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Abstract - The kinetics of Fe2O3→FeO reaction was investigated. The thermogravimetric (TGA) data 
covered the reduction of hematite both by pure species (nitrogen diluted CO or H2) and by their mixture. The 
conventional analysis has indicated that initially the reduction of hematite is a complex, surface controlled 
process, however once a thin layer of lower oxidation state iron oxides (magnetite, wüstite) is formed on the 
surface, it changes to diffusion control. Artificial Neural Network (ANN) has proved to be a convenient tool 
for modeling of this complex, heterogeneous reaction runs within the both (kinetic and diffusion) regions, 
correctly considering influence of temperature and gas composition effects and their complex interactions. 
ANN’s model shows the capability to mimic some extreme (minimum) of the reaction rate within the 
determined temperature window, while the Arrhenius dependency is of limited use. 
Keywords: Artificial Neural Network (ANN); Feed–forward multilayer perceptron; Iron oxides reduction; 
Isothermal solid–state reaction kinetics; Topochemical reactions. 

 
 

 
INTRODUCTION 

 
Iron Oxide Reduction Process 

 
The reduction of hematite (Fe2O3) to wüstite 

(FeO) via magnetite (Fe3O4) is regarded as a 
complex gas–solid topochemical reaction. It involves 
complex micro–structural (crystal network) changes 
in the intermediate oxides (Fe3O4, FeO). 
Additionally, in the advanced stages of the process 
the access of reducing gas is primarily controlled by 

the diffusion through the product’s surface layer. The 
pore structure formed and surface’s morphology, 
determined by hematite–magnetite and magnetite–
wüstite consecutive transformations, can influence 
the overall process rate considerably in relatively 
complicated manner. The reaction’s kinetics has 
been thoroughly investigated, both theoretically and 
experimentally, in order to evaluate the optimum 
process conditions [e.g., Nasr et al. (1996), 
Turkdogan et al. (1971), El–Geassy et al. (1977)]. In 
spite of the effort no general, coherent kinetic 
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equation which would be valid both in the surface 
and diffusion controlled ranges has been formulated 
till the present day [e.g., Hayes (1979), Kang et al. 
(1996), Tokuda et al. (1973)]. Some studies [e.g., 
Hayes (1979), El–Rahaiby and Rao (1979), Doherty 
et al. (1985)] were devoted only the theoretical 
reduction mechanism (chemical reaction control). 
Generally it have been concluded, that it is a complex 
system of topochemical transformations whose 
individual rates are influenced both by chemical 
kinetic factors and mass (and/or heat) transfer factors. 
Although all these mechanisms have been established 
and it seems to be the agreement concerning the rate 
controlling reactions, the dynamic behavior of this 
complex, heterogeneous system is still not well 
elaborated. It would explain the reported no 
consistency in the published kinetic data. 

Considering the outlined complex nature of the 
iron oxides transformations, taking into account the 
interrelated processes running in micro– and macro–
scale, the mathematical description of this process is 
still not well advanced. One of the efficient tools, 
which enable one to obtain a numerical description 
of this kind of complex process kinetics, are the 
Artificial Neural Networks, which are thereby 
applied to this approach. 

Artificial Neural Network (ANN) is regarded as 

an efficient, calculation tool, since its application for 
practical engineering calculations does not require 
the initial elaboration of a physical model of the 
process with possible all detailed connections 
between the factors affecting the reaction’s run. This 
method enables one to obtain quickly a sufficiently 
precise numerical description of the process, 
especially if its mechanism is not completely 
explained or a lack of specific data precludes the 
elaboration of semi–empirical model. In such cases, 
based on (the most frequent) the experimental data 
the Networks are “trained” by an appropriate 
algorithm to numerically solve the problem and find 
the appropriate input–output relationships. This 
enables one to numerically forecast the results, being 
the “simulated object’s responses”, for assumed, 
interesting input data–sets from the examined 
experimental range [e.g., Stephanopoulos and Han, 
(1996), Willis et al. (1992)]. In the recent days the 
ANN has proved their usefulness within many 
different chemical engineering problems proved 
difficult for conventional modeling approaches, both 
applied independently [e.g., Meert and Rijckaert 
(1998), Hoskins and Himmelblau (1988) ] or being 
an integral part of the complex hybrid models [e.g., 
Psichiogos and Ungar (1992), Thompson and 
Kramer (1994)].  

 
 

 
Figure:1 Artificial Neural Network’s scheme (multilayer perceptron–type network). 

 
 
The most often used ANN’s configuration is 

presented in Fig.1. The input units (denoted as 
INPUT 1…N) are connected with “computational 
cells” called “neurons”, usually arranged in layers 
(both hidden layer – NEURONS 1… K and output 
layer – NEURONS O1… OL). The “power” of the 
adjacent neurons’ interaction is quantified by the 
“weight” value – an attributed numerical value, 

which is initially attributed (randomly) and then 
modified by the algorithm during the learning 
process (iterative alterations). The data processing 
within the ANN structure is executed collectively 
and simultaneously through the dense network of 
neurons and their connections. Simply neuron is 
responsible for summing up (yi SUM) of the all signals 
(amplified or weakened by weight values, wip) from 
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the previous (here – first) layer’s N neurons 
(INPUTp) and some constant value (bi) – called 
“bias” (Eq.1): 
 

N

i ip p iSUM
p 1

y w INPUT b
=

= ⋅ +∑                                (1) 

 
and then transforming the result of Eq.1 (yi SUM)      
by adequate (the most often sigmoidal–type)  
transfer function (Eq. 2) to obtain its output value 
(yi): 
 

( )
iSUM

N
ip p i

p 1

i iSUM y
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1
y f y

1 e

1

1 e =

−

 
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= = =
+

=

+

                              (2) 

 
The regular, stratified structure of the Neural 

Network enables one to perform the next consecutive 
transformation of the signals through the following 
layers in the identical manner (Eq.3), see also Fig.1: 

K K N

Oi Oip p Oi Oip ip p i Oi
p 1 p 1 p 1 p

y f w y b f w f w INPUT b b
= = =

          = ⋅ + = ⋅ ⋅ + +           
∑ ∑ ∑                                                  (3) 

 
and then transmit it further – to all neurons of the 
next layer, what makes it possible to render of 
practically any nonlinear transformation [Hoskins 
and Himmelblau (1988)]. The finally transformed by 
“output layer” neurons (NEURONS O1…OK) the 
signals are presented as OUTPUT VALUES 1…M 
and can be delivered directly to the user. The correct 
data processing within the ANN structure is possible 
owing to the matrix of appropriate weight values. 
Thus, in order to prepare the ANN to “solve” a 
required task, there is necessity of adjusting the 
weight values within the wholly network first. This 
gradual fitting is carried into effect by learning the 
ANN by means of an adequate algorithm. The 
training is performed with the use of learning “input–
output” (the most often – experimental) data sets. 
During the learning procedure the program 
iteratively compares the current values (forecasted 
by ANN) with the expected (experimental) ones (it is 
when supervised learning mode applied). Thus, 
adjusting step by step the entire network weights’ 
values (based on the actual error’s value 
information) it simultaneously strives to attain the 
best, declared compatibility between the two data 
sets (backpropagation error algorithm method). After 
the learning procedure has been finished the matrix 
of optimum weight’s values is prepared – 
accumulating hidden, complex information about the 
process under investigation, thus immediately ready 
for the practical problems solving. 

The successful trials of the ANN application in 
chemical and process engineering problems [e.g., 
Piotrowski, K. et al. (2003), Galván et al. (1996), 
Abilov and Zeybek (2000)] have shown that simple 
ANNs are capable of complex nonlinear systems 

modeling, the properly selected and trained Network 
enables one to interpolate and, in restricted range, 
extrapolate the data and confirmed that the Networks 
enable one to perform the complex design 
calculations quickly and effectively.  

As it is reported in the accessible literature, 
ANNs have been recently successfully applied to 
numerous heterogeneous reactions’ modeling. For 
example, the multi–layer, feedforward ANN was 
used [Sebastiano et al. (2003)] to model the complex 
process of thermal decomposition of rhodium 
acetate. The study pointed the efficiency of the 
ANN’s approach and confirmed the ANN as a more 
precise approach than the detailed analytical model. 
The application of ANN additionally eliminated the 
inconvenient necessity of selection of the model’s 
form that the best fits the data. [Bandyopadhyay et 
al. (1996)] studied the conversions of CaO to CaSO4 
using ANN model. The results obtained were the 
most accurate compared to the shrinking unreacted 
core model or the distributed pore model. Besides, 
the ANN also accurately predicted the conversions 
of the fourth variety for which no information was 
supplied in the training phase. In other work [Parisi 
and Laborde (2001)] the numerical integration of a 
differential equations’ system used for calculation of 
mass balance inside the pellet was replaced by an 
analytical function, which corresponded with an 
adequate trained three–layer ANN structure. The 
global reaction’s rate estimated by using this 
function included the complex influence of all 
complex phenomena of simultaneous diffusion and 
chemical reaction. This methodology was 
successfully applied to the steam reforming of 
methane. It is often difficult to adjust a 
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representative kinetic model for considered case 
because of the complexity of the reactions involved. 
A hybrid modeling approach was proposed for the 
identification of the dynamic behavior of chemical 
reactors [Porru et al. (2000)] to overcome this 
limitation. The possibility of ANN has been 
exploited to adequately represent the complex kinetic 
reaction data. The “neural reaction rate model” was 
integrated with a first principles model for a 
heterogeneous gas–solid reactor where the catalytic 
oxidation of CO takes place. The results confirmed 
that ANN can be effectively used to formulate 
lumped reaction rates because of their capability in 
capturing the essential dynamic characteristics of the 
functional relationship among the state variables. 
Other researchers [Baratti and Servida (2000)] 
explored the similar procedure for the case of 
catalytic oxidation of CO over Pt–Al catalyst. Coal, 
both chemically complex and heterogeneous 
structured species, has proved to be very difficult to 
construct generalized physical descriptions of 
pulverized combustion for incorporation into reliable 
mathematical models (including: pyrolysis, char 
devolatilization, particle/turbulence interaction, etc.) 
suited to industrial applications. An approach based 
on ANN was proposed [Abbas et al. (2003)]. It 
proved to be capable of handling a range of solid 
fuels (coal, biomass, mixtures). The ANN model was 
implemented into an existing 3D CFD combustion 
code. Its devolatilization predictions have also been 
compared with a detailed devolatilization model 
(FLASHCHAIN) and were found to be consistent. 
Palau [Palau et al. (1996, 1999)] focused on using 
ANN model to control a gas/solid sorption chilling 
machine. In such systems, the cold production 
changes cyclically with the time due to the batchwise 
operation of the gas/solid reactors.  The accurate 
simulation of the dynamic performance of the 
chilling machine has proven to be difficult when 
using the deterministic models because some 
model’s parameters dynamically change with the 
reaction advancement. The ANN model has proved 
to be a good and fast tool for predicting the mean 
cooling power given by a chilling machine under 
different operating conditions. Since it is necessary 
to predict sintering quality in order to realize 
optimization of technology parameters in sintering 
process, ANN was successfully used to build up a 
prediction model for FeO content during the 
sintering process [Zhang et al. (2002)].  

The aim of the presented work was to test the 
ANN capabilities for modeling of the kinetics of a 
complex heterogeneous process of iron oxides 
reduction, especially to test the simultaneous 

influence of temperature and reducing potential of 
various reactants. Considering the accessible 
literature data, excluding the authors’ own 
elaboration [Wiltowski, T. et al. (2004 a,b)] there is 
no reported literature of any ANN application 
devoted to this complex and industrially important 
process. Particularly, the Fe2O3 – FeO conversion 
degree (α) courses, which depend on the process 
temperature, time and reducing mixture’s chemical 
composition as well as of their unpredictable 
complex interactions, were elaborated.  
 
 

EXPERIMENTAL SECTION 
 

The experiments were performed using the 
Perkin–Elmer TGA–7 thermogravimetric analyzer 
driven by Pyris software. Samples of Fe2O3 powders 
(PEA Ridge Iron Ore, Co.) were preheated 
(100C/min) under the inert N2 atmosphere to the 
desired temperature (700–9000C).  The reducing 
gases were then introduced under isothermal 
conditions and flow rate of 30 ml/min. The gases 
were dried before their use in molecular sieve 
moisture trap Hydro–Purge II, Alltech.  The initial 
weight of Fe2O3 samples in all cases was approx. 12 
mg. The kinetics of hematite–magnetite–wüstite 
reduction was determined by monitoring the weight 
change experienced by the specimen during the 
course of its reduction under isothermal conditions. 
The overall process course for iron oxides reduction 
is stoichiometrically as follows: 
 
Fe2O3 ?  Fe3O4 ?  FeO               (4) 
 

Since Fe3O4 can be viewed as a mixture of Fe2O3 
and FeO, the theoretical specimen weight decrease 
can be calculated from the following reactions 
(stoichiometry): 
 
Fe2O3 + CO?  2FeO + CO2                (5) 
 
Fe2O3 + H2 ?  2FeO + H2O                                    (6) 

 
From theoretical point of view it results that the 

total transformation of one mole Fe2O3 into 2 moles 
of FeO corresponds to a 10% decrease in the 
sample’s overweight. Thus, this 10% decrease in the 
specimen’s weight can be considered as the 
theoretical limit corresponding to totally reduction of 
Fe2O3 to FeO. Based upon the above analysis, the 
Fe2O3 to FeO conversion degree (α) is thus defined 
as the ratio of the actual decrease in the sample 
weight (m0 - m(t)) to the maximum (10%) weight’s 
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change (m0  - m10%). The experimental data were then 
converted into the α(0 – 1) range using the following 
formula: 
 

( ) 0

0 10%

m m(t)
t

m m
−

α =
−

                                                   (7) 

 
The experimental α = f (t) runs (Eq. 7) obtained 

within the temperature range studied (700–900oC) 

are presented in Fig. 2 [Piotrowski, K. et al. (2004 
a,b)]. The α = f (t) time – plots are visible sigmoid 
shaped and exhibit three distinct ranges: incubation, 
acceleratory and decaying periods [e.g. Tokuda et al. 
(1973)]. An increase in temperature results in a 
shorter incubation period while the kinetic rate of 
reduction is observed to be considerably accelerated.  
However, the general shape of the curves within the 
temperatures of interest is observed to be similar (for 
each mixture composition separately – see Fig. 2). 

 
 

 
(a) 

 
(b) 

 

 
(c) 

Figure: 2  The α(t) experimental profiles of reduction of Fe2O3 samples in the temperature range of 700–910oC 
in reducing gas of composition: a) 90%N2 + 5%CO + 5%H2, b) 90%N2 + 10%H2, c) 90%N2 + 10%CO. 
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NEURAL NETWORK CALCULATIONS 
 
Training and Validating of ANN 

 
The experimental TGA raw data, preprocessed 

using Eq.(7), were the basis for the process of the 
ANN preparing – learning and testing. The 644 
input–output data sets consisted of coupled input 
(process temperature (T), time (t), hydrogen content 
(vol %) in the reducing gas – considering the 
constant 90% N2 it was informative enough 
considering the gas composition) and corresponding 
output (Fe2O3 – FeO conversion degree, α) data. The 
experimental data covered the temperature range of 
700–910oC, process time of 0 – 5 min and 0 – 10 vol. 
% of H2 (corresponded to 10 – 0 vol.% of CO while 
assumed 90 vol.% of N2 as constant). A feed–
forward, multilayer ANNs with three inputs (T, t and 
[H2]), one output neuron (α) and of diversified 
combination of the hidden layer’s dimension and 
structure were used for the numerical simulation of 
the process.  The 535 randomly selected sets of the 
data (T, t, [H2] - α) were used for the ANN learning 
(learning data), since the other 109 sets (testing data) 
of identical structure were applied to verify 
simultaneously the correctness of the current 
responses providing by the ANN. This procedure 
protected the ANN structure against the overtraining 
effect (fitting exclusively to the learning data without 
any generalization capabilities) thus making the 
determination of optimal iterations number permitted 
for each learning run. The all assumed ANN’s 
structures were implemented and simulated with the 
use of DynaMind software.  Neurons of sigmoidal 
type (Eq. 2) were used with a continuous activation 
function whose output values changed from 0 to 1. 
Before the learning process started, the input–output 
data sets’ raw numerical data (T, t, [H2]) had been 
scaled into 0–1 window to fit within the transfer 
function, Eq. (2), limits. 

The learning procedure (supervised learning) was 
executed for a selected number of “test” 
configurations (Tab. 1) taking advantage of the 
backpropagation error algorithm, employing gradient 
– descent strategy of error function minimalization.  
The learning process was terminated at the moment 
of beginning of the test set error’s increase. This way 
it corresponded to the optimum value of the weights’ 
matrix.  

After the learning procedure has finished the 
comparative analysis of the agreement between the 
raw experimental data and ANN’s calculation results 
was carried out. The all 644 data sets were 

considered each time for every net’s configuration 
(40 structures – see Tab. 1) verified. For intermediate 
tests purposes (comparing the n ANN’s results (αcalc) 
with the n experimental ones (αexp)) the following 
statistical indicators were applied: 
 
Mean Deviation (MD) 
 

( )expcalc

MD
n

α − α
=
∑                          (8) 

 
and Root-Mean Square Deviation (RMSD) 
 

( )2expcalc

RMSD
n

α − α
=

∑                                      (9) 

 
The data in Table 1 indicates that the optimal 

configuration of the ANN, denoted as notation of (3–
20–1), corresponded to 20 neurons in one hidden 
layer (3 inputs and 1 output comply with the learning 
and testing data–set structure). The optimum 
iterations’ number (assuming the learning rate 
parameter’s optimal value of 0.1, avoiding falling 
into the local minima without the momentum 
element application) was 3200 (optimized for the 
sake of overtraining effect). The ANN’s learning 
process was performed several times starting with 
different, randomly selected matrices of initial 
weight values. As the results, the set of ANN of 
similar exactness was obtained. On the basis of the 
optimal configured and trained ANN, (3–20–1), the 
dependencies of Fe2O3 → FeO conversion degree (α) 
on the process parameters (t and [H2]) assuming 
gradually elevated temperature T values were 
modeled, testing the reducing potential of various 
compositions (kinetic behavior) for selected thermal 
conditions. 
 
Reduction Process Modeling 

 
The ANN’s α simulation results are presented in 

Fig. 3–4. The exemplary comparison between 
experimental data and the ones predicted by the 
Neural Network’s model (3–20–1) is presented in 
Fig. 3, whereas the results of process simulation (in 
the more informative form of 3–D α plots) are 
presented in Fig. 4. The comparison of 
“experimental vs. predicted” values of α (diagonal 
error plots) for the five selected ANN’s 
configurations (including the optimal 3–20–1 one) of 
practically the same, minimal error level (RMSD = 
0.0347 – 0.0374, see Tab.1) is showed in Fig. 5. 
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Table 1: Artificial Neural Network configurations tested – agreement  
between the Neural Network answers and experimental data 

 

# 
Network configuration 

(inputs – hidden 
neurons – outputs) 

Optimum iterations  
number 

α 
MD 

α 
RMSD 

One hidden layer 
1   3 – 2 – 1 1000   0.017493 0.107971 
2   3 – 4 – 1 2000   0.002058 0.039699 
3   3 – 6 – 1 2200 -0.002160 0.047158 
4   3 – 8 – 1 2200 -0.000760 0.036997 
5 3 – 10 – 1 2200 -0.006120 0.038841 
6 3 – 12 – 1 2000 -0.006760 0.048874 
7 3 – 14 – 1 2200 -0.001000 0.044316 
8 3 – 16 – 1 3000   0.000944 0.035105 
9 3 – 18 – 1 2400 -0.001940 0.039073 

10 3 – 20 – 1 3200   0.002984 0.034716 
Two hidden layers – configuration 1 

11   3 – 6 – 2 – 1 1200 -0.004550 0.038898 
12   3 – 6 – 4 – 1  1400 -0.000400 0.044676 
13   3 – 6 – 6 – 1 1500 -0.007880 0.042696 
14   3 – 6 – 8 – 1 1300   0.013257 0.049524 
15 3 – 6 – 10 – 1 1100 -0.003740 0.040673 
16 3 – 6 – 12 – 1 1400   0.001778 0.038326 
17 3 – 6 – 14 – 1 1200 -0.004910 0.041808 
18 3 – 6 – 16 – 1 2200   0.007487 0.041177 
19 3 – 6 – 18 – 1 1300 -0.004240 0.040041 
20 3 – 6 – 20 – 1 1200   0.005916 0.039625 

Two hidden layers – configuration 2 
21   3 – 12 – 2 – 1 1700 -0.010660 0.054824 
22   3 – 12 – 4 – 1 2300 -0.005560 0.044620 
23   3 – 12 – 6 – 1 1800   0.002073 0.037207 
24   3 – 12 – 8 – 1 1500 -0.009160 0.043418 
25 3 – 12 – 10 – 1 1500 -0.003290 0.041404 
26 3 – 12 – 12 – 1 1800   0.000200 0.039346 
27 3 – 12 – 14 – 1 1900   0.004288 0.042500 
28 3 – 12 – 16 – 1 1400   0.001605 0.040368 
29 3 – 12 – 18 – 1 1600 -0.010650 0.041901 
30 3 – 12 – 20 – 1 1500   0.008149 0.044211 

Three hidden layers 
31   3 – 10 – 10 – 2 – 1 1600 -0.003930 0.037405 
32   3 – 10 – 10 – 4 – 1 1700 -0.005860 0.039475 
33   3 – 10 – 10 – 6 – 1 1400 -0.000830 0.043896 
34   3 – 10 – 10 – 8 – 1 1400   0.004633 0.041222 
35 3 – 10 – 10 – 10 – 1 1800 -0.003200 0.039536 
36 3 – 10 – 10 – 12 – 1 1600   0.008234 0.041262 
37 3 – 10 – 10 – 14 – 1 1300 -0.013140 0.038437 
38 3 – 10 – 10 – 16 – 1 1700 -0.003450 0.041561 
39 3 – 10 – 10 – 18 – 1 1800   0.000464 0.038021 
40 3 – 10 – 10 – 20 – 1 1600   0.000340 0.041620 
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Figure 3: The a = f(t) kinetic profiles of iron oxide reduction process– comparison of  
ANN’s predictions and experimental data for the selected three process temperatures  

(reducing gas of composition: 90% N2, 5% H2, 5% CO). 
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(f) 

Figure 4: Iron oxide reduction process kinetics – influence of H2 content in reducing mixture in the arising 
process temperatures (a – 7000C, b – 7600C, c – 8200C, d – 8400C, e – 8600C, f – 9000C). 
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(e) 

Figure 5: The comparison of “experimental vs. predicted” values of α (diagonal error plots) for the five selected 
ANN’s configurations: (a) – 3-8-1, RMSD = 0.036997, (b) – 3-16-1, RMSD = 0.035105, (c) – 3-20-1, RMSD = 

0.034716, (d) – 3-12-6-1, RMSD = 0.037207, (e) – 3-10-10-2-1, RMSD = 0.037405. 
 
 

DISCUSSION 
 

The obtained ANN model was verified with the 
experimental data first. The Network’s precision is 
confirmed on the experimental – modeled 
comparative chart (Fig. 3 and 5). Considering these 
results, the performance of detailed analysis of the 
process’ behavior in various T conditions based on 
the ANN’s simulation results seems justified. The 
ANN’s numerical modeling results, presented in 
convenient, graphical form in Fig. 4, are discussed 
below.  

Generally it can be stated, that both with 
temperature, T, and hydrogen concentration, [H2] 
increase, the kinetic profiles of the α (t)[H2]=const  form 
have gradually more and more sharp courses 
between 0 and 1 (corresponded to full Fe2O3 to FeO 
conversion) values, however the hydrogen content in 
reducing gas seems to impose considerably stronger 
influence on this shape (especially in the 3 – 6 % 
[H2] range). With the temperature increasing, the 
difference in the process courses for various [H2] 
values is less and less clear (compare the data 
corresponding to 700 and 9000C). The characteristic 
“hill’s slope”, distinctly visible within 700–7600C 
window, becomes more and more unclear (820–
8600C) and practically disappears in the vicinity of 
temperature 9000C.  Considering the diffusion range 
it is visible that for 10% CO case the temperature 
influence is of great importance for overall kinetics 
of the process – with the T increasing the diffusion 
rate increases thus the higher Fe2O3 – FeO 

conversion degrees can be acquired. From the other 
hand, considering the composition corresponded to 
10% H2, it can be noticed that temperature effect is 
less pronounced since the hydrogen exhibit both 
much better diffusion capabilities and has lower 
activation energy comparing to CO. In connection 
with this the following phenomenon can be noticed. 
According to the literature study, the reduction rate 
is remarkably delayed within the specific 
temperature range of 650–750oC and in the vicinity 
of 920oC. This phenomenon has been explained in 
literature [e.g. Tokuda et al. (1973), Nasr et al. 
(1996), Turkdogan et al. (1971), El–Geassy et al. 
(1977)] as the result of the obstruction of 
intraparticle diffusion on account of blockade of 
pores by agglomeration of Fe3O4 particles with each 
other. This extreme kinetic behavior of the α in the 
temperature vicinity of 750oC is reproduced by the 
model clearly (see slight decrease in Fig. 4). Thus, 
the ANN tool is able to model the process in the 
whole 700 – 900oC range, since the classical 
Arrhenius equation is not applicable resulting from 
this non–monotonic, extremely dependence course.  
This extreme effect, however, is the most clear for 
[H2] = 2% (see Fig. 4). The practical (both 
quantitative and qualitative) conclusions can be 
drawn based on the simulation results. The complete 
conversion degree (α = 1) for [H2] = 0% 
(corresponded to reducing gas composition of 10% 
CO + 90% N2) is attainable for the highest 
temperature range (vicinity of 9000C) only. By 
altering the H2 content within the tested 0 – 10% 
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range it becomes possible to obtain higher 
conversion degrees for the same temperature. For 
[H2] =10% a full conversion degree is reached in a 
relatively short process time (less than 1 min) within 
the all temperatures studied. For both [H2] content 
and temperature increasing, the “full conversion area 
“ (corresponded to α = 1) constant surface is more 
and more widespread (compare the flat plateau 
indicating full Fe2O3 to FeO conversion range 
presented in Fig. 4). In the authors’ previous study 
[Piotrowski, K. et al. (2004 a,b), Wiltowski, T. et al. 
(2004 a, b)] it was evaluated, that activation energy 
value decreases considerably with the H2 content in 
the reducing mixture extending. The reducing 
mixture composed of N2 and CO only shows higher 
activation energy (∆Ea= 104 kJ/mol) than that for the 
N2 and H2 mixture alone (∆Ea= 23.85 kJ/mol). The 
reactions with only CO+N2 containing reducing 
mixture (0% of H2 corresponds in this study to 10% 
of CO), as characterized by higher activation energy, 
are very temperature sensitive [Levenspiel, O. 
(1988)], whereas reactions involving only H2+N2 
(thus 10% H2 corresponded to 0% CO), marked by 
lower activation energy, are relatively temperature–
insensitive (see the sharp, practically the same 
kinetic profile, Fig. 2). This sensitiveness is clearly 
observed by examining the data in Fig 4 as well, 
especially comparing the time–dependence for 
boundary profiles (cross sections of effective 
surface) for [H2] =0% (corresponded to [CO] =10% 
case) and [H2] =10% (which, in turn, seem 
practically invariant). Similar increases in reaction 
rate when hydrogen is added to carbon monoxide 
have been found by others researchers [e.g. 
Nikanorova, L.P. and Antonova, V.M. (1991), 
Tokuda et al. (1973)], who have attributed them to 
higher hydrogen’s chemical potential of reduction, as 
well as the higher diffusivity of hydrogen within the 
pores of the solid (thus mass transfer facility and 
better chemical properties of H2 for reduction 
processes). Thus, the ANN simulation results 
correctly reflect the increased reducing capacity of 
the inlet gas at higher temperatures and with 
enhanced of the H2 content. Increasing the 
proportion of CO/H2 in the inlet gas slows the 
reduction rate.  On the other hand, the rate of 
reduction by CO is markedly enhanced by the H2 
addition. Considering the ANN model’s features it 
should be mentioned, that the properly trained and 
validated ANN incorporates all “hidden” information 
influencing the process course. Thus, all side–effects 
and sub–processes are taken under consideration 
even without our knowledge about their existence. It 
becomes important in the complex process 

description, like in considered kinetic case. After a 
specific period of time (depending on process 
conditions) the reaction shifts from kinetic range to 
the diffusion range. ANN model, on the other hand, 
was found to be useful both in kinetic and diffusion 
regions, incorporating all possible “intermediate 
range effects” acting within the shift range between 
the two clearly defined kinetic mechanisms. It should 
be pointed that mass transfer limitations, as well as 
the solid state transition effects must also be taken 
into account in a full process kinetics analysis. The 
endothermic nature of the process can play a 
significant role in the heat transfer effects, inhibiting 
or catalyzing the phase transformations, thus raise 
doubts as far as concerned the isothermal 
assumptions of the process conditions (usually 
applied in the classical approach for the difference 
equations’ calculations simplifying). The heat 
transfer can affect the surface structure’s 
composition and morphology, what is a key factor in 
diffusion processes and surface adsorption (being the 
first stage of many solid–state transformations). All 
these factors strongly affect each other, sometimes in 
not fully predictable manner, so the trials to create 
one coherent model and predict the process behavior 
based on kinetic information evaluated in various, 
considerable diversified and idealized laboratory 
conditions usually fail. Thus, the application of ANN 
for the numerical modeling of this complex process 
seems to be motivated and purposeful for 
engineering and design purposes, becoming a 
valuable tool for the rational optimizing of this 
process within the full 700 – 9000C temperature 
range. As a consequence of this approach one can 
rationally select the optimal values of the decisive 
process parameters, thus carry into effect the 
professional assessment of the process conditions. 
The Network’s correct prediction in the ranges 
where it was not provided with the training data 
proves its good interpolation capabilities. Hence, the 
Network may be applied to equalize numerically raw 
experimental data when it is necessary for 
calculation–design needs. Taking into account the 
difficulties and inaccuracies associated with TGA 
measurements, the accuracy of the results generated 
by the ANN can be considered satisfactory for 
engineering calculations. The accuracy of the results 
obtained from the ANN model is closely related to 
the accuracy and range of experimental data used for 
the Network learning and testing. A Network type, 
configuration and number of learning iterations are 
of great importance, too.  

The microbalance used with the standard TGA 
analytical apparatus is capable of detecting weight 
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changes as small as 0.1 µg (thus 1 x 10-7 g). Since the 
initial mass of the sample was about 12 mg – its 
decrease by 10% corresponded to appropriately ∆m 
= 1.2 mg = 1.2 x 10-3g. This ∆m corresponded, 
however, to a full conversion degree (α) range (0–1). 
This way the accuracy of the TGA analysis in the 
directly relation to the conversion degree (α) can be 
estimated with the following simply proportion: 
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−
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while the statistical error indicators for the selected 
optimal configuration (3–20–1) based on the 
predicted conversion degree ( α ) deviations from the 
experimental ones, are as follows: MD (α) = 2.984 x 
10-3, RMSD (α) = 3.4716 x 10-2. 

While comparing these error values one should 
keep in mind, that the Neural Network model’s results 
were computed for a wide range of all possible reaction 
conditions with one coherent, numerical model, 
capable of predicting the results of interaction of many 
complex phenomena. Thus, the error values (MD, 
RMSD) can simply result from the regression and 
rendering flexibilities of possibly, the most general 
model. However, this accuracy of the predictions 
may be further, slightly enhanced through limiting 
the range of inputs’ data or by increasing the number 
of the neurons in the hidden layer. 

It should be mentioned, that the ANN, trained 
exclusively on the basis of raw experimental data, 
did not demand any assumption or general 
mathematical form of a presumed phenomena model 
so as to numerically describe the course of the 
underlying process correctly.  
 
 

CONCLUSIONS 
 

The paper confirms the usefulness of ANN for 
numerically modeling of complex heterogeneous 
process’ kinetics – isothermal iron oxide reduction 
by gaseous agent of various chemical compositions 
and in the various thermal conditions. The properly 
trained, relatively simple feedforward ANN structure 
(one hidden layer with 20 sigmoidal–type neurons) 
correctly and precisely reflects the kinetic behavior 
of this complex topochemical process. The time–
dependence of the Fe2O3 – FeO conversion degree 
(α) on the process temperature and reducing mixture 
composition was elaborated. The kinetic and 

diffusion regions are incorporated in the one 
coherent model, making allowance for all hidden 
side–effects associated, e.g. with phase 
transformations and the reaction’s heat evaluation 
within the solid structure. This way the model 
considers the intrinsic endothermic nature of the 
reaction what influences the mass and heat transfer 
considerably.  Additionally, the application of the 
ANN to arrange the raw experimental data did not 
call for any simplifying assumptions, which could be 
the reason of some deviations in a complex process 
modeling via the conventional mathematical method 
– e.g. solving a set of differential equations. 
Although this approach does not provide the overt, 
detailed kinetic formulas incorporating all possible 
mechanisms what can be helpful in the mechanism 
analysis, the numerical simulation results, especially 
in the graphical forms, can deliver enough 
information for practical engineering calculations as 
well as for the detailed theoretical analysis. 
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NOMENCLATURE 
 

b  bias value  (-) 
m  sample mass  (g) 
n number of experimental data 

considered  
(-) 

t process time  (min, s) 
T process temperature  (0C, K) 
w neuron’s  weight value  (-) 
yi SUM neuron’s output value after 

summing up (Eq. 1)  
(-) 

yi neuron’s output value after 
transformation by function 
(Eq. 2)  

(-) 

α Fe2O3 → FeO conversion 
degree till the time t    

(-)  

∆Ea activation energy  (kJ/mol) 
 
Indexes 
 
o  initial  
10% corresponded to 10% 

decrease in the sample mass 
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calc value calculated by ANN 
model 

 

exp experimental value  
 
Abbreviations 
 
ANN  Artificial Neural Network  
INPUT ANN input  
MD Mean Deviation   
OUTPUT 
VALUE 

ANN output  

RMSD Root–Mean Square 
Deviation 
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