 41.75 h ht(k) 
 3 26.75 h 0.05 g/l h 32.75 h ht(k) 
 4 29.75 h 0.035 g P/l h 35.75 h ht(k) 
3  31.75 h XS = 2.8 g X/l 33.52 h lt(k)

 CO2 
 

 
c) Estimation of Measurement Variances 
 

In Figures 8 and 9 estimated means and 
variances of measurement residuals for the run in 
section 4.2.1 are plotted.  They were calculated in a 
w’ = 75-sample lag-time window for on-line 
measurements and w’ = 5-sample lag-time window 
for off-line measurements. Note that a relatively 
accurate prediction of on-line measurement 
variances can be obtained. For off-line measurements, 
the estimated variances are not very accurate. 

Residual means for on-line measurements are 
approximately zero-mean but clearly correlated and 
nonwhite-noise distributed. Residual means for off-
line measurements are clearly biased. This is due to 
the effect of nonlinearities and compensation for 
yield errors. Thus, it would be wrong to blindly 
trust detection tests. Rather, one must expect 
sudden and large changes in the values of statistical 
indicators. With this relaxation, failure detectors 
can give very good results as was shown 
previously. 
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Figure 8.a: Estimated residual means of O2 and CO2 measurements for the unfaulty run 
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Figure 8.b: Estimated residual means of S, X and P measurements for the unfaulty run 
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Figure 9.a: Estimated residual variances of O2 and CO2 measurements for the unfaulty run 
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Figure 9.b: Estimated residual variances of S, X and P measurements for the unfaulty run 

 
 
 

CONCLUSIONS 
 

An approach to estimate state and parameters and 
to isolate unexpected events in batch fermentations 
with nonlinear and uncertain dynamics was 
developed. It is based on the application of several 
statistical detection tests and maximum likelihood 
state and parameter estimation techniques. The 
approach is designed for faulty structure 
discrimination. A maximum likelihood filter is used 
to identify faults. For computational efficiency, the 
fault parameters are estimated in a fixed-size sliding 
window. Under null hypothesis, the outputs of the 
algorithm are the fermentation state and parameter 
values. Under fault hypothesis, the outputs are states, 
maximum-likelihood fault parameters and log-
likelihood function values. These values are used for 
statistical comparison with the alternative faulty 
hypothesis. The original contributions of the method 
are 
§ The application of multiple tests, including 
measurement-dedicated detection tests of the 
residuals of the monitor filter and balance equations. 
§ The on-line implementation of maximum-
likelihood state and parameter estimation within the 
detection procedure for both the unfaulty process 
model and faulty models using a robust (Jacobian-
free and Hessian-free) optimization method. 

The technique was illustrated for simulated 
xanthan gum batch fermentations and ten different 
faulty scenarios were simulated. In spite of 
nonlinearities, parametric uncertainty and kinetic 

variations, hypothesis discriminability was very 
good. 

Areas of continuing work include the application 
and development of data-fusion techniques to fuse 
data from tests with maximum-likelihood estimates 
for gaining computational efficiency and hypothesis 
discriminability in small sample data. Research on 
the use of the algorithm in multiple -faults tests and 
in real fermentations is also advisable. 
 

 
NOMENCLATURE 

 
ϕ       Critical threshold of statistical indicator l 
ϕ I        Critical threshold of statistical indicator li 
ϕ --i    Critical threshold of statistical indicator l-i 
θ    Critical threshold of statistical indicator h 
θ i    Critical threshold of statistical indicator hi 
θ--I   Critical threshold of statistical indicator h-i 
∆µ  Disturbance of the specific biomass growth 

(h-1) 
∆a   Disturbance of the growth-associated 

specific metabolite production (g P/g X) 
∆b   Disturbance of the steady specific 

metabolite production (g P /g X h) 
∆CO2    Cumulative carbon dioxide production (g 

CO2/l) 
∆KR   Disturbance of the specific substrate 

consumption for cellular maintenance (g 
S/g X h) 
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∆O2    Cumulative oxygen consumption (g O2/l) 
∆S    Cumulative main substrate consumption  

(g S/l) 
∆XS  Disturbance of the stationary biomass 

concentration (g/l) 
γ   Residuals from the state and parameter 

estimation filter 
ε   Residuals from the balance-based 

estimation of measurements 
ν   Residuals vector from the element-balances 

constraints 
σI    Measurement i residuals-variance 
µI    Measurement i residuals-mean 
µM   Specific biomass growth on the logistic 

equation (h-1) 
Ω  Time window for estimating the maximum 

likelihood states and parameters 
a  Growth-associated specific metabolite 

production (g P /g X) 
b   Steady specific metabolite production (g P 

/g X h) 
CPR    Carbon dioxide production rate (g CO2 /l h) 
f(•)      State-space dynamic of the fermentation 
c(•)    State-measurements relationship (nonlinear 

case) 
cX   Jacobian matrix of the vector of state-

measurements relationships 
C     State-measurement relationships (linear 

case) 
CY I/J    Matrix of stoichiometric yields 
h     Global balance-based fault indicator 
hi    Balance-based fault indicator dedicated to 

measurement i. 
h-i    Balance-based fault indicator dedicated to 

all but measurement i. 
KR   Specific substrate consumption for cells 

maintenance (g S/g X h) 
l        Global residual-based fault indicator  

li      Residual-based fault indicator dedicated to 
measurement i. 

l-i    Residual-based fault indicator dedicated to 
all but measurement i. 

L     Log-likelihood function 
OUR    Oxygen uptake rate (g O2 /l h) 
p      Vector of kinetic parameters 
P    Metabolic product concentration (g P /l) 
P     States covariance matrix 
Pε   Covariance matrix of measurements 

estimated by using balances constraints 
Q     System noise covariance matrix 

S     Measurement-noise variance matrix 
S     Main substrate concentration (g S/l.) 
SN     Nitrogen source concentration (g S/l.) 
SR    Cumulative amount of oxidized main 

substrate (g.S /lt.) 
u     Control variable  
V    Covariance matrix of the estimation 

residuals 
w w´    Sliding-window lags 
X     Biomass concentration (g X /l) 
x     State-variable vector 
XS    Stationary biomass concentration (g X /l) 
y      Measurement vector  
YI/J   Stoichiometric yield of component I to 

component J (g I/g J) 
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APPENDIX 
 

 
A.1. FERMENTER SIMULATOR 
 

A stochastic model [Dondo, 2000] is used as 
fermenter simulator. In this model (Table 2), initial 
conditions, kinetic parameters and physiological 
parameters are stochastically generated.  
 
 
A.2. EQUATIONS FOR SIMULATION OF 
FAULTS: 
 
Measurement biases (I = 1) 
 

Faulty measurements are simulated as the sum of 
non-unfaulty measurements yt(k), a measurement bias 

∆J(υ, τ) and uncorrelated zero-mean Gaussian noises 
νt(k). 
 

I 1,J t(k) t(k) J t(k)y ( , ) y ( , ) v= υ τ = + ∆ υ τ +    
 
J = O2, CO2, S, X, P 
 
Incorrect system description (I =2) 
  

Errors in the stoichiometric yields Yi/J: Faulty 
measurements are obtained simulating the 
fermentation with imposed unexpected values of 
some physiological parameters. 

Generation of unidentified by-products: Faulty 
measurements are the product of an expanded 
matrix, which incorporates a column of yield 
coefficients that relate the production of the by-
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product q with the net production or consumption of 
measured component J, by an expanded state vector, 
which incorporates the by-product as a new state. 
 

t(k)

I 2,J t(k) t(k)
q / J

x1
y ( , ) C

q( , )Y=
   

υ τ = + ν   υ τ   
  

 
J = O2, CO2, S, X, P 
 
Abrupt changes in some kinetic parameters (I = 3)  
 
The system has the same structure as the nominal 
dynamic but with a different and deterministic 
initialization of parameters Xs and b after the 

temperature jump. 
 
 
A.3. ALGORITHM MODELS 
 

The state variables are the biomass concentration 
[X], the product concentration [P] and the quantity of 
oxidized main substrate (SR). Equations µ(u), XS(u), 
a(u) and b(u) and KR(u) represent the kinetic 
parameters as functions of the temperature [Shu and 
Yang, 1991]. ∆µ, ∆XS, ∆a, ∆b and ∆KR are 
disturbance parameters used to compensate for the 
uncertainty of these functions in respect to the 
complex fermentation dynamic. The structures of 
observers are 

 
Monitor filter: 

 

( )

( ) ( )
( )

S S

R

R R

S

R

X(u) 1 XX X (u) X
P

a(u) a X b(u) b XS
K (u) K X

X 0
a 0
b 0

0K
0

•

•

  
µ +∆µ −    + ∆        + ∆ + + ∆      + ∆∆µ   = ∆      ∆     ∆    ∆    

   

 

 

X/O2 P/O2 S/O2
2

2 on line 0
X/CO2 P/CO2 S/CO2

R
t(k)X / S P/S

off line t(k)

1 1 1
Y Y YO

1 1 1CO X X
Y Y Y

PS
1 1

1X SY Y
P 1 0 0

0 1 0

−

−

 
 

 ∆   
    ∆  −         =∆                        

 
  

 

 
Maximum-likelihood filter for estimation of kinetic parameters: 

 

( )

( ) ( )
( )

S S

R R R

X
(u) 1 X

X (u) X
X
P a(u) a X b(u) b X

S K (u) K X

•

•

  
µ +∆µ −  + ∆        = + ∆ + + ∆      + ∆ 

 
  
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X/O2 P / O 2 S/O2
2

2 on line 0
X/CO2 P/CO2 S/CO2

R
t(k)X / S P / S

off line t(k)

1 1 1
Y Y YO

1 1 1CO X X
Y Y Y

PS
1 1

1X SY Y
P

1 0 0
0 1 0

−

−

 
 

 ∆   
    ∆  −         =∆                        

 
  

 

 
Maximum-likelihood filter for estimation of fault parameters: 

 

( )
( )

( ) ( )( )

( )

S S

R

R R

X
(u) 1 X

X (u) X 1 (3) ( , )
X

P
a(u) a X b(u) b 1 (3) ( , ) X

S

K (u) K X

•

•

  
µ +∆µ −   + ∆ + δ ∆ τ υ  

   
   =   + ∆ + + ∆ + δ ∆ τ υ      

 + ∆  

 

 
R

P / O 2 S/O2 Ac/O2

R
2 0

2 X/CO2 P/CO2 S/CO2 Ac/CO2on line

off line t(k)

P (2,3) ( , ) S (2,4) ( , )
(1,1) ( , )

Y Y Y

O X X P (2,3) ( , ) S (2,4) ( , )
(1,2) ( , )

CO Y Y Y Y

S
X X

X
P

−

−

+ δ ∆ τ υ δ ∆ τ υ
+ + δ ∆ τ υ +

 ∆  − + δ ∆ τ υ δ ∆ τ υ
+ + + δ ∆ τ υ +  ∆  

  =∆   −        

0

X / S P / S Ac/S

0

t(k)

P (2,3) ( , ) (2,4) ( , )
1 (1,3) ( , )

Y Y Y

X X (1,4) ( , ) (2,3) ( , )

P (1,5) ( , )

 
 
 
 
 
 
 
 
 

+ δ ∆ τ υ δ ∆ τ υ + + + δ ∆ τ υ + 
 
 

− + δ ∆ τ υ + δ ∆ τ υ 
 
 + δ ∆ τ υ  

 

 
 
where 
 

YX/CO2=2.96+1.19[8.0+ ),()1,2( υτδ ∆ ] 

 

YX/S =-0.78+0.32[8.0+ ),()1,2( υτδ ∆ ] 

 

YP/CO2=36.872-5.24[0.38+ ),()2,2( υτδ ∆ ] 
 

YP/S =0.97875-0.1625[0.38+ ),()2,2( υτδ ∆ ] 
 

YP/O2=20.9124-13.312[0.38+ ),()2,2( υτδ ∆ ] 
 
In this model, δ(I,J) is a binary variable denoting 

that hypothesis (I,J) is tracked: 
 

1if parametersof hypothesis(I,J)
(I,J)

are estimated0otherwise

δ = 


 

while ∆(τ,υ) is a linear function of the fault 
occurrence time and magnitude: 
 

0 t
( , )

(t ) t


< τ∆ τ υ = 

υ − τ ≥ τ
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A.4. INITIALIZATION OF ESTIMATORS 
 
Monitor filter: 
 
Trace P0

T = [0.020, 0.005, 0.005, 0.050, 0.100, 
0.200, 0.050, 0.020]2 
 
Trace Q T = [0.000, 0.000, 0.000, 0.005, 0.020, 
0.015, 0.003, 0.003]  2 
 
Trace S T = [0.05, 0.05, 0.10, 0.15, 0.40]2 

 
Maximum-likelihood filter for estimation of kinetic 
parameters: 
 
P0 = Pt(j)=t0     (From the monitor filter) 
 
Trace Q T = [0.001, 0.001, 0.001]  2 
 
Trace S T = [0.05, 0.05, 0.10, 0.15, 0.40]2 
 
Maximum likelihood filter for estimation of faulty  

parameters: 
 
P0 = Pt(j)=t0     (From the monitor filter) 
 
Trace Q T = [0.003, 0.003, 0.003]  2 

 
Trace S T = [0.05, 0.05, 0.10, 0.15, 0.40]2 
 
Other parameters: 
 
On-line sampling and estimation frequency:  25 h-1 

 
Average off-line sampling frequency (monitor 
mode):   0.33 h–1 

 
Average off-line sampling frequency (diagnostic 
mode):   1.00 h–1 

 
Average off-line measurements delay: 0.25 h 
 
Sliding window lag for estimation of kinetic 
parameters (Ω)6.00 h 

 
 
 


