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Abstract - The modeling and simulation of mold filling must include a method to capture the interface 
formed between the inlet fluid and the fluid that was initially in the mold. A commonly used front-capturing 
method in a Eulerian mesh is the volume-of-fluid (VOF) method. The VOF advection equation solution may 
show numerical diffusion and/or dispersion and high-order numerical schemes, such as the TVD schemes 
with dimensional splitting, have to be employed to discretize the convective terms. The present contribution 
explores the use of RCM for solution of the VOF color-function equation during mold filling with 
recirculating flows. The Navier-Stokes equations are solved by a finite-volume method using the SIMPLER 
algorithm. Filling simulations using the TVD and RCM methods are compared. RCM was able to generate 
diffusion-free results, sharply defining the interface, even when topological changes (generation of droplets) 
occur. 
Keywords: Interface capturing; Mold filling; RCM; TVD schemes; VOF schemes; Computational fluid 
dynamics. 

 
 
 

INTRODUCTION 
 

A variety of industrial processes include a step of 
filling some kind of cavity (thermoplastic injection 
molding, reaction injection molding, casting of metal 
pieces, food extrusion processes, etc). The design of 
these cavities involves a very expensive trial-and-
error procedure in order to avoid filling problems, 
like heterogeneity in the final piece or air 
entrapment. This is especially true in the polymer 
industry. Due to this fact, during the last two decades 
many researchers have been developing 
computational methods that allow simulation of 
cavity filling, which shortens the expensive 
empirical stage. One of the most challenging 
problems in constructing a successful simulator is 
how to capture and track the interface formed 

between the inlet fluid and the fluid that was initially 
inside the cavity.  

One way of capturing the moving interface 
between two immiscible fluids is to solve the fluid-
flow equations for both fluids in the same Eulerian 
mesh. The two fluids are modeled as a single 
continuum with discontinuous properties at the 
interface. The interface propagation is then obtained 
through solution of a transient scalar advection 
equation in the Eulerian mesh. This solution is prone 
to numerical diffusion and dispersion problems, 
which are inherent in the numerical solution of 
hyperbolic equations by any discretization scheme 
when there are discontinuities in the solution. A 
fluid-fluid interface is a contact discontinuity, and its 
resolution demands additional care. In this paper, 
two numerical solutions to this problem are 
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presented and compared: the use of a high-order 
TVD scheme (total variation diminishing) developed 
by Chakravarthy and Osher (1985) and the use of a 
RCM scheme (random choice method) adapted from 
Toro (1999). Both schemes use dimensional 
splitting. 

TVD methods are one of the most significant 
achievements in the development of numerical 
methods for partial differential equations in the last 
20 years or so, although the preliminary ideas can be 
traced as far back as 1959 to the pioneering work of 
Godunov, continued later by van Leer. In 1965, 
Glimm introduced RCM and Colella (1982) 
contributed to developing and increasing knowledge 
of the method, considering its advantages and 
limitations. 

In this work, the effectiveness of TVD and RCM 
for cavity-filling simulation are compared for both 
nonrecirculating and recirculating flows. In the 
filling, it is assumed that both fluids had the same 
properties. Thus, the pressure and velocity fields 
could be obtained for  the steady-state flow 
throughout any cavity and then used for the filling 
simulation with both methods. This eliminates any 
flow field disturbance that would arise in a filling 
simulation for unsteady fluid flow. These steady-
state flow solutions are obtained by solving the 
transient mass and momentum conservation 
equations using a finite-volume method and the 
SIMPLER algorithm until the steady-state flow 
reached a given tolerance. The effects of surface 
tension at the interface are not included in the 
analysis. 

 
 

FLUID DYNAMICS EQUATIONS 
 

The 2D-Cartesian mass and momentum 
conservation equations for a Newtonian fluid with 
constant density and viscosity, used in the simulation 
of flow through 2D-cavities, are presented below in a 
dimensionless form. 
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and t is the time; x and y are the spatial coordinates; 
ρ is the density; µ is the viscosity; ν is the kinematic 
viscosity; u and v are the velocity components in x 
and y directions, respectively; p is the pressure; gi is 
the body force in i direction; Din is the inlet width 
and vmed is the mean inlet velocity. The subscript ref 
refers to the inlet fluid properties. 

After applying a finite-volume discretization on a 
staggered grid using the power-law scheme, the 
steady-state solution is achieved using the SIMPLER 
scheme (Patankar, 1980). The numerical code has 
been tested against benchmark results for the 
backward facing step flow (Gartling, 1990) with 
good agreement (Fontes et al., 1999). 

The numerical results were integrated using a 
convergence criterion based on a mixed tolerance 
that equals the absolute tolerance (atol) added to the 
relative tolerance (rtol) multiplied by the variable 
modulus ( atol x rtol x+ ⋅ < ∆ ). If the absolute 
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tolerance assumes a very small value, the relative 
tolerance controls the convergence criterion. 
Absolute and relative tolerances of 10-6 for the 
velocity components and of 10-5 for the pressure 
were used. The criterion used to assume that the 
steady state was achieved was the same mixed 
tolerance criterion described above, but using 
absolute and relative tolerances of 10-4 for all the 
variables in every control volume between two 
consecutive times. 
 
 

VOF-TVD SCHEME 
 

The volume-of-fluid (VOF) method is an 
interface-capturing method (Ferziger & Pèric, 1997). 
The fluids on both sides of the interface are marked 
by either massless particles or an indicator (color) 
function. In the VOF method the advection of the 
color function F, given by Equation (10) in 
dimensionless form, has to be solved. The F field 
values are stored at in the staggered finite-volume 
grid similarly to the pressure field. 
 

F F F
ReU ReV 0

X Y
∂ ∂ ∂

+ + =
∂τ ∂ ∂

       (10) 

 
As seen above, U and V are known from the 

steady-state solution. The simulated physical 
situation corresponds to the steady flow of a fluid 
through the cavity that suddenly becomes colored 
and starts to displace the colorless one. Obviously, if 
the physical property remains the same, so do the 
velocity and the pressure fields. For a given volume, 
F is equal to 0 when the volume has no colored fluid, 
but it is equal to 1 when the volume is completely 
filled with colored fluid. The interface has F values 
between 0 and 1. 

Typical problems associated with the solution of 
hyperbolic equations like Equation (10) (numerical 
diffusion and dispersion) are reduced by the use of a 
total variation diminishing (TVD) scheme. Good 
summaries of TVD schemes are given by Sweby 
(1984) and Toro (1999). A numerical method is 
TVD if Equation (11), where ξ is the transported 
variable and TV(ξ) is its total variation, is valid for 
scalar conservation laws. 
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Chakravarthy and Osher (1985) described one-
dimensional second and third-order accurate TVD 
schemes with low truncation errors. These schemes 
were used to solve advective equations, like 
Equation (10). Goodman and LeVeque (1985) 
proved that there is no multidimensional TVD 
scheme, but Chakravarthy and Osher (1985) showed 
extremely good numerical results using their scheme. 
Based on its simplicity and good results, the 
Chakravarthy and Osher (1985) third-order scheme 
is used in the present work. In order to try to keep 
the TVD characteristics of the 1-D scheme, a 
dimensional splitting is applied during the numerical 
solution of Equation (10). Therefore, the explicit 
discretized form of Equation (10), with dimensional 
splitting, is given by Equations (12) and (13), where 

1 / 2 / 2∆τ = ∆τ . The splitting algorithm, in 
accordance with Toro (1999), is described below. 
i) For each time step ∆τ, integrate first in X 
direction up to ∆τ1/2 using Eq. (12). 
ii) Then, using F1/2, integrate in the Y direction up to 
∆τ by Eq. (12), determining F. 
iii) In order to achieve second-order accuracy for 
every-other time step, invert the X and Y 
integrations in the next time step ∆τ. 
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The F fluxes at the faces of the volumes are 

determined using the upwind-TVD scheme. For 
example, for the east face, for each j line, the flux is 
given by Eqs. (14) to (21). In these equations the 
index P stands for position (i, j) , E for 
position (i 1, j)+ , e for position (i 1 2, j)+ , ee for 
position (i 3 2, j)+ , w for position (i 1 2, j)− , n for 
position (i, j 1 2)+  and s for position (i, j 1 2)− . 
When γ equals 1/3 and β equals 4 these equations 
correspond to a third-order upwind scheme. Equation 
(14) represents the flux given for the Engquist-Osher 
first-order scheme (Osher & Chakravarthy, 1984). 
The minmod function is defined by Equation (19) 
and it is used to define the limited fluxes given in 
Equations (17) and (18). The fluxes for the other 
faces are obtained by changes in subscripts. 
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Osher and Chakravarthy (1984) prove that their 

scheme is stable only for the Courant number, given 
by Eq. (22) for both X and Y directions, equal to or 
less than 0.4.  
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Boundary conditions for this equation are as 

follows: the cells outside the mold inlet are 
considered to be completely filled with colored fluid 
(F = 1), all cells outside the mold at the outlet are 
considered to be completely filled with colorless 
fluid (F = 0) and there is no F flux at the other 
boundaries. At the beginning of the filling process, 
the mold is filled with colorless fluid       (F = 0). 

 

VOF-RCM SCHEME 
 

Glimm (1965) introduced the random choice 
method but it was Colella (1982) who really 
developed this numerical method, discussing its 
advantages and limitations. Essentially, RCM is 
applicable to scalar problems in any number of 
dimensions without loosing its capacity to maintain 
the perfect resolution of contact discontinuities with 
no diffusion or dispersion. As F in Equation (10) is a 
scalar variable, RCM perfectly matches the 
necessities of the VOF method. Silva and Lage 
(2001) show a successful 1-D application of this 
scheme. 

RCM chooses randomly among possible solutions 
of local Riemann problems associated with the 
dimensional splitting of Equation (10). The method 
used in this work is one given by Toro (1999) for a 
staggered grid in which a local 1-D Riemann 
problem is solved twice for each direction at each 
integration step: once between τn and τn+1/2 and once 
between τn+1/2 and τn+1. It is exactly because RCM 
solves the local Riemann problem that it does not 
show numerical diffusion. RCM stability is also 
dependent on the local Courant number, given by 
Equation (22). For the RCM used in this work, both 
Courant numbers have to be equal to or less than 1. 

The local Riemann problem for Eq. (10) uses the 
local states (FL and FR) around the interface between 
two control volumes. The exact solution of the local 
1-D Riemann problem is shown in Fig. 1-a. It 
consists in a single contact discontinuity propagation 
from the origin with velocity u and slope λ = 1/u. 
Naturally, the solution values are equal to FL on the 
left of the straight line with slope λ = 1/u and equal 
to FR on the right. 

In order to explain this method, let’s consider its 
application to the integration of the F value in a 
given 1-D volume i of a uniform mesh in the X 
direction, as illustrated in Fig. 1-b, for a time step ∆τ. 
First, the local 1-D Riemann problems are solved at 
both volume interfaces in the first half-time step, 

n 1 / 2 n 2+∆τ = ∆τ . At interface ( )i 1 2− , the 
discontinuity propagates a distance 

i 1 2 X,i 1 2d X C X 2− += + ∆  during n 1 / 2+∆τ . The 

position n
i 1 2r X X−= + θ ∆  is sampled by a random 

number θn ∈ [0,1]. If r ≤ d, then n 1 2 n
i 1i 1 2F F+
−− = , 

otherwise n 1 2 n
ii 1 2F F+

− = . A similar procedure is 

applied to the right interface using the same random 
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number θn to obtain n 1 2
i 1 2F̂ +
+ . Then, another random 

number θn+1 is generated, and a similar procedure is 
applied to obtain the solution for volume i at the end 
of the time interval, n 1

iF + . Thus, two new random 
numbers are generated for each time step and for 
each direction. The complete algorithm can be 
described as follows: 

i) Solve the Riemann problems ( )n n
i 1 iRP F ,F−  and 

( )n n
i i 1RP F ,F +  to find solutions  n 1 2

i 1 2F̂ +
−  and n 1 2

i 1 2F̂ +
+ ; 

ii) For the first half-time step n 1 / 2+∆τ , random 

sample these solutions based on random number nθ : 

( )n 1 2 n 1 2 n
i 1 2 i 1 2

ˆF F+ +
− −= θ  and ( )n 1 2 n 1 2 n

i 1 2 i 1 2
ˆF F+ +

+ += θ ; 

iii)  Solve Riemann problem ( )n 1 2 n 1 2
i 1 2 i 1 2RP F ,F+ +
− +  to 

find solution n 1
iF̂ + ; 

iv) For the second half-time step n 1 / 2+∆τ , random 
sample this solution based on a new random number 

n 1+θ : ( )n 1 n 1 n
i i

ˆF F+ += θ . 

The same dimensional splitting applied in the 
VOF-TVD scheme is applied in the VOF-RCM 
scheme, which uses twice the 1-D scheme just 
described. As RCM is intrinsically a statistical 
scheme, front behavior may vary between simulation 
runs for the same problem, which introduces some 
uncertainty regarding the actual position of the fluid 
interface. Due to this statistical nature, uncertainty at 
the fluid interface decreases as the grid is refined. 
This occurs because more random numbers are 
generated to obtain the solution at a given time due 
to the Courant number limitations. The random 
number generator used was the IMSL DRNUN 
subroutine that uses the generalized feedback shift 
register (GFSR) method. 
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Figure 1: (a) The local 1-D Riemann problem; (b) the Riemann problem applied to volume i. 
 

 
UNIDIMENSIONAL TESTS 

 
In order to verify the TVD and RCM 

implementations, a one-dimensional test which 
tracks the movement of a square pulse is used. The 
simulations were carried out in a uniform grid, using 
TVD in Fig. 2 and RCM in Fig. 3. Wave positions 
and shapes are verified after 1.5 s, 3.5 s and 8 s. The 
agreement with the analytical solution is remarkable 
if the stability range of the Courant number is 
respected. 

Fig. 2-a shows that the use of coarse grids causes 
some numerical diffusion in the TVD solution. It 
was verified that a pulse propagation with a coarse 
grid deteriorates as the Courant number decreases. 
When the grid is refined for the same Courant 
number (Fig. 2-b), this numerical diffusion 
decreases. It also decreases slightly when the 
Courant number is increased up to the its maximum 
(the stability limit) for the same grid, but the results 
are very similar for C = 0.1 (Fig. 2-a) and 0.4 (Fig. 
2-c). 
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Fig. 3 shows that all RCM results perfectly 
resolve the contact discontinuity of the interface. 
However, comparing Figs. 3-a and 3-b it is clear that 
some inaccuracy exists in the propagated pulse 
position for coarse grids. This results from errors in 
the pulse propagation velocity due to the random 
character of the method. For the finer grid (Fig. 3-b), 
these errors basically disappear because of the large 
increase in the quantity of random numbers used to 
obtain the solution due to the Courant number 
limitation. 

These errors in the position of the contact 
discontinuities are equivalent to numerical diffusion. 
This can be seen Fig. 3-c, which shows the mean 
results of one hundred simulations of the pulse tracking 
in the coarse grid with different seeds in the random 
number generator. The behavior of the shape of the 
propagated pulse is similar to that usually achieved in a 
single simulation when a diffusive scheme is used. In 
other words, the uncertainty in the positions of the 
discontinuities is numerically equivalent to the 
numerical diffusion of a low-order scheme. 

 
 

 
       (a) 

 
       (b) 

 
    (c) 

Figure 2: Square pulse propagation in a uniform grid with constant velocity u = 0.1 m/s for  
different grids and Courant numbers using the TVD scheme. The three profiles  

are exactly positioned at x =1.5, 3.5 and 8.0 m. 
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       (a) 

  
        (b) 

 
      (c) 

Figure 3: Square pulse propagation in an uniform grid with constant velocity u = 0.1 m/s using the RCM 
scheme: (a) and (b) show the results for one simulation where the exact positions of the beginning of the 

propagated pulses are x = 1.5, 3.5 and 8.0 m; (c) shows the mean of 100 simulation results where the  
exact positions of the beginning of the propagated pulses are x = 2, 4, 6 and 8.0 m. 

 
 

TWO-DIMENSIONAL SIMULATION OF 
CAVITY FILLING 

 
In order to compare the effectiveness of the TVD 

and RCM methods associated with the VOF scheme 
without any perturbation in the flow field, we 
decided to study the cavity filling using the steady-
state flow solution. Two 2-D cavities are used, as 
shown in Figs. 4-a and 4-b. Dimensions of the mold 
cavity used were LY = 20 cm and LX = 30.3 cm. 
The dimensions of the backward facing step (BFS) 
cavity were 0.1m × 3.0 m. 

In a cavity such as the one shown in Fig. 4-a, 
referred to from now on as mold cavity, a non-
recirculating flow with a low Reynolds number 
Re 0.16=  was analyzed. The inlet and outlet widths 
of the mold are in outD D 0.1LX= = . The velocity 
profile at the inlet is parabolic with a mean velocity 
of 0.031 m/s ( medv ) and the same velocity profile is 
used at the outlet. Other walls are considered 
impenetrable and non slip conditions are imposed 
near all walls. The flow in the BFS cavity (Fig 4-b) 
with Re 400=  has the typical recirculating flow with 
two opposing vortices. The velocity profile at the 
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inlet is also parabolic, but the mean velocity is equal 
to 1 m/s. Due to the dimensions of this cavity 
( LY 30LX= ), it is possible to apply continuity 
conditions for the velocities and the pressure at its 
outlet (Gartling, 1990). The inlet width is 

inD 0.5LX=  and the outlet width is LX itself. 
Impenetrable walls and non slip conditions are also 
imposed on the other walls of this cavity. 
Simulations use a 200 × 200 grid for the mold cavity 
and a 200 × 500 grid for the BFS cavity. A time step 
of 10-3 s was adequate for all TVD simulations and 
the BFS-RCM simulations. However, the mold-
RCM simulations needed a longer time step (10-1 s) 
due to a loss of accuracy of the RCM for low 
Courant numbers, which is explained in the next 
section (see the remarks concerning Fig. 9). 

As mentioned in Section 2, a power-law scheme 
is used. The grid Peclet number is defined by 

Equation (23), where ? the grid length is in the 
appropriate direction (X or Y). 
 

ref
V

Pe Re
∆ζϕ

=
Γ

            (23) 

 
It is well known that power-law schemes allow 

numeric diffusion when the grid Peclet number 
exceeds 10 and the flow is oblique in relation to the 
grid (Patankar, 1980). In fact, in the BFS 
simulations, between the recirculating zones, there 
are Peclet numbers as high as 50 or 60. However, 
this phenomenon does not invalidate the conclusions 
of this work because our goal is to compare two 
surface tracking methods under the same fluid 
dynamic conditions. Furthermore, as observed in 
Section 2, velocity and pressure profiles had been 
successfully tested against Gartling’s benchmark. 

 
 

LX 

LY 

Din 

Din 

Dout Dout 

Vin 

Vin 

Vout Vout 

 
 

Figure 4: Two-dimensional cavities: (a) rectangular mold. (b) backward facing step. 
 
 

SIMULATION RESULTS 
 

Figs. 5 and 6 compare the results achieved with 
the VOF-TVD scheme and the VOF-RCM scheme, 
respectively, for the nonrecirculating flow inside the 
mold cavity. The filling patterns are very similar, but 
a remarkable difference has to be pointed out: as 
filling continues the TVD scheme loses interface 
sharpness due to a growing diffusion effect, while 
the RCM scheme does not show any diffusion. It can 
be observed that the TVD solution shows the 
interface deeper inside the cavity than the RCM 
solution, although the same amount of fluid has 
entered the mold in both cases. Observing the 

behavior of the solutions near the bottom wall, it 
becomes clear that this difference may be explained 
by the diffusive characteristic of the two-dimensional 
TVD scheme, which pushes the incoming fluid 
towards the top wall, allowing the other fluid to 
remain in the region close to the bottom wall. Due to 
its statistical characteristic, RCM shows an interface 
with small fluctuations, which tends to disappear as 
the filling continues. 

Figs. 7 and 8 show the simulation results on the 
BFS cavity. It is important to observe that the VOF-
RCM and VOF-TVD methods show very similar 
results for the filling of this cavity. However, 
specifically at the vortex regions, the VOF-RCM 
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method is able to describe the droplets that are pulled 
away from the colored fluid by the rotating colorless 
fluid. The VOF-TVD scheme is unable to describe 
this process. Furthermore, it shows intense numerical 
diffusion in these regions, which can be seen in Figs. 
7-b, 7-c and 7-d. 

It is important to point out that Courant number 
restrictions remain in these two-dimensional 
simulations. As a matter of fact, Fig. 9-b shows that 
the VOF-RCM scheme is unable to track the 
interface when Courant numbers are less than 10-3. It 
produces unrealistic results. On the other hand, the 
VOF-TVD scheme (Fig. 9-a) does not show the 

same problem and tracks the interface perfectly. 
It is important to point out that all the simulations 

described above show an error in mass conservation 
of less than 5%, except for the simulations using the 
VOF-RCM scheme shown in Fig. 9-b. 

Although the VOF-RCM scheme resolves the 
interface perfectly, it must be pointed out that with 
different seeds in the random number generator, 
different simulated results are obtained, even though 
their overall filling patterns are similar. Thus, both 
VOF-TVD and VOF-RCM schemes seem to be 
adequate to describe the overall picture of the filling 
pattern in the mold and the BFS cavities. 

 
 

             
                                                           (a)                                                   (b) 
 

  
                                                                                   (c) 

Figure 5: Mold filling using the VOF-TVD scheme with LX = 0.2 m  
(∆x =10-3 m) after (a) 10 s; (b) 40 s; (c) 70 s. 
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                                                          (a)                                                    (b)  

    
                                                                                        (c) 

Figure 6: Mold filling using the VOF-RCM scheme with LX = 0.2 m  
(∆x =10-3 m) after (a) 10 s; (b) 40 s; (c) 70 s. 

 

       
                              (a)                    (b)                              (c)           (d) 

Figure 7: BFS cavity filling using the VOF-TVD scheme (∆x = 5.10-4 m) after  
(a) 0.5 s; (b) 3.5 s; (c) 6.5 s; (d) 9.5 s. 
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            (a)                                (b)       (c)                             (d)  

Figure 8: BFS cavity filling using the VOF-RCM scheme (∆x = 5.10-4 m)  
after (a) 0.5 s; (b) 3.5 s; (c) 6.5 s; (d) 9.5 s. 

 
  

   
                                                       (a)                               (b) 

Figure 9: Low Courant number mold filling: comparison between  
VOF-TVD (a) and VOF-RCM (b) performances. 

 
 

 
CONCLUSIONS 

 
It was shown that the VOF-RCM scheme is 

able to generate diffusion-free results, sharply 
defining the interface, even when topological 
changes (droplet generation) occur due to intense 
recirculating flow. However, the statistical nature 
of RCM demands fine grids in order to simulate 
the interface position correctly. On the other 

hand, the VOF-TVD scheme shows some 
numerical diffusion but is less sensitive to low 
Courant numbers than the VOF-RCM scheme.    
It is important to recognize that the front 
positions indicated by the RCM method may vary 
from one simulation to the next due to the 
statistical nature of the method. It was shown that 
these uncertainties are equivalent to numerical 
diffusion. 
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NOMENCLATURE 

 
Ci Courant number in direction I (-) 
Din inlet width,  M 
Dout outlet width,  M 
F color function (-) 
F̂  Riemann problem solution (-) 
gi body force in i direction,  m/s2 
P pressure,  Pa 
P adimensional pressure (-) 
Reref inlet Reynolds number (-) 
t time,  s 
T stress tensor,  Kg/m.s2 
U velocity component in x 

direction,  
m/s 

V velocity component in y 
direction,  

m/s 

vmed mean inlet velocity,  m/s 
Y spatial coordinate,  m 
X spatial coordinate,  m 
β, γ coefficients in upwind scheme (-) 
θn random number ∈ [0,1] (-) 
Γ  adimensional viscosity (-) 
ϕ  adimensional density (-) 
dφi limited flux for face I (-) 
ρ fluid density,  Kg/m3 
ρref inlet density,  Kg/m3 
µ fluid viscosity,  Pa.s 
µref inlet viscosity,  Pa.s 
τ  adimensional time (-) 
ξ transported variable (-) 
∆ deviation associated with a 

quantity (-) 
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